wits lean 2015

416

Upload: tshidiso-lekalakala

Post on 23-Dec-2015

48 views

Category:

Documents


6 download

DESCRIPTION

Lean manufacturing

TRANSCRIPT

Lean at Wits 2

Lean at Wits 3

  ‘All  models  are  wrong;  some  models  are  useful’    (George  Box,  a  likely  candidate  for  the  sta>s>cian  of  the  20th  Century.)  

Lean at Wits 4

World Class Priorities...

Lean at Wits

Lean Operations

Six Sigma

Supply Chain

Lean Thinking Sy

stem

s

Thin

king

5

Process Thinking

Lean at Wits 6

MRP MRPII ERP

TOYOTA LEAN

DEMING TQC TQM SIX SIGMA

TAYLOR MASS BATCH

COLT FORD

TPM

TOC Factory Physics

AGILE Lean Startup

Different Starting Points

Lean at Wits

TOYOTA LEAN

DEMING TQC TQM SIX SIGMA

AGILE Lean Startup

TPM

TOC Factory Physics

TAYLOR MASS BATCH

VARIANCE

VOLATILITY

LEAD TIME

AVAILABILITY

BOTTLENECKS

UTILISATION

P. CONTROL MRP MRPII ERP

7

  See  The  Lean  Toolbox,  Chronology  

Lean at Wits

Whitney Taylor Gilbreth Ford Ohno Shingo Toyoda

8

  1950  to  1975   What  was  Toyota  doing?    Ohno?    Shingo?    (See  ‘Art  of  Lean’  website)    Beware….  

Lean at Wits 9

Lean at Wits 10

Sea temperature is influenced by currents of the business environment

….and by natural laws that cannot be broken

(like Kingman’s equation)

If these change, the

Iceberg melts…

irrespective of tools and

culture!

  The  purpose  of  the  Toyota  Manufacturing  System  (or  Lean  Manufacturing)  was  defined  by  Taiichi  Ohno  (1988)  to  be  ‘.  .  .    looking  at  the  ,meline  from  the  moment  the  customer  gives  us  an  order  to  the  point  when  we  collect  the  cash.    And  we  are  reducing  that  ,me  line  by  removing  the  non-­‐value-­‐added  wastes’.    

Lean at Wits 11

Order Cash (reduce by removing non-value added wastes)

Toyota Production System Time Line

A modification ? ‘Idea to Cash’

Lean at Wits 12 D.Wayne, 2007. Deming Management Philosophy and so called Six Sigma Quality.

Lean at Wits 13 D.Wayne, 2007. Deming Management Philosophy and so called Six Sigma Quality.

  The  ‘Adjacent  Possible’  §  Darwin’s  Paradox  §  Ci>es  §  Prin>ng  §  Journals  and  Tim  Berners-­‐Lee  

  Lean  futures?  

Lean at Wits 14

‘Fortune favours the prepared mind’

‘Adjacent Possible’ is discussed at length in Steven Johnson, Where Good Ideas Come From, Penguin, 2010

Lean at Wits

15

Engines Daimler & Benz

Standardisation of parts

Electric Motors

Job Specialisation

Ford and the Assembly Line

Moving Line and

Disassembly

Juran and Deming Quality and ’94/6’

People

The Loom

Line stop

Small batches Cash

Shortages Toyota Production System

Pull & Kanban

Hawthorne Bicycles and

Roads

Innovation and parts reduction, but then

becoming more rigid

Strikes but leading to teams and job

security

 Who  was  Malcolm  McLean?   Who  was  Billy  Durant?  

Lean at Wits 16

William Durant McLean

Lean at Wits 17

Lean at Wits

18

After Rother and Liker

Lean at Wits 19

After Rother and Liker

Lean at Wits 20

After Rother and Liker

  “My  favourite  word  is  ‘understanding’”    Don’t  use  consultants.  They  will  bring  old  ideas.  For  breakthrough  you  need  to  develop  ideas  yourself    Humans  are  addicted  to  hoarding.  This  goes  back  to  the  security  required  by  ancient  man.  But  it  is  a  habit  that  must  be  broken,  because  excessive  inventory  is  a  severe  waste    The  greatest  waste  is  overproduc>on  

Have we forgotten?

Lean at Wits

21

  JIT  and  automa>on.  Both  are  needed  equally.  But  in  the  West  far  more  a`en>on  has  been  given  to  JIT    The  two  dis>nguishing  features  of  TPS  that  makes  it  different  from  mass  produc>on  are  small  lot  sizes  and  levelling  the  schedule    Standardiza>on  should  never  get  in  the  way  of  crea>ve  thinking  

Have we forgotten

Lean at Wits

22

  Sakichi  Toyoda  as  a  great  inventor.  He  developed  may  machines  by  experimenta>on    There  are  three  levels  of  schedule.  The  annual  plan,  monthly  plan,  and  daily  schedule.  All  must  be  capable  of  change  if  required.  But  only  if  there  is  significant  change.  Stability  is  required.    The  plant  should  be  like  the  human  body.  The  nervous  system  works  automa>cally  responding  to  changes  in  the  environment  without  having  to  refer  to  higher  level  decision  making.  

Lean at Wits 23

  Excessive  informa>on  must  be  suppressed.    Computers  are  useful  and  fast  calcula>on  tools,  but  should  never  be  allowed  to  take  over  decision  making  from  people.  Computers  generate  huge  volumes  of  informa>on,  much  of  it  unnecessary  for  running  a  plant.    TPS  is  profit  based  industrial  engineering  

?

Lean at Wits 24

  First  published  in  1859    ‘The  spirit  of  self  help  is  the  root  of  all  genuine  growth  in  the  individual;  and,  exhibited  in  the  lives  of  many,  it  cons>tutes  the  true  source  of  na>onal  vigor  and  strength’  

  By  learning  to  be  more  efficient,  employees  could  improve  the  quality  of  their  own  lives  and  those  of  co-­‐workers.  They  could  also  improve  the  quality  of  life  for  the  people  who  used  the  products  they  made,  which  were  consequently  of  more  use  and  value.  

  ‘The  greatest  results  in  life  are  usually  a`ained  by  the  exercise  of  ordinary  quali>es…  they  who  are  the  most  persistent,  and  work  with  the  truest  spirit,  will  usually  be  the  most  successful.’  

  It  is  the  only  book  on  display  at  Sakichi  Toyoda’s  birthplace  

Lean at Wits 25

Some  Chapters    Self  Help  -­‐  many  great  mean  of  humble  origins,  and  self  

taught    Leaders  and  inventors  -­‐  who  learned  by  doing  and  

observa>on    The  Po`ers  -­‐  searching  for  the  secrets    Applica>on  and  perseverance  -­‐  ‘genius  is  pa>ence’    Helps  and  opportuni>es  -­‐  Wa`,  Brunel,  Newton,  Priestly  -­‐  

observing  with  intelligence  (at  gemba)    Ar>sts  -­‐  wealth  not  the  ruling  mo>ve    Energy  and  courage  -­‐  the  force  of  purpose,  and  

promp>tude  of  ac>on  -­‐  Wellington,  Napoleon,  Dr  Livingstone  

  Men  of  Business  -­‐  a`en>on  to  detail,  economy  of  >me,  accuracy,  punctuality  -­‐  Wordsworth,  Shakespeare,  Walter  Sco`,  Dr  Johnson  

  Money  -­‐  living  within  means,  frugality,  riches  no  proof  of  wealth,  independence  a`ainable    

Lean at Wits

See  also  Terence  Keely  Sex,  Science  and  Profits  

26

  Specify  what  creates  value  from  the  customers  perspec>ve      Iden>fy  all  steps  across  the  whole  value  stream   Make  those  ac>ons  that  create  value  flow    Only  make  what  is  pulled  by  the  customer  just-­‐in-­‐>me    Strive  for  perfec,on  by  con>nually  removing  successive  layers  of  waste  

Lean at Wits 27

Lean at Wits 28

Lean at Wits 29

0 200 400 600 800

1000

iPad 4 64G US$

Lean at Wits 30

Source:  Ma`hias  Holweg  and  3  Day  Car  

Lean at Wits 31 Source:  Ma`hias  Holweg  and  3  Day  Car  

0 10 20 30 40 50 60 70 80 90

100 R

aw M

ater

ial

Bou

ght-o

ut P

arts

In-h

ouse

bui

lt P

arts

Pre

-Ass

embl

y W

IP

Ass

embl

y W

IP

Fini

shed

Com

pone

nts

Inbo

und

Tran

sit

On-

site

Par

t (V

M)

Vehi

cle

Pro

duct

ion

WIP

Load

ing

&

Des

patc

h O

utbo

und

Tran

sit

Mar

ketp

lace

Cus

tom

er

Day

s of

Inve

ntor

y

Max Average Min

First Tier Suppliers Vehicle

Manufacturers Distribution & Retail Outbound

Logistics Inbound Logistics

  Solve  my  problem  completely    Don’t  waste  my  >me    Get  me  exactly  what  I  want    Provide  value  where  I  want  it    Solve  my  problem  when  I  want    Get  me  the  solu>on  I  REALLY  WANT  

Lean at Wits 32

  How  do  we  know  what  the  customer’s  real  problem  is?  §  Drills  or  holes?  §  ‘Bed  blocking’  §  Customer’s  actual  >ming  requirements  or  the  salesman’s  incen>ve?  

  Study  it,  by  direct  observa>on.      Remember,  all  Demand  is  not  ‘work’  

  Rework  and  Failure  Demand  Unidirec>onal  flow    Goldra`:  Throughput  and  Herbie…   Manufacturing  and  Service  §  Manufacturing:  Internal  failure  and  line  stop;  external  failure?  For  some  other  manager.  Measures  and  Accoun>ng  

§  Example:  OEE  :  availability  or  u>liza>on?  Quality  and  capacity  

§  Service:  External  failures  felt  internally    Seddon  and  Lean  in  agreement?  

Lean at Wits 34

  Customers  and  Value      §  for  Customers  and  all  

Stakeholders  §  Benefit  /  (Costs  +  Harm);    §  Value  demand  vs  Failure  

Demand  (or  Rework)    People  §  Deming’s  94  /6  §  Trust  §  Mo>va>on  and  ‘small  wins’  

§  The  brain  and  thinking.  Bias.  

  System    §  end-­‐to-­‐end  value  streams  §  holis>c,  integrated,  with  

feedback    Process  efficiency  

§  Flow  efficiency  not  resource  efficiency  

§  Con>nuous  improvement  §  The  ‘big  five’  opera>ons  

concepts  §  Timing  

  Innova>on  §  S  curves  and  the  need  for  

breakthrough  

  Lean at Wits 35

  Customers  and  Value      §  for  Customers  and  all  

Stakeholders  §  Benefit  /  (Costs  +  Harm);    §  Value  demand  vs  Failure  

Demand  (or  Rework)    People  §  Deming’s  94  /6  §  Trust  §  Mo>va>on  and  ‘small  wins’  

§  The  brain  and  thinking.  Bias.  

  System    §  end-­‐to-­‐end  value  streams  §  holis>c,  integrated,  with  

feedback    Process  efficiency  

§  Flow  efficiency  not  resource  efficiency  

§  Con>nuous  improvement  §  The  ‘big  five’  opera>ons  

concepts  §  Timing  

  Innova>on  §  S  curves  and  the  need  for  

breakthrough  

  Lean at Wits 36

  TRIZ  is  the  Russian  acronym  for  Teoriya  Resheniya  Izobreatatelskikh  Zadatch    

 

Lean at Wits 37

Genrich Altshuler 1926-1998

Lean at Wits 38

Exploration

Exploitation

The whats

The hows

Unknown Unknowns?

Known Unknowns?

  Backgrounds:    Increasing  risk  §  Short  termism  

•  Discounted  cash  flow  •  Vast  R&D  investments  and  risk  of  failure  •  Mashmallow  effect  

§  Health  and  Safety  and  Li>ga>on    Failure  of  Big  (IT)  Projects  

Lean at Wits 39

Waterfall

IT Design Factory Scheduling People and Motivation Projects

Agile

SCRUM

Stage Gates

Big Transformation

Plans

Kaizen Blitz

Kata

Optimization, OR, LP

MRP, TOC Batches

Kanban Heijunka

Change whole culture

Top down KPI’s

Small wins

CPA, PERT

Last Planner

Simultaneous and

Concurrent Eng

Set Based

Lean Startup

Lean at Wits 40

John Bicheno 2015 41

Lean at Wits 42

breakthrough

Lean at Wits 43

(Lord) William Armstrong Cragside, Northumberland (Later Vickers-Armstrong,

Later BAe systems)

The Accumulator

Efficient Power Collection

Lean at Wits 44

What happens if: You insert a mouse? You insert a burning candle? You insert a mint plant? You insert a burning candle, then later a mint plant, Then after a month, a mouse?

Reference: Steven Johnson, The Invention of Air, Riverhead, 2008

Why do this? What is needed to do this?

What are the implications?

Joseph Priestley

time

performance

Beat competitors with functionality and reliability

Beat competitors with speed, responsiveness and convenience

Following Clayton Christensen ‘The Innovators Solution’ HBS Press, 2003

Products are ‘not good enough’

Products are ‘good enough’

Lean at Wits 45

Time  

Customer  expecta>ons  

  Clayton  Christensen  video  

Lean at Wits 46

Lean at Wits 47

  Customers  and  Value      §  for  Customers  and  all  

Stakeholders  §  Benefit  /  (Costs  +  Harm);    §  Value  demand  vs  Failure  

Demand  (or  Rework)    People  §  Deming’s  94  /6  §  Trust  §  Mo>va>on  and  ‘small  wins’  

§  The  brain  and  thinking.  Bias.  

  System    §  end-­‐to-­‐end  value  streams  §  holis>c,  integrated,  with  

feedback    Process  efficiency  

§  Flow  efficiency  not  resource  efficiency  

§  Con>nuous  improvement  §  The  ‘big  five’  opera>ons  

concepts  §  Timing  

  Innova>on  §  S  curves  and  the  need  for  

breakthrough  

  Lean at Wits 48

Lean at Wits 49

Lean at Wits 50

  ‘Ford was both the most brilliant and the most senseless marketer in American history. He was senseless because he refused to give the customer anything but a black car. He was brilliant because he fashioned a production system designed to fit market needs. We habitually celebrate him for the wrong reason: for his production genius. His real genius was marketing. We think he was able to cut his selling price and therefore sell millions of $500 cars because his invention of the assembly line had reduced the costs. Actually, he invented the assembly line because he had concluded that at $500 he could sell millions of cars. Mass production was the result, not the cause, of his low prices.…’

Lean at Wits

Theodore Levitt, ‘Marketing Myopia’, Harvard Business Review, July / Aug 1960

51

Lean at Wits

Quality Flexibility Service

Costs Response Times

Variability

52

53 Lean at Wits

Absent

High Satisfaction

“enragers”

“Delighted”

Neutral

Low Satisfaction

High quality performance

Quality or performance not achieved

“Disgusted”

Fully Implemented

“delighter”

“more is better” “must be”

54 Lean at Wits

Lean at Wits 55

1 5

Performance and Cost

Human Fit (Ergonomics)

Craftsmanship

Emotional Appeal

Elegance and Sophistication

Symbolism and Cultural Values

Global Fit (Environment)

From  James  L  Adams,  “Good  Products,  Bad  Products”,  McGraw  Hill,  2012  

  The  customer,  and  the  supply  chain!  

56 Lean at Wits

  Customers  and  Value      §  for  Customers  and  all  

Stakeholders  §  Benefit  /  (Costs  +  Harm);    §  Value  demand  vs  Failure  

Demand  (or  Rework)    People  §  Deming’s  94  /6  §  Trust  §  Mo>va>on  and  ‘small  wins’  

§  The  brain  and  thinking.  Bias.  

  System    §  end-­‐to-­‐end  value  streams  §  holis>c,  integrated,  with  

feedback    Process  efficiency  

§  Flow  efficiency  not  resource  efficiency  

§  Con>nuous  improvement  §  The  ‘big  five’  opera>ons  

concepts  §  Timing  

  Innova>on  §  S  curves  and  the  need  for  

breakthrough  

  Lean at Wits 57

  Seeking  not  to  be  reduc>onist.  Wholes  not  Parts    Understanding  about  rela>onships  and  interdependencies    Engaging  in  mul>ple  perspec>ves    Reflec>ng  on  the  boundaries  Learning  

  (These  are  closely  linked  concepts)  

Lean at Wits 58

  Purpose    ‘Doing  the  right  thing  and  doing  things  right’  (Ackoff)    The  Whole  greater  than  the  sum  of  the  parts  

§  ‘The  Systems  Approach  seeks  not  be  to  reduc>onist’  (Checkland)    Interconnec>ons:  Silos  and  Streams    System  boundary  Subop>misa>on  

  Feedback    CATWOE  

§  Clients,  Actors,  Transforma>on,  Weltanschauung,  Owners,  Environment    Vic>ms  and  Beneficiaries    Viewpoints  (Tops,  Middles,  Bo`oms,  Customers)  

§  ‘The  Systems  Approach  begins  when  you  first  see  the  world  through  the  eyes  of  another’  (Churchman)  

Lean at Wits 59

Lean at Wits 60

Fred Emery Eric Trist

Ackoff Kurt Lewin Tavistock Institute (Univ of London)

Complexity Interaction

‘Systems Thinking’ (1969) Self directed teams Socio Tech Design Open Systems Movement

Job Enrichment Job Enlargement Job Rotation Work Design

Not the technical system alone (like Taylor)

But interactions between Technical systems (plural)

and Social systems (plural)

61 Lean at Wits

62

£

“What Matters?”

£ If we don’t understand the Customer we are in danger of doing more than is necessary OR assume that things are important that are not (e.g.: Flowers and Chocolate)This costs money.

If we don’t understand the Customer we are likely to not do something, or not do it right resulting in failure demand, rework and complaints. All cost money.

Lean at Wits

Lean at Wits 63

Treat a special cause as common cause and you will make the system worse Treat a common cause as special cause and you will make the system worse 97% of defects are common cause problems inherent to the system (W. Edwards Deming) Or ‘The righter you do the wrong thing, the wronger you become’ (Russell Ackoff)

Common Causes and Special Causes

Lean at Wits 64

‘Learning to See’ HB as a System

Inspect

Sort Scan Index

Decide

Allocate

Notify

Hand out forms Take in documents

Pay

22%V 78%F

44%V 56%F

34%V 66%F

99% claims ‘dirty’ No case ownership CTax fragmentation

1-10 cycles to clean (ave.4) 95% cases over-specified 20% docs. duplicated

60% errors Rework

Multiple Sorts & Checks Cases fragmented Scanning/Indexing errors

64% passed back Manage queues

Letters unclear

0-152 days to pay 3% visit once

Handoff

HO

HO

HO HO HO

“I want to claim”

Workers’ activity ‘managed’

Lean at Wits 65

66

External Influences

IT Systems Budgets Policy & Procedure Functional Specialisation Repair request info Budget commitment Cost of works

completed Schedule labour

and material Repair info carried out

W/o completion info. & customer satisfaction

Repair received

Contractor receives job

Operative receives job

Obtain materials Attend repair Works order

processed Invoice received

Invoice paid

Hand off Hand off Hand off Hand off Hand off Hand off Hand off

Order part and re-book

Wrong address

50 - 100 p.a.

Wrong trade

1%

Invoice without V.O.

5 - 10%

No access 15 - 20%

Overbooking 3%

10%

Post inspection Up to 4 week delay

Further works required

20%

Inaccurate contact details

30%

Invoice match fail 1 - 2 p.m.

Lack of time 2%

Wrong office 10% in CS

Wrong or no part 50 - 80%

No w/o issued 2 - 3%

No contact for Cat E 20 - 25%.

V.O. authorisation

30 - 40%

Wrong Contractor

1 - 2%

Not on Contract

20 p.a.

Hold payment as job incomplete

1 - 2%

Lean at Wits

Age of Inventory

‘Pressure’ on Capacity

Returns

Bigger Batches

Increased Order Book

Demand for Higher

Utilization

Earlier Orders

Reduced Maintenance

Shortages of some SKU’s

More breakdowns

See ‘Industrial Dynamics’ Forrerster, MIT, 1960’s – 1970’s

Changes to the

Schedule

Lean at Wits 67

Lean at Wits 68

  Customers  and  Value      §  for  Customers  and  all  

Stakeholders  §  Benefit  /  (Costs  +  Harm);    §  Value  demand  vs  Failure  

Demand  (or  Rework)    People  §  Deming’s  94  /6  §  Trust  §  Mo>va>on  and  ‘small  wins’  

§  The  brain  and  thinking.  Bias.  

  System    §  end-­‐to-­‐end  value  streams  §  holis>c,  integrated,  with  

feedback    Process  efficiency  

§  Flow  efficiency  not  resource  efficiency  

§  Con>nuous  improvement  §  The  ‘big  five’  opera>ons  

concepts  §  Timing  

  Innova>on  §  S  curves  and  the  need  for  

breakthrough  

  Lean at Wits 69

Lean at Wits

Lean at Wits 71

Adjusts Expedites Measures Repairs Sets up

Approves Files Monitors Requests Updates

Assigns Identifies Moves Returns Verifies

Changes Inspects Receives Reviews Waits for

Copies Labels Reconciles Revises

Distributes Maintains Records Selects

William E. Trischler; Understanding and Applying Value-Added Assessment

72 Lean at Wits

Lean at Wits 73

Lean at Wits 74

 Waste  of  Human  Poten>al    ‘Not  bringing  your  brain  to  work’  

Lean at Wits 75

 Waste  of  energy  and  natural  resources  

  Becoming  the  most  important  waste  of  all?    

 Hunter  Lovins    see  Hawkin,  Lovins,  Lovins,  Natural  Capitalism,  Li`le  Brown,  1999  

Lean at Wits 76

  How  many  of  the  wastes  are  pure  waste,  and  how  many  are  tradeoff  wastes?  

Lean at Wits 77

‘I  spent  most  of  my  money  on  women,  booze  and  gambling….’  

…the rest I wasted.

Lean at Wits 78

  Transport    Inventory   Mo>on   Wai>ng    Overproduc>on    Overprocessing    Defects    Employees    Green  

 Lean at

Wits 79

Lean at Wits 80

From Lifescan Scotland

  The  Seven  Green  Wastes  §  Energy  §  Water  §  Materials  §  Garbage  §  Transport  §  Emissions  §  Biodiversity  (impact  on  surrounding  area  –  wildlife,  birds,  bugs,  plants  and  trees,  water  table)  

  Do  VSMs  with  the  data  boxes  containing  these  wastes    Document  Input  /  Output    Set  up  kaizens  and  A3’s  for  countermeasures  for  each  type  

Lean at Wits Reference: Brett Wills, Green Intentions, CRC Press, 2010 81

n  Appropriate  work  shall  be  specified  as  to  content,  sequence,  gg,  &  outcome  �  Standardisa>on  in  detail,  

fixing  a  seat  n  Every  customer-­‐supplier  

connec>on  must  be  direct,  &  there  must  be  one  unambiguous  way  to  send  requests  &  receive  responses    •  Immediate  requests  for  

assistance,  solving  within  takt  

Lean at Wits 82

  The  pathway  for  every  product  &  service  must  be  simple  &  direct  •  One  specific  route  means  con>nuous  experimenta>on  

  Any  improvement  must  be  made  in  accordance  with  the  scien>fic  method,  under  the  guidance  of  a  teacher,  at  the  lowest  possible  level  in  the  organisa>on  •  Predict  &  test  improvements  

Toyota  South  Africa  Story    

Lean at Wits 83

  The  Management  was  sa>sfied,  even  delighted    But  Lionel  Aldworth  was  not!    Not  so  much  what  was  achieved,  but  HOW  it  was  achieved    Using  (mental?)  models  to  surface  your  knowledge  deficiencies    PDCA  is  Win,  Win    Puwng  in  place  a  Learning  System,  not  just  solving  problems,  or  making  ‘savings’    “If  you  want  to  understand  TPS  then  you  must  first  understand  the  scien>fic  method  and  thinking  behind  the  system”  (Dr.  Shingo)  

Lean at Wits 84

  These  three  steps  must  go  in  a  circle  instead  of  in  a  straight  line,  .  .  .  It  may  be  helpful  to  think  of  the  three  steps  in  the  mass  produc,on  process  as  steps  in  the  scien,fic  method.  In  this  sense,  specifica,on,  produc,on,  and  inspec,on  correspond  respec,vely  to  making  a  hypothesis,  carrying  out  an  experiment,  and  tes,ng  the  hypothesis.  The  three  steps  cons,tute  a  dynamic  scien,fic  process  of  acquiring  knowledge    

Lean at Wits 85

  Lesson  1:  There’s  no  subs>tute  for  direct  observa>on.    Lesson  2:  Proposed  changes  should  always  be  structured  as  experiments.  Seeking  to  fully  understand  the  problem  and  solu>on,  even  ques>oning  if  a  solu>on  is  more  successful  than  projected.    Lesson  3:  Workers  and  managers  should  experiment  as  frequently  as  possible.  As  confidence  grows  experiments  will  change  from  single  factor  /  single  machine  issues  to  look  at  linking  processes  and  sub-­‐systems.    Lesson  4:    Managers  should  coach,  not  fix.  

Lean at Wits 86

  The  US  Nuclear  Submarine  Propulsion  Program  and  the  Soviet  Nuclear  submarine  Fleet    Columbia’s  fatal  mission    Alcoa  

Steven Spear Chasing the Rabbit McGraw Hill, 2009

Lean at Wits 87

  Spear’s  4  Capabili>es  1.  Capturing  the  best  collec>ve  knowledge  and  making  problems  visible  

2.  Building  knowledge  by  swarming  and  solving  problems  

3.   Spreading  lessons  learned  to  the  whole  organiza>on  4.   Leading  by  developing  capabili>es  1,  2,  and  3  in  others.  

Lean at Wits 88

•  While  doing  supplierdevelopment  with  Toyota  early  in  my  research,  I  was  challenged  to  "stop  thinking  and  start  doing."  Why?  My  mentors  saw  I  was  trying  to  solve  problems  by  shear  thought.  The  difficulty  was  that  the  whole  reason  I  had  the  problem  in  the  first  place  was  because  I  didn't  know  enough  to  get  something  to  run  well.  More  thinking  trapped  me  in  a  loop  of  not  knowing  enough  but  thinking  more  so  not  doing  anything.    

•  The  subtle  elegance  of  their  approach  was  that  by  doing  something,  even  quick,  cheap,  and  non-­‐intrusive,  I  might  have  that  extra  cycle  of  learning  to  discover  the  answer.  

•  In  today's  markets,  no  one  knows  enough  to  make  great  calls  consistently.  Those  who  will  emerge  less  scathed  are  those  who  recognize  that  what  they  currently  know  is  inadequate,  so  they  will  start  discovering  and  developing  others  to  discover  with  relentless  ferocity.  

Lean at Wits 89

  Kingman’s  equa>on    Li`le’s  Law    Three  Types  of  Buffer    Inventory  –  Fill  Rate  Curve    Pull  

Lean at Wits 90

Capacity

Inventory Time

Entities = Entities/Time x Time

Que

ue

Utilization

Inve

ntor

y $

Fill Rate

  The  Tortoise  and  the  Hare  (Ohno)    Financial  games:  build  up  or  run  down  at  end  of  year  or  month  

  KPI  >ming    Design:  take  longer  but  do  be`er?    Orders:  End  of  month  hockey  s>ck?  

  Inventory  and  Capacity:  Chase  vs  Level  

  Delays  in  communica>on,  and  mapping  

  Religious  holidays;  industry  fairs  

  Report  when  a  project  is  half  complete.  

  Differences  in  perceived  >me  (by  situa>on,  by  customer,  by  culture)  

  Repor>ng  periods  (too  fast  or  too  slow?)  

  MRP  net  change    New  Manager?    End  of  quarter  repor>ng?    Car  registra>on  periods    Is  there  a  ‘first  mover  advantage’  ?    Necessity:  Falklands  ships    PARKINSON!  

Lean at Wits 91 See Stuart Albert ‘When’ ;and Frank Partnow “Wait’

  Kingman’s  equa>on    Li`le’s  Law    Three  Types  of  Buffer    Inventory  –  Fill  Rate  Curve    Pull  

Lean at Wits 92

Capacity

Inventory Time

Entities = Entities/Time x Time

Que

ue

Utilization

Inve

ntor

y $

Fill Rate

  ‘Whenever  there  is  varia>on,  someone  or  something  will  wait’  

Lean at Wits 93

Because  they  affect..    …..    …..    ……  

Lean at Wits 94

Lean at Wits 95

lead

time

30% Utilisation ρ 100%

Moderate variation

Zero variation

High uncertainty

Some uncertainty

 Muda  -­‐  waste  -­‐  non  value  added   Muri  -­‐  overburden  -­‐  pushing  a  machine,  person,  or  process  beyond  ‘natural  limits’.  (See  also  Factory  Physics).     Mura  -­‐  unevenness  –  varia>on,  non  steady  flow;  interrup>ons,  instability,  ‘unnatural’  work   Mura  and  Muri  are  ozen  the  cause  of  Muda  

Lean at Wits 96

Muri – South Africa Style ‘Don’t worry, be happy’

Load affects Speed!

   L    =  (C2a  +  C2e)/2          x          (ρ  /  (1-­‐  ρ))          x        te            +        te            C2a    is  arrival  variance;      C2e  is  process  variance    ρ  is  u>liza>on    (load  /  capacity      or        arrival  rate  /  service  rate)  

MURA MURI Ave Process Leadtime

Lean at Wits 97

  The  Highway  §  What  do  highway  engineers  do?  §  Op>mal  throughput:  speed  and  density  

  The  importance  of  rework  and  failure  demand    Sensi>vity:  u>liza>on  and  varia>on.  Above  and  below  ρ  =  0.5    When  is  six  sigma  worthwhile?    Arrivals  at  bo`leneck    Rework,  load,  and  the  Goldra`’s  Herbie    CV  is  standard  devia>on  /  >me:  Implica>ons    The  order:  Muri,  Mura,  Muda  (NOT  Muda,  Mura,  Muri!)  

Lean at Wits 98

The  broader  and  deeper  meanings  behind  them  are:      

Muri  -­‐  Difficult  to  Do  (See,  Hear,  Reach,  Understand,  Teach,  Develop,  Find,  Develop,  Manage,  etc,  etc.,  etc.),  Beyond  Current  Capacity  or  Capability,  Physical,  Mental,  Psychological  Overburden  or  Unreasonableness,  No  Reason  or  Principle      Mura  -­‐  Fluctua>ons,  Varia>on,  Interrup>ons,  Instability,  Inequality  or  Unnatural  work    Muda  -­‐  Non  Value  Added,  Not  Needed      Organiza>ons  that  are  truly  people  /  par>cipa>on  focused  will  also  understand  that  the  order  must  be  Muri,  Mura  and  lastly  Muda.  First  iden>fy  and  start  elimina>ng  or  reducing  the  difficult  and  frustra>ng  and  you  can  think  about  how  to  get  people  involved.  Some  things  you  may  want  to  also  classify  as  Mura  or  Muda  will  also  be  eliminated.    Mura  is  not  about  measuring  varia>on  on  graphs,  it  is  about  seeing  varia>on  as  it  happens.  Eliminate  or  reduce  Instability,  Unpredictability  and  Interrup>ons  and  you  also  impact  the  psyche  of  the  Team  involved.  Muda  will  also  be  eliminated.      The  key  skill  is  not  to  know  specific  tools  to  get  rid  of  the  3  Mu's,  but  to  develop  and  prac>ce  seeing  and  recognizing  them  in  all  or  specific  parts  of  processes,  systems  or  organiza>ons.    

Lean at Wits 99

From Erik Hager, TPS Network, Linkedin

Parkinson’s Law?

Lean at Wits 100

Lean at Wits 101

Lean at Wits

Capacity

Load

Utilization =

Value Demand

Failure Demand +

Base Capacity Waste -

Arrival Variation

Process Variation

102

Server   Customer  

System  

Lean at Wits 103

Lean at Wits

Capacity

Arrival Variation

Variation and

Process Variation

Common Cause and

Special Cause

External : Hard To

Control

Internal: May be Easier to Control

104

Utilisation 100%

lead

time

production feasible

not feasible

Traditional Lean (?)

lead

time

Utilisation 100%

Lean at Wits 105

Lean at Wits 106

Time

De

ma

nd

A Steady Demand

Time

De

ma

nd

B Seasonal Demand

Time

De

ma

nd

C High Variation Demand

Time

De

ma

nd

D Low Variation Demand

From Kevin Duggan, Creating Mixed Model Value Streams, Productivity, 2002

From Garry Hencher, MSc Dissertation, 2011

Frances  Frei,  in  Harvard  Business  Review,  describes  five  types  of  ‘customer-­‐introduced  variability’:      arrival  variability  (the  >me  between  arrivals),      request  variability  (within  arrivals),      capability  variability  (customer  skill)      effort  variability  (how  much  effort  has  the  customer  made  –  say  before  airport  security)  

  ‘subjec>ve  preference  variability’  (different  customer  expecta>ons).    

Lean at Wits 107

from Frances Frei, ‘The Four Things a Service Business must get right’ Harvard Business Review, April 2008

Lean at Wits 108

Cycle time (days)18161412108642 2826242220 30 38363432

0.02

Den

sitie

s

System 1

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

System 2

Lead Time System 1 = 14 days

Lead Time System 2 = 23 days

Both systems have an average lead time of 10 days But for a 90% service level, System 1 must quote 14 days, System 2 23 days

From Wallace Hopp, Supply Chain Science

  Varia>on  is  much  more  important  where  there  is  high  u>liza>on,  but  is  rela>vely  unimportant  where  there  is  low  u>liza>on.  If  you  are  at  the  low  u>liza>on  end,  Six  Sigma  projects  aimed  at  varia>on  reduc>on  could  be  a  waste  of  >me  and  money!  (But  not,  of  course,  is  defects  are  the  issue)  

  U>liza>on  generally  has  more  influence  on  queues  (lead  >me)  than  varia>on.    (U>liza>on  has  geometric  influence!)  

  Reducing  process  varia>on  is  not  enough!  Arrival  varia>on  may  be  more  significant  

  Never  compromise  failure  demand  by  a`empts  to  reduce  varia>on.  

Lean at Wits 109

  The  coefficient  of  varia>on  (C  in  the  formula)  is  σ  /  t  §  Where  σ  is  the  standard  devia>on  of  the  process  >me  §  Where  t  is  the  average  process  >me  

  It  is  not  absolute  varia>on  (σ)  that  is  important,  but  the  ra>o.    So…    Varia>on  is  much  more  important  in  short  cycle  opera>ons  (typically  volume  manufacturing)  than  long  cycle  opera>ons  (many  types  of  service  and  administra>on)  

  Where  opera>on  >mes  are  long,  it  is  MUCH  more  important  to  ‘get  it  right  first  >me’  than  to  focus  on  reducing  varia>on.  

Lean at Wits 110

  Constraint  iden>fica>on  should  take  both  varia>on  and  u>liza>on  into  account.  §  Red  has  longer  average  cycle  >me  and  is  therefore  likely  to  be  the  

constraint,  but  blue  has  greater  varia>on….        Protec>ng  the  constraint  with  a  >me  buffer  is  a  tradeoff  decision  

§  If  inventory  is  very  expensive,  a  permanent  buffer  may  not  be  a  great  idea  

§  Would  the  loss  in  throughput  compensate  for  the  cost  of  inventory?  §  A  buffer  is  a  queue  that  affects  lead  >me:  is  this  worth  it?  

  The  resource  upstream  of  the  constraint  determines  the  arrival  varia>on  at  the  constraint.  (See  the  linking  spreadsheet.)  

Lean at Wits 111

Cycle time: Which is the Constraint?

  OEE    All  factors  the  same?   MTTR  and  MTBF  

Lean at Wits 112

  Kingman’s  equa>on    Li`le’s  Law    Three  Types  of  Buffer    Inventory  –  Fill  Rate  Curve    Pull  

Lean at Wits 113

Capacity

Inventory Time

Entities = Entities/Time x Time

Que

ue

Utilization

Inve

ntor

y $

Fill Rate

  ‘It  may  be  li`le  but  it  is  the  law’  (Wally  Hopp)    Robust!    Applies  widely  §  Inventory  and  throughput  §  Hospitals  and  health  §  Service  §  Design  §  …  

Lean at Wits 114

Lean at Wits 115

Cycle Time = WIP

Throughput

Throughput TH = WIP

Cycle Time

Entities = entities / day x days

WIP = WIP / day x days

(so, patients = patients / day x days )

(so, inventory (e.g. jobs) = jobs / day x days )

OR

OR

Little’s Law is completely general, but •  Applies to the long-term steady-state, average, not to the short term •  The process must be stable (e.g. no ramp up in production rate)

OR weeks = units

units / week

  Consider  a  single  machine  over  20  hours,  doing  4  jobs:  A,  B,  C,  D  

  Throughput:  4  jobs  in  20  hours;  TH=4/20  =  1/5  jobs  per  hour  

  Cycle  Hme:  A  is  4  hours  in  system;  B  is  7;C  is  8;  D  is  5;  Total  24  hours;  average  is  24/4  =  6  hrs  

  Average  WIP  =  24/20  =  6/5    LiPle’s  Law:  WIP  =  TH  x  CT  or  6/5  =  1/5  x  6  

Lean at Wits 116

Job Arrives at (hr) Takes (hrs) A 2 4 B 3 4 C 5 3 D 15 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A A A A B B B B C C C D D D D D

Lean at Wits

  Parcel  Co  has  a  throughput  of  1400  parcels  per  day  and  a  lead-­‐>me  of  34  days.  They  state  that  their  total  WIP  across  the  process  is  30k  parcels.  Is  this  plausible?    A  manager  claims  that  her  inventory  turns  three  >mes  per  year.  She  also  states  that  everything  the  company  buys  gets  processed  and  leaves  within  six  weeks.  Is  this  consistent?  

117

Lean at Wits

 WIP  =  Throughput  x  Cycle  >me    =      1400  x  34  =    47600  

 But  they  claim  WIP  is  30  K      so  it  is  inconsistent!  

118

Lean at Wits

Inventory Turns = Throughput

WIP

3 / year = once every 52 / 3 = 17 weeks Against 6 weeks claimed So, inconsistent!

Another way, by Little’s Law

Cycle time = WIP

Throughput

Cycle time

Throughput

WIP =

1

6 weeks c.f. 3 per year

1

6 c.f. 3 per year

52 per year

119 See ‘Slow’ and ‘W

  Throughput:  the  rate  at  which  en>>es  are  processed  e.g.  pa>ents  /  day    WIP:  the  number  of  en>>es  in  the  system  e.g.  pa>ents    Cycle  >me:  average  >me  taken  end-­‐to-­‐end,  including  rework  e.g.  days    (Hence  en>>es  =  en>>es  per  >me  x  >me)      (e.g.400  pa>ents  in  a  hospital  =  40  discharged  per  day  x  10  day  stay)    Capacity  =  base  capacity  –  detractors  (or  as  Ohno  said,  (actual)  work  +  waste)    U>liza>on  =  rate  /  capacity  (  or  load  /  capacity)  

Lean at Wits 120

  Kingman’s  equa>on    Li`le’s  Law    Three  Types  of  Buffer    Inventory  –  Fill  Rate  Curve    Pull  

Lean at Wits 121

Capacity

Inventory Time

Entities = Entities/Time x Time

Que

ue

Utilization

Inve

ntor

y $

Fill Rate

Lean at Wits

Capacity

Inventory

Variation Is

Buffered by

Time

Capacity

or

or And in no other way

122

  Kingman’s  equa>on    Li`le’s  Law    Three  Types  of  Buffer    Inventory  –  Fill  Rate  Curve    Pull  

Lean at Wits 123

Capacity

Inventory Time

Entities = Entities/Time x Time

Que

ue

Utilization

Inve

ntor

y $

Fill Rate

  Kingman’s  equa>on    Li`le’s  Law    Three  Types  of  Buffer    Inventory  –  Fill  Rate  Curve    Pull  

Lean at Wits 124

Capacity

Inventory Time

Entities = Entities/Time x Time

Que

ue

Utilization

Inve

ntor

y $

Fill Rate

  Is  not  just  Kanban    ‘A  pull  system  is  one  in  which  work  is  released  based  on  the  status  of  the  system  and  thereby  places  an  inherent  limit  on  WIP’  (Hopp  and  Spearman)    Mul>-­‐stage  pull  (DBR,  CONWIP)    Does  not  have  to  be  linked  with  the  customer  (Note  Womack  and  Jones  wrong  interpreta>on?)    The  Lean  Startup  (Eric  Reis)    Lean  Design    Pulling  in  Labour  as  needed  (Tesco)      Pulling  in  manager  help  (Andon,  Seddon)    Training  as  needed  (TWI)  

Lean at Wits 125

5 S

As  much  to  do  with  the  mind  as  with  the  physical  situaHon  

Lean at Wits 126

TWI is a System!

 

JI    

JR

 

JM    

JS

Lean at Wits 127

Quotes

  ‘To  my  amazement,  the  program  that  Toyota  was  going  to  great  expense  to  transfer  to  NUMMI,  was  exactly  that  which  the  Americans  had  taught  the  Japanese  decades  before’  (Shook)    ‘You  will  not  become  Lean  by  doing  TWI,  but  you  will  not  become  Lean  without  doing  TWI’  (Huntzinger)  

Quoted in Jim Huntzinger,’TWI Case Study: Ohno’s Vehicle to TPS’, TWI Summit, 2008

Lean at Wits 128

Jim Huntzinger – The Roots of Lean

Lean at Wits 129

Job Breakdown   A  key  tool  used  for  this  is  the  job  breakdown  sheet  (refer  to  Figure).  Not  to  be  confused  with  a  standard  

work  combinaHon  sheet  that  focus  on  labour  allocaHon,  sequencing  &  balancing  tasks,  a   job  breakdown  sheet  is  a  training  aid  that  ensures  the  criHcal  knowledge  of  a  job  is  transferred  to  the  trainee  creaHng  a  stable  repeatable  outcome.    

Percentage of total work

Importance Effect on work

15-20% Critical Š work must be highly consistent.

Definite effect on the results if performed out of range.

60% Important Š work must be consistent within a slightly wider range

Probable effect on results if performed out of range.

20% Low Importance Š work method may be variable

Not likely to affect results regardless of method.

After Liker & Meier, Toyota Talent, 2007, p 144

Lean at Wits 130

Comparing Approaches

Step Charles

Allen Scientific Method

Shewart Or

Deming Kaizen Job

Instruction Job

Method Job

Relations

1 Prepare Observation

& Description

Plan Observe &

time the process

Prepare Breakdown Get the facts

2 Present Formulation

& Hypothesis

Do Analyse

the current process

Present Question Weigh & Decide

3 Application Use

Hypothesis to Predict

Check Or Study

Implement ant test the

new process

Try out Develop Take action

4 Testing

Test Prediction

by Experiment

Act Document

the new standard

Follow up Apply Check

results

TWI

Adapted from Huntzinger, 2006 Lean at Wits 131

Lean at Wits 132 From Suzanne Nuttall, MSc Dissertation 2011 / 2012

TWI Effectiveness (from Dinero, p4-5)

Lean at Wits 133

Lean at Wits

Standards and SOPS

134

Lean at Wits

Standards

“To  standardise  a  method  is  to  choose  out  of  many  methods  the  best  one,  and  use  it.  What  is  the  best  way  to  do  a  thing?  It  is  the  sum  of  all  the  good  ways  we  have  discovered  up  to  the  present.  It,  therefore  becomes  the  standard.    Today’s  standardisaHon  is  the  necessary  foundaHon  on  which  tomorrow’s  improvement  will  be  based.  If  you  think  of  ‘standardisaHon  as  the  best  we  know  today,  but  which  is  to  be  improved  tomorrow  -­‐  you  get  somewhere.  But  if  you  think  of  standards  as  confining,  then  progress  stops.”            Henry  Ford,  Today  and  Tomorrow,  1926  

135

Lean at Wits

Standards - another quote

“In  a  Western  company  the  standard  operaHon  is  the  property  of  management  or  the  engineering  department.  In  a  Japanese  company  it  is  the  property  of  the  people  doing  the  job.  They  prepare  it,  work  to  it,  and  are  responsible  for  improving  it.  Contrary  to  Taylor’s  teaching,  the  Japanese  combine  thinking  and  doing,  and  thus  achieve  a  high  level  of  involvement  and  commitment.”        Peter  Wickens,  1995  

136

… & from Ohno

“A  proper  (standard)  procedure  cannot  be  wriPen  from  a  desk.  It  must  be  tried  &  revised  many  Hmes  in  the  producHon  plant.  Furthermore,  it  must  be  a  procedure  that  anybody  can  understand  on  sight  For  producHon  people  to  be  able  to  write  a  standard  work  sheet  that  others  can  understand,  they  must  be  convinced  of  its  importance.”  

137 Lean at Wits

Standard Work & Work Standards

  Standard  Work  relies  mostly  on  the  efforts  of  shop  floor  teams  to  develop  standards.  

 Work  Standards  are  developed  by  staff  specialists  &  engineers  -­‐  usually  with  no  involvement  from  the  shop  floor  -­‐  &  are  imposed  standards.  

138 Lean at Wits

Lean at Wits

Purpose of a Standard

 Make  it  easier  for  people  to  do  a  job    Avoid  known  pikalls    Assure  safe  operaHons   Make  it  easier  to  teach  new  employees   Make  it  easier  to  track  down  the  cause  of  a  problem    Reduce  unnecessary  variaHon  

139

Lean at Wits

Standardisation and Management

Top

Middle

Supervisor

Operator

140

Lean at Wits

Standardised Work Procedure

  Is  not  a  set  of  rules    Should  not  be  confused  with  safety  standards,  health  standards,  BS,  etc.    Is  not  fixed  in  stone  

But    Is  the  current  best  known  way  to  do  a  job  safely  and  easily    It  documents  know-­‐how    Allows  measurement  and  improvement   WriPen  by  operators  for  operators  

141

Lean at Wits

Standards: Characteristics

  Use  verb  plus  noun  -­‐  or  picture    One  moHon,  one  step    Kept  at  the  point  of  use    Comparing  actual  to  standard  uncovers  waste  or  problems;  a  problem  is  a  deviaHon  from  standard    If  there  are  no  changes  to  SOPs  there  has  been  no  improvement    

142

Misunderstanding Standards

Lean at Wits

From Mike Rother

143

Holding the Gains?

Lean at Wits 144

Lean at Wits

Examples of Standards

  FootprinHng    Painted  levels  of  min  &  max  inventory    Sample  board      SOP  (3  types  -­‐  see  later)    One-­‐point  lessons    ProducHon  control  board    Checklist    Equipment  operaHon  

145

Lean at Wits

Managerial Standards

  AdministraHve  rules    Personnel  guidelines    Budgets    Delivery  schedules    Project  plans  

  Equipment  checks    Quality  assurance  (ISO  9000)    Reference  samples    Safety  instrucHons  

Window Analysis

Party X

Party Y

Known

Practised Un-Practised Unknown

Kno

wn

Unk

now

n Pr

actis

ed

Un-

Prac

tised

147 Lean at Wits

Visuality: How Visual Can Change Behaviour (1)

Lean at Wits 148

What do you see? How does this change behaviour for Students, bus driver, car drivers?

Visuality: How Visual Can Change Behaviour (2)

Lean at Wits 149

Stage 1

Stage 2

Stage 3 What does this do to reduce waste?

Visuality

Lean at Wits 150

Visuality: A vital part of Lean!   5S    Schedule    TPM    Leader  Standard  Work    Inventory    Defects    B/neck  status    Ideas    ….  

Lean at Wits 151

Not just information But What behaviours would you like to change?

Exercise:

Careful….

Lean at Wits 152

Visual Management

Lean at Wits 153

Viagra HQ

Mapping

Lean at Wits 154

Five Stage Mapping

1.  Top  Level  Preliminary  Analysis  and  PrioriHzaHon  2.  High  level  Current  State  Value  Stream  Analysis  3.  Future  State:  Layout  and  Detailed  Scheduling  4.  ExecuHon  and  Control  5.  ImplementaHon  of  the  ‘AcHon  Plan’  

•  For  ‘first  Hme  around’,  go  straight  to  Step  2  

Lean at Wits 155

1.   The  opera>ons  sequence,    2.   Informa>on  flows  3.   Physical  flows  and  layout    (Spaghew)  4.   A  financial  map    5.   A  map  of  zones  of  responsibility  6.   Time  line,  Pareto  and  postponement    7.   Inventory  investment  and  Fill  rate  curve  8.   Demand  profile:  repea>ng,  non  repea>ng,  plateaus  9.   Amplifica>on  Map  10.   Demand  Categories  11.   Part  and  Component  Usage.  

Lean at Wits 156

Lean at Wits 157

Basic Mapping Tools (1)

Lean at Wits

Blank

Pres

s

Pres

s

Pres

s

Welding

Store

SPAGHETTI DIAGRAM

Supplier

BLANK

I C/T = 3 sec

C/O = 15min 2 shifts

1% scrap

PRESS SHIP

I

Customer

C/T = 10 sec C/O = 30min

3 shifts 2% scrap

C/T = 2 sec C/O = nil

1 shift 0% scrap

500 parts 1 day

1000 parts 2 days

PRODN CONTROL

MRP

WEEKLY DAILY Daily Schedules Weekly Schedule

Monthly orders

Forecast

Daily Call

LEARNING TO SEE: CURRENT STATE PROCESS STEPS

INFORMATION FLOWS

158

Basic Mapping Tools (2)

Lean at Wits

Qua

ntity

Time (days)

Steel delivery

press

assby orders

AMPLIFICATION MAP

159

Inve

ntor

y $

Fill Rate INVENTORY INVESTMENT /

FILL RATE CURVE

Supplier 1

Production Control MPS - MRP

£10K

Daily requirements

Daily Production Schedules

£12k/day

Supplier 2

Customer

Press Assemble 2 Assemble 1 Weld 2 Weld 1 Ship

W/house

£16K £40k £30K £15k £70k

Daily requirements

Daily requirements

Daily Shipments £35k

£105k

£95k

Daily Shipments £210k

Daily Shipments £85k

£8k/day £7k/day £4k/day £4k/day

WIP: 32 days RM: 16 days FGI: 8 days Credit granted: 30 days

Operation financing: 28 days Payment terms - 30 days

Manager Responsibility

Zones

Value Stream Financing

Lean at Wits 160

Mapping and Transformation   Stage  1  (Top  Level  A3)(‘Value  Streams’  not  decided  as  yet)  

•  ContribuHon  analysis  •  Demand  profile  –  repeaHng  and  non-­‐repeaHng  orders  •  Demand  profile  –  arrival  variaHon  •  Demand  plateaus  •  Target  uHlizaHon  policy  •  Shipment  frequency  and  aPainment  •  LiPle’s  Law  for  overall  lead  Hme  •  Delivery  achievement  •  Outline  physical  process  map  •  AmplificaHon  Map  •  Inventory  Investment  and  Fill  rate  curve  •  Supply  chain  analysis?  •  People  Issues?  •  Priori>es?  

Lean at Wits 161

Mapping and Transformation (2)

  Stage  2  (Level  2  A3)  •  Break  down  into  value  streams  •  Map  the  current  state  :  Sequence  •  Map  the  current  state:  InformaHon  •  Map  the  current  state:  Physical  layout  and  spagheu  •  Map  the  current  state:  Financial    •  Map  the  current  state:  Zones  of  responsibility  •  Lead  Hme:  Time  line,  Pareto,  Postponement  •  Buffers  and  Scheduling  Points  •  Priori>es?  

Lean at Wits 162

Mapping and Transformation (3a)

Æ Waste  ReducHon  •  7  Classic  wastes  •  Changeover  reducHon  •  Ergonomics  •  Visuality  

Æ Layout  •  CreaHvity  and  the  physical  process  

 

Lean at Wits 163

Stage 3: Future State: Layout and Detailed Scheduling

Waste Reduction and Layout

Layout Opportunities for Future State?

  Change  the  sequence?    Choose  the  right  duraHons  for  each  step  –  slower  or  faster?    Create  a  new  sequence  to  minimise  risk  or  maximise  flexibility  –  a  parallel  line  ?  redundancy?    Change  the  locaHon  –  of  a  machine,  a  sequence,  a  supermarket,  a  facility  ?    Skip  a  step  or  join  two  steps  ?    Giving  customers  choice  –  discounts  for  early  orders,  or  regular  orders,  or  standard  products?  

Lean at Wits Adapted from Stuart Albert, ‘When’, Jossey Bass, 2013 164

Mapping and Transformation (3b)

Æ Batch  sizing  and    Resource  Scheduling  •  Batch  sizing  •  Constraints  and  buffer  locaHons  

•  Supermarket  sizing  •  EPEI  calculaHons  •  Pull  and  scheduling  system  to  be  used  

 

Æ Value  Streams  •  Buffer  sizing  for  make  to  order  and  to  stock  

•  Takt  and  cycle  Hmes  •  Mixed  model  schedules  •  CONWIP  and  kanban  loops  •  Supermarket  sizing  •  EPEI  calculaHons  •  Line  balance  

 Lean at Wits 165

Stage 3: Future State: Layout and Detailed Scheduling

Scheduling

plus, Linking the Loops and the Pacemaker

Mapping and Transformation (3c)

Æ Skill  shorkalls?  Æ Alignment  between  value  streams  and  organisaHon  structure  

Æ KPI’s  Æ Role  of  managers?  

•  Inventory  reducHon  impact?  

•  Cash  flow?  •  Standard  cosHng?  •  Plain  English  accounts?  

Lean at Wits 166

Stage 3: Future State: Layout and Detailed Scheduling

The Future Organisation. The Financials

Mapping and Transformation (4)

  Stage  4  :  ExecuHon  and  Control  •  Visual  management  •  CommunicaHons  board  design  •  KPI’s  •  Day  by  hour  schedules  •  Day  by  hour  problem  highlight  •  Feedback    

Lean at Wits 167

Mapping and Transformation (5)

  ImplementaHon  Plan:  Internal    ImplementaHon  Plan:  External  

Lean at Wits 168

Mapping and Transformation

Lean at Wits 169

A Different sort of Value Stream Map

Lean at Wits 170

Top Level Scheduling 1

Lean at Wits 171

Moments of Truth:

SAB Miller India

Lean at Wits 172

Defects and Problems

Lean at Wits

Variation Mistakes Complexity

Man Machine Material Method Information

Individual differences; motivation

Wrong Instructions;

Misreads

Verbose; Interpretation

Wrong method

Execution methods

Gage Accuracy

Material variation

Difficult method

Difficult to work

or assemble

Wrong material or part

Difficult setup

Incorrect Setup;

Software errors

Tool wear; Vibration

Omission; Dropped

parts

Training Experience

173

Toyota Kata

 What  is  a  Kata?    How  does  this  relate  to  the  Human  brain?   What  is  a  ‘Target  CondiHon’?   What  is  not  a  ‘Target  CondiHon’?   What  do  we  assume  about  geung  to  the  target  condiHon?  

Lean at Wits 174

Kata from Rother

Not    Daily  management  +  improvement    But    Daily  management  =  improvement  

Target  and  Target  CondiHon    Target  is  an  outcome    Target  condiHon  is  a  descripHon  of  a  process  operaHng  in  a  way  required  to  achieve  the  outcome  

Lean at Wits 175

Kata: The Five Questions

1.  What  is  the  target  condiHon?  2.  What  is  the  actual  condiHon  now?  3.  What  obstacles  are  prevenHng  us  from  reaching  the  

target  condiHon?  4.  What  is  the  next  step?  

•  And,  how  can  we  test  this  step  or  idea  as  quickly  as  possible?  An  experiment?  

5.  When  can  we  go  see  what  we  have  learned  in  taking  the  step?  

•  Reflect  on  what  actually  happened  

Lean at Wits 176

Target Condition   Without  a  target  condiHon  we  could  have  lots  of  ideas:  

•  Reduce  setup  Hme…  •  Introduce  kanban…  •  Set  up  a  cell…  

  A  target  condiHon  could  be  ‘what  is  prevenHng  us  from  a  MTTR  less  than  5  minutes?’.  This  could  lead  to  the  next  acHon  e.g.  ‘improve  signaling  system’    A  target  condiHon  should  not  be  too  trivial  or  too  difficult    Note  the  similariHes  with  Maurer,  Amabile,  Expectancy  Theory    Then  another  small  step.  RepeHHon.  Coaching    So  moHvaHon!  (and  Tools  are  used  to  develop  people!)  

Lean at Wits 177

A long list! As from a VSM But what to do first?

Confusing? Demotivating?

From Mike Rother, Toyota Kata, McGraw Hill, 2010

Two Types of Kata: (1) Improvement

•  Establish  the  target  condiHon  (note:  ‘a  target  is  an  outcome;  a  target  condiHon  is  a  descripHon  of  a  process  operaHng  in  a  way  required  to  achieve  the  desired  outcome’)  

•  Without  a  target  condiHon:  ‘we  could  reduce  setup  Hme,  start  %s,  apply  kanban,…’  •  With  a  target  condiHon:  ‘What  is  prevenHng  us  from  compleHng  a  part  every  2  minutes?’  

  The  NEXT  target  condiHon.  Step  by  step.  Not  the  final  (see  next  slide)  

•  Examples  of  NOT  a  target  condiHon  ‘implement’  (vague),’apply’  (countermeasure),  ‘minimise’  (vague,  must  be  related  to  a  point  in  Hme),’  reduce’  (an  outcome)  

  It  is  PDCA;  rapid  experimentaHon,  not  the  workers  fault.    The  Five  QuesHons  

•  What  is  the  target  condiHon?  •  What  is  the  actual  condiHon  now?  •  What  obstacles  are  prevenHng  you  from  reaching  the  target  condiHon?  •  What  is  your  next  step?  •  When  can  we  go  see  what  you  have  learned  from  taking  the  step?  

Lean at Wits 178

See Mike Rother, Toyota Kata, McGraw Hill

The problem path

Lean at Wits

The Current

Condition The

Target Condition

The next step

The way through the grey zone is unclear; but get started, don’t debate The torch analogy (You can only see so far) The Heuristic (Keep climbing) Predict and Lean (like PDSA and Steve Spear) Establish the small next step (not threatening); not the ideal (too difficult!)

179

Tools and Kata

Not    ‘I  have  a  toolbox  so  let  me  look  for  areas  where  I  can  apply  them’  or  ‘I  know  about  5S  so  let  us  apply  that’  

But    ‘I  have  a  target  condiHon,  so  let  me  find  an  appropriate  tool  to  use’  

So    (For  me)  not  a  quesHon  of  ‘Toolheads’  or  not,  but  how  tools  are  selected  and  used  

Lean at Wits 180

Two Types of Kata: (2) Coaching Kata

  Philosophy  •  If  a  problem  occurs,  Do  it  now!  (Why?)  •  Who  should  learn  and  follow  up  ?  (The  team  leader,  not  the  worker  who  

does  not  have  the  Hme;  so  smaller  span)    The  mentor,  mentee  dialog    A3  problem  solving  

•  ‘if  the  worker  hasn’t  learned  the  instructor  hasn’t  taught’  •  ‘it  takes  two  to  A3’  •  Toyota  8  step  methodology:  a  way  to  focus  and  clarify  the  specific  (small)  

problem  –  by  dialog  •  Define,  break  down  into  chunks,  i/d  root  cause,  set  next  target,  select  soluHon  from  

several  alternaHves,  implement,  check,  adjust  and  standardise  •  Go  and  see  together  (not  report  back);  show  me  •  Focus  on  understanding,  not  the  countermeasure  •  Focus  on  the  process,  not  the  people  •  Fact  based,  test  and  see  

Lean at Wits 181 See Mike Rother, Toyota Kata, McGraw Hill

Learner or Knower?

Lean at Wits 182

From  Flinchbaugh  (2013)  

After Action Reviews   US  Army    Do  it  immediately,  every  Hme;  NOT  an  evaluaHon  or  a  criHque!    The  four  steps  are:  

1.  ObjecHve.  What  did  we  set  out  to  do?  (What  was  planned?)  2.  Reality:  What  actually  happened?  (Note:  this  is  not  judgmental  or  

an  evaluaHon.  It  is  simply  the  facts  about  what  happened  at  each  stage  of  the  game  or  project.)  

3.  Learning:  Why  did  it  happen  that  way?  What  went  right  and  wrong.  What  did  not  meet  expectaHons.  What  went  well?  Again,  sHck  to  the  facts.  It  should  not  be  personal.  No  blame.  This  is  a  learning  step  so  ask  what  caused  the  results  to  turn  out  the  way  they  did.  

4.  Next  Hme.  What  should  be  changed  next  Hme:  planning,  processes,  behaviours.  What  should  be  kept  

   Senge  on  why  this  is  the  best,  but  o}en  fails    

Lean at Wits 183 See detailed description in David Garvin, Leaning in Action, HBS Press, 1999, pp 106-116

A3 Problem Solving

Issue

Background

Problem Analysis

Current Condition

Why? Cost

Why?

Why?

what who when outcome

Countermeasures

Implementation Plan

Target Condition

Cost / Benefit Test

To customer To organization

Follow up

Stamps

184 Lean at Wits

A3 Problem Solving (this is PDCA!)

Issue

Background

Problem Analysis

Current Condition

Why? Cost

Why?

Why?

what who when predicted outcome

Countermeasures

Implementation Plan

Target Condition

Cost / Benefit Test

To customer To organization

Follow up

Stamps

Through the eyes of the customer

Sketch or Current state

VSM

Run diagram, Fishbone,

5 why

Sketch or Future state

VSM

Study cost, Implementation cost Note both

All who have seen

Now; Soon

How to move towards The ideal state

185 Lean at Wits

186 Lean at Wits

Lean at Wits 187

A3 and ‘Rapid Response’ at Lifescan, Scotland

Lean at Wits 188

Improvement Types

Lean at Wits 189

Standardisation and Management

Lean at Wits

Top

Middle

Supervisor

Operator

Point Kaizen means establishing new standards

190

Kaizen: One Small Step at a Time :Why?

Lean at Wits 191

Kaizen: One Small Step at a Time :Why?

  Non  threatening    Immediate    Leads  to  habit    Builds  confidence    Linked  with  ritual    Empowers  staff    Less  fear  of  failure    Reduce  stress  (‘How  do  you  eat  an  elephant?)    Encourages  experimentaHon  (The  drunk,  his  lost  item,  and  the  streetlamp)  

Lean at Wits 192

Kaizen, Small Steps and the Brain

Lean at Wits

Large Goal > fear > access to cortex restricted > failure

Small Goal > fear bypassed > cortex engaged > success

Three Stages of brain

Reference: Robert Maurer, One Small Step Can Change Your Life: The Kaizen Way, Workman, 2004

193

Small Steps: Maurer Suggests   Ask  liPle  quesHons    Set  small  goals  (‘Take  one  less  bite  at  the  chocolate;  Not  5S  but  one  minute  per  day  to  Hdy)    Solve  small  problems      Learn  to  see  small  opportuniHes    and  rouHne  (What  colour  car  is  parked..)    An  org  structure  that  makes  small  ideas  easy  to  implement    Learn  to  anHcipate  (Deming,  Spear)    Break  down  big  problems  into  small  ones    Small  ideas  repeated  have  bePer  retenHon  (Think  exams!)    Don’t  keep  problems  to  yourself.  Encourage  discussion  

Lean at Wits Reference: Robert Maurer, One Small Step Can Change Your Life: The Kaizen Way, Workman, 2004 194

Rewards and Small Steps

 Why  are  suggesHon  schemes,  in  general    A  failure  in  the  West?    A  success  in  Japan?  

Lean at Wits 195

Pokayoke

  For  Six  Sigma  perfecHon,  standards  and  SPC  may  not  be  enough    You  can  have  high  process  capability,  but  sHll  fail  due  to  mistakes  

hence    100%  automaHc  inspecHon  together  with  warning  or  stop  

Lean at Wits 196

Absolutely Excellent Web Site on Pokayoke!

Lean at Wits

http://www.campbell.berry.edu/faculty/jgrout/pokayoke.shtml

197

Everyday Pokayokes

Lean at Wits 198

Suggest a Pokayoke

Lean at Wits

Truck jammed Smoke detector that Is not working

199

Implementing Pokayoke

Lean at Wits

Simplify Mistake- Proof Convert adjustment to settings Control Variation

Product Process Tools & Equipt

1 2 3

Fixture setup

Use repair

Assmby simplif

Product simplif

Process flow

Process exec

Process control

SPC Six Sigma

Simple equipmt

Mistake proof equipment

“The priority in applying quality paradigms should proceed from top to bottom and right to left in the order shown” Martin Hinckley Make No Mistake! Productivity, 2001

200

Another pokayoke…

These men have just finished installing poles to prevent cars parking on the sidewalk

Lean at Wits 201

Why are Manhole Covers round?

202 Lean at Wits

….and Checklists

  Boeing  B17     TWI  

Lean at Wits 203

Checklists

Lean at Wits 204

Pokayoke Methods and Examples

Lean at Wits

Contact Fixed Value Motion Step

Control Warning

Parking height bars Armrests on seats

Staff mirrors Shop entrance bell

French fry scoop Pre-dosed medication

Trays with indentations

Airline lavatory doors Spellcheckers Beepers on ATMs

from : Richard Chase and Douglas Stewart, Mistake Proofing Based on Shigeo Shingo

205

Pokayoke Cycles

  “LiPle  pokayoke”  •  Immediate  detecHon  and  stop  or  warning  •  Short  term  prevenHon  

  “Big  pokayoke”  •  Geung  a}er  the  root  cause  of  the  problem  •  Long  term  prevenHon  and  problem  solving  •  Accumulate  the  evidence  

Lean at Wits

PDC

A

P

DC

A

206

Pokayoke References

  Shigeo  Shingo,  Zero  Quality  Control:  Source  InspecAon  and  the  Pokayoke  System,  ProducHvity,  1983  Nikkan  Kogyo  (ed),  Poke-­‐Yoke,  ProducHvity,  1989   Web  site  by  John  Grout  (excellent)  

•  See  Quality  75    C.  MarHn  Hinckley,  Make  No  Mistake!,  ProducHvity,  2001  

Lean at Wits 207

Ideas?

Lean at Wits 208

Your Experience?

Idea Management..

Lean at Wits 209

Ideas are evaluated by shop floor operators across all 3 shifts

Lifescan, Scotland

Idea Management..

Lean at Wits 210

Lifescan, Scotland

Idea Management..

Lean at Wits 211

Implemented ideas. (Now shown on Touchscreen TV)

Lifescan, Scotland

TPM

Lean at Wits 212

  Nothing  said  about  schedule  a`ainment    Changeover!    Cost  factors  

§  Reducing  OEE  (&  esp  changeover  at  great  cost  may  not  be  worthwhile  §  OEE  is  in  terms  of  >me,  not  cost  -­‐  for  example,  quality  may  be  minor  wrt  

OEE,  but  a  major  cost  

  Do  not  measure  OEE  plant  wide    Use  a  control  chart,  for  common  &  special  causes    A  boast  like  ‘we  have  improved  OEE  by  20%’  should  be  treated  with  cau>on  §  Overproducing?  Bo`leneck?  Appropriate?  Bigger  batches?  

Lean at Wits 213

 OEE  is  best  used  for  shop  floor  problem  iden>fica>on,  but  less  good  when  used  as  a  top-­‐down  imposed  measure   No  such  thing  as  world-­‐class  OEE  -­‐  depends  on  industry  (in  process  industry  85%  is  poor)   Loca>on  of  the  bo`leneck  -­‐  downstream  more  cri>cal  because  higher  part  value    Is  .9  x  .7  x  .9  same  as  .7  x  .9  x  .9  ?  (depends  on  policy  advantage)  

Lean at Wits 214

Lean at Wits

OEE

Quality

Speed

Availability

=

X

X

215

Lean at Wits

OEE

Quality

Speed

Availability

=

X

X

Utilization

216

Lean at Wits

OEE

Quality

Speed

Availability

=

X

X

MTBF

MTTR + MTBF

=

217

Machine   MTTF  (hr)   MTTR  (hr)   Defect  %   OEE  %  

1   90   10   10   81%  

2   9   1   10   81%  

3   85   15   5   81%  

4   8.5   1.5   5   81%  

Lean at Wits 218

Lean at Wits

OEE

Quality

Speed

Availability

=

X

X

Productivity

219

  Case  A:  Quality  =  80%;  availability  and  speed  both  100%    Case  B:  Availability  is  80%;  quality  and  speed  both  100%    OEE  is  the  same  in  both  cases:  80%    Output  is  the  same  in  both  cases:  80%  of  poten>al    BUT    Inputs  (e.g.  Raw  Material)  is  different    So,  Produc>vity  (Output  /  Input)  is  different!  

Lean at Wits 220

Lean at Wits 221

After Teresa Hayes MSc Lean, 2013

Lean at Wits 222

Lean Layout

Lean at Wits 223

224 Lean at Wits

PRODUCT  LAYOUT     PROCESS  LAYOUT  

1   DescripHon   SequenHal  arrangement  of  machines  

FuncHonal  grouping  of  machines  

2   Type  of  Process   ConHnuous,  mass  producHon  mainly  assembly    

IntermiPent,  job  shop  batch  producHon,  mainly  fabricaHon  

3   Product   Standardized  made  to  stock    

Varied  made  to  order  

4   Demand   Stable   FluctuaHng  

5   Volume   High   Low  

6   Equipment   Special  purpose   General  purpose  

7   Workers   Limited  skills   Varied  skills  

225 Lean at Wits

PRODUCT  LAYOUT     PROCESS  LAYOUT  

8   Inventory   Low  in-­‐process  high  finished  goods  

High    in-­‐process  low  finished  goods  

9   Storage  space   Small   Large  

10   Material  handling   Fixed  path  (conveyor)   Variable  path  (forkli})  

11   Aisles   Narrow   Wide  

12   Scheduling   Part  of  balancing   Dynamic  

13   Layout  decision   Line  balancing   Machine  locaHon  

14   Goal   Equalize  work  at  each  staHon   Minimize  material  handling  cost  

15   Advantage   Efficiency   Flexibility  

Proc

ess

project job shop batch cell line flow

one off low repetitive high continuous volume volume flow

226 Lean at Wits

Proc

ess

one off low repetitive high continuous volume volume flow

APS + Lean

Lean + MRP?

Lean

LP/MP

CPA+ Lean project job shop cell line flow

227 Lean at Wits

Process

project job shop cell line flow

one off low repetitive high continuous volume volume flow

Professional Services

(a la carte, corporate lending)

Service Shops

(Pizza Hut, Personal banking)

Mass Services

(McD, Subway, ATMs)

228 Lean at Wits

cost demands Process

variety demands

cost demands

market demands

one off low repetitive high continuous volume volume flow

project job shop cell line flow

229 Lean at Wits

 Loca>on   Plant  Layout   Cell  Layout   Worksta>on  Layout  

230 Lean at Wits

 Loca>on   Plant  Layout   Cell  Layout   Worksta>on  Layout  

231 Lean at Wits

  The  very  big  picture   Map  the  external  flows    Focus  §  The  Great  Nuclear  Fizzle  at  old  B&W  

232 Lean at Wits

  To  support  an  organisa>on’s  vision    Safety,  comfort,  convenience  and  job  sa>sfac>on  for  employees    Effec>ve  u>lisa>on  of  equipment  and  resources  to  facilitate  the  manufacturing  process    Flexibility  of  opera>on  and  ease  of  maintenance   Minimising  capital  expenditure  &  maximising  ROI   Minimise  material  handling  and  make  economical  use  of  the  building/site  space  

(Adapted  from  Apple  1977  and  Tompkins  et  al.  1996)  

Lean at Wits 233

1.   Changes  in  the  design  of  exis>ng  product,  the  elimina>on  of  products  from  the  product  line,  and  the  introduc>on  of  new  products.  

2.   Changes  in  the  processing  sequences  for  exis>ng  products,  replacements  of  exis>ng  processing  equipment,  and  changes  in  the  use  of  general-­‐purpose  and  special-­‐purpose  equipment.  

3.   Changes  in  produc>on  quan>>es  and  associated  produc>on  schedules,  resul>ng  in  the  need  for  capacity  changes.  

4.   Changes  in  the  organiza>onal  structure  as  well  as  changes  in  management  philosophies  concerning  produc>on  strategies...”  

(Tompkins  et  al  1996,  p.  307)  Uniq  Evercreech  current  reality  

  Material    Machinery    Man    Movement    Wai>ng    Service    Buildings    Change  

(Taken  from  Muther  1955)  

“The  need  for  a  facility  layout  study  can  arise  under  a  variety  of  circumstances...  

The  8  factors  that  influence  layout:  

Lean at Wits 234

  The  General  Hospital    Vs    Sholdice  Hospital,  Toronto  

235 Lean at Wits

100%

Contribution

Ranked Products

Invest ? Provided they

are future products

Reorganise ? Go Lean !!!

Cut ?

But how similar is this profile to the next….

236 Lean at Wits

Lean at Wits 237

Ranked contribution

per bottleneck

minute

Ranked Products

You don’t want to be making products which make low

contribution, and which tie up precious bottleneck capacity!

Note these!

 Loca>on   Plant  Layout   Cell  Layout   Worksta>on  Layout  

238 Lean at Wits

  Richard  Muther  began  to  develop  the  SLP  process  in  the  1950’s;  it  has  con>nued  to  evolve  and  can  be  found  as  the  base  framework  for  many  other  layout  approaches  (e.g.  Moore  1962,  Apple  1977,  Tompkins  et  al.  1996,  )  

  SLP  is  a  ‘scien>fic’  approach  to  layout  and  involves:  §  A  clear  statement  of  the  problem  or  

task  §  Facts  that  can  be  measured  §  Restatement  or  reclarifica>on  of  the  

task  in  light  of  the  facts  §  An  objec>ve  analysis,  leading  to  a  

decision  §  Ac,on  for  approval  and  installa>on  §  Follow-­‐up  or  check  

(Muther  1955,  p.  143)  

Background   Systema>c  Layout  Planning  Pa`ern*  

Lean at Wits 239

Uniq  Evercreech  is  to  receive  an  addi>onal  35  Sku’s  during  2012  as  its  M&S  desserts  business  is  transferred  from  its  Shropshire  site;  Evercreech  has  an  integrated  Manufacturing,  Innova>on  and  People  strategy,  which  it  aims  to  deliver  between  2010  and  2013  –  these  involve  an  innova>on-­‐led,  flexible  opera>on  with  engaged  people  as  its  key  lever  to  drive  change;  

  The  acquisi>on  of  Uniq  by  Greencore  in  2011  has  led  to  an  increased  focus  on  results  delivery  as  well  as  the  approval  of  capex  to  make  building  changes.  

Richard Muther & Associates 2005

Lean at Wits 240

  Rule  of  thumb:  §  Maximum  area  -­‐  around  200,000  square  z;  20,000  sq  m  §  Maximum  people  -­‐  500  §  Maximum  SKU’s  -­‐  2,000  §  For  fab  /  assembly  -­‐  cut  all  numbers  by  4  (except  steel,  auto,  etc.)  

  Why  ?  §  Internal  flows  become  too  complex  §  Access  to  central  areas  -­‐  even  with  mul>  docks  §  People  cease  to  feel  like  a  family  §  Loss  of  focus  §  Management  structures  too  complex,  too  remote  §  Examples:  Nypro,  3M,  HP,  Solectron,  Celes>ca  -­‐  Telford,  mi`lestand  

Lean at Wits 241

After Richard Schonberger, Let’s Fix It!

  Shape  §  Rectangular  60:40  offers  many  op>ons  §  Long  and  narrow,  very  few  op>ons  §  Square  may  not  offer  enough  side-­‐to-­‐side  distances  for  some,  too  much  for  others  

  Flow  Pa`erns  

After Richard Schonberger

Good Less Good

242 Lean at Wits

  Not  end-­‐to-­‐end,  but  mul>-­‐dock  around  the  outside    For  flexibility    Dell  demolishing  a  two  year  old  plant  to  create  mul>-­‐access.  50%  of  outside  walls  are  receiving  and  shipping  docks  -­‐  for  5  inventory  turns  a  day  –    §  (Tom  Peters,  AME,  2001)  and  Ford,  Wixom  MI  (one  of  the  most  profitable  in  world)  

Lean at Wits 243

After Richard Schonberger, Let’s Fix It!

  Collect  the  opinions  of  the  par>cipants    Summarise  onto  the  REL  chart  using  AEIOUX    Ac>vity  Arrangement  diagram  -­‐  eyeball  method    Space  rela>onship  diagram  -­‐  fiwng  the  rela>ve  loca>ons  into  the  available  space    Physical  model  and  discussion  

Lean at Wits 244

  A  Absolutely  necessary    E  Essen>al    I  Important    O  Ordinary    U  Unimportant    X  Must  not  be  located  together  

 Make  the  diagram  cooler!  

245 Lean at Wits

Production

Offices

Stockroom

Shipping and Receiving

Locker Room

Toolroom

A A

A O

O

OO

O

U

U U

U

E X

I

246 Lean at Wits

247 Lean at Wits

248 Lean at Wits

                 Format  taken  from  Richard  Muther  &  Associates  .  Colour  Key  taken  from  A.  G.  Raymond  &  Company.  

RELATIONSHIP CHART Plant (Company)

Charted by

Date

Reference

Uniq Evercreech (Greencore)

Carolyn Hobdey

Jan-12

SLP_CH_2012

With

Project

n/a

Site Layout: Module 3

Sheet of 11

111 Offices (inc. HR & Finance)

1CLOSENESS No. of

Ratings1 Value1 Offices (inc. HR & Finance) 2

1CLOSENESS No. of

Ratings1 Value1 Offices (inc. HR & Finance) 2

ECLOSENESS No. of

Ratings1 Value1 Offices (inc. HR & Finance) 2

3ECLOSENESS

A

No. of Ratings

14

1

2

Value1

2

Offices (inc. HR & Finance)

Planning, Purchasing & Technical Offices

35EU A 1422 Planning, Purchasing &

Technical Offices

34

5 U A 1422 Planning, Purchasing & Technical Offices I

4_O

5 U

E

A 14

8

22 Planning, Purchasing & Technical Offices I

4_O 5 E 8

2

3

2

3

Planning, Purchasing & Technical Offices

Changing Rooms A 2I_

6O

6I5

ImportantI

E 83

133 Changing Rooms A

62

7E

6

A6I

2 I Important

O

I

22

133

4

Changing Rooms

Business Unit 'A' Production

61A

78

EA6

2 I2A I

O 224 Business Unit 'A' Production1A 8

9

6

UAA

2A6 A6

I5 O

U

22

9 Unimportant

4

5

Business Unit 'A' Production

Warehouse & Distribution9

10IU

E 6A6

A_

6 A6

I15

I

X

U 9 Unimportant

0Not desirable

5 Warehouse & Distribution 10IO5

11E 6

O

6

A

_

E6I2

1

AI1

X 0Not desirable

5

6

Warehouse & Distribution

Business Unit 'B' Production

O511

124 EA O

OA1 4

E2

62

I1A 1

U X 0

66

Not desirable

Total = =56 Business Unit 'B' Production

1312

U

4 EAI

O41

1

E E

4

U

2I2

1

AU_

66Total = =5

Dairy

6

7

Business Unit 'B' Production

1314

U_UO

I_

41

O2 21E E U

IA

2A1

_

15Dairy7 14

_UO2 O _

_O2 2

OI

1

AI4U 1

A14

16Packaging Store15

Dairy

8

7

22 O _

44OI

OA

I

4

O3U_

1

O

4

1617

Packaging Store8 22

IO 444O

4I O3

O3_

OO

1718

Packaging Store

Innovation Centre

8

9 O

2 IO 434

4 O4

3

AO4 O 18Innovation Centre9 O 34

O 44A

3 O

4

O 4O 18

19Innovation Centre9

O 43 OO 419

Innovation Centre

Rest Room/Canteen

9

103 O 4O 4

43 OO 4

E 2019

Rest Room/Canteen103 O 44 E

1

20Rest Room/Canteen

Engineering Department

10

11

U_

3 O4

44

4O

E2

U 12

Engineering Department11_4

OU_ 2

3

Engineering Department

Main Parking Area

11

12

O4

_

34

Main Parking Area124

45

Main Parking Area12

13 56

136

714

13

78

148

9

14

15 910

15

Code REASON

1011

15

16 Code REASON1 Flow of material

1112

161 Flow of material

2 Management communication

1216

17 13 2 Management communication

3 Internal service delivery1417 13

3 Internal service delivery

4 Convenience

1415

17

18 4 Convenience

5 Financial control

1516

185 Financial control

6 Food safety/legislative requirements

1617

18

19 6 Food safety/legislative requirements

7

1718

1978

181920

19

89

1920

20

RICHARD MUTHER & ASSOCIATES - 130

92020

Reasons in code (below)

Importance of relationship (top)

This block shows relationbetween "1" and "3"

"Closeness"Rating

Reasons behind the

"Closeness" Value

N x (N-1)2

NecessaryAbsolutely

ImportantEspecially

OrdinaryCloseness OK

Lean at Wits 249

  Bad  

  Be`er  

   Much  Be`er  

Lean at Wits 250

  Bad  (conveyor)  

  S>ll  Bad  (forkliz)  

   Much  Be`er  (tugger)  

  Best  (hand  trolley)  

Lean at Wits 251

 Material  handling  spine    Communica>on  /  people  spine    Services  grid    Flexible  cell  areas    Local  receiving  docks  

E.g. HP Corvallis Printer Plant

Lean at Wits 252

Lean at Wits 253

!

T1

T2

F1

F2

C1

C3

C2

Inspection

Final Testing

Paint shop240 meter

80 meter

Training space

1. Flow line is cut up - large buffer capacity between

2. The system capacity is high

3.  “Autonomous Complete Process”

Toyota Motomachi plant and Toyota Tahara plant

254 Lean at Wits

  Lozy  ceiling  makes  large  one-­‐touch  inventory  lineside  buffers  (and  clear  floors)  possible    Large  inter-­‐segment  buffers  (up  to  15  cars);  8  segments    Rela>vely  long  distance  between  cars  (5  –  6  m)    High  system  capacity  /  low  assembly  density    Operators  can  use  double  the  regular  cycle  >me  without  disturbing  colleagues  

Lean at Wits 255

Lean at Wits 256

Lean at Wits 257

Lean at Wits 258

  This  self  regula>ng,  near  op>mal,  system  can  be  used  wherever  operators  are  cross  trained  to  do  all  jobs  (or  most  jobs)  in  a  cell  or  line.  

  Method:  Operators  walk  upstream  un>l  they  meet  another  operator,  then  they  work  downstream  un>l  either  they  meet  another  operator  or  they  reach  the  end  of  the  line.  Then  repeat.  

  Star>ng  off:  n  operators  occupy  the  first  n  posi>ons  in  a  line.  Operator  1  passes  work  to  operator  2  and  so  on  un>l  the  last  operator.  The  last  operator  progresses  work  through  all  following  worksta>ons  un>l  the  end  of  the  line.  Then  walks  back  to  operator  2  (who  is  by  then  working  further  downstream).    Then  revert  to  step  2.  

  This  method  is  useful  for  mixed  model,  for  frequent  breaks,  for  automa>c  coverage,  etc.  Very  robust  and  flexible.  

  Arranging  workers  from  slowest  (at  the  start)  to  fastest  is  shown  to  be  best.    This  method  originated  at  Seiki  Sewn  products  (a  Toyota  subsidiary)    See  Bartholdi  and  Eisenstein,  ‘A  Produc>on  Line  that  Balances  Itself’,  Opera,ons  Research,  v44,  n1,  22-­‐34,  1996  

Lean at Wits 259

Lean at Wits 260

Production Plan

Master Production Schedule

Material Requirements

Planning

Purchasing

Resource Plan

Rough Cut Capacity

Evaluation

Capacity Requirements

Plan

Detailed Scheduling

Input/Output Control

(Shop Floor Control)

Simulation

Accounting

Lean at Wits 261

Production Plan

Master Production Schedule

Material Requirements

Planning plan only

Purchasing

Resource Plan

Rough Cut Capacity

Evaluation

Capacity Requirements

Plan

Detailed Scheduling

Input/Output Control

(Shop Floor Control)

Simulation

Accounting

Lean at Wits 262

Production Plan

Master Production Schedule

Material Requirements

Forecast

Purchasing Advance Warning

Resource Plan

Rough Cut Capacity

Evaluation Shop Floor

Cell Capacity Planning

Detailed Daily

Schedules

Detailed Scheduling,

and Execution including Kanban

operations Heijunka

and call off

Mixed Model

Sequence

Improvement Targets

Central

Cell Lean at Wits 263

MPS

MRP

Supplier Press Shop Assembly Dispatch Customer

Mixed Model or Heijunka

forecast

forecast

call off

advisory

kanban kanban

Supermarket

advisory

Lean at Wits 264

Utilisation 100%

lead

time

production feasible

not feasible

Traditional Lean (?)

lead

time

Utilisation 100%

Lean at Wits 265

  Definition (Push and Pull): §  A pull system is one in which work is released

based on the status of the system and thereby places inherent limit on WIP.

§  A push system is one in which work is released without consideration of system status and hence does not inherently limit WIP.

Lean at Wits 266

  Iden>fy  the  system  constraint  §  the  part  of  the  system  that  cons>tutes  its  weakest  link  can  be  either  physical  or  

a  policy  

  Decide  how  to  exploit  the  constraint  §  obtain  as  much  capability  as  possible  from  a  constraining  component,  without  

undergoing  expensive  changes  or  upgrades  §  e.g.  eliminate  down>me  at  bo`leneck  

  Subordinate  everything  else  §  adjust  non-­‐constraint  sewngs  to  enable  constraint  to  operate  at  maximum  

efficiency  

  Elevate  the  constraint  §  take  whatever  ac>on  necessary  to  eliminate  the  constraint  §  only  if  step  2  and  3  not  successful  

  Return  to  step  1  -­‐    avoid  iner>a!  

Lean at Wits 267

  Drum:  constraint,  works  to  customer  demand    Buffer:  located  in  front  of  drum  to  keep  it  working  at  maximum  output    Rope:  drum  is  roped  to  release  point,  work  is  pulled  through  system    Synchronised  with  demand    Constant  tuning  of  policy  buffers  ensures  minimum  inventory      Is  TOC  disguised  pull  system?  

Lean at Wits 268

1 2 3 6 5 4

GYR

GYR Constraint Rope

Backlog Rope

269 Lean at Wits

1.   Eliminate  obvious  waste  n  Scrap,  rework,  poor  layout,  excessive  changeovers  

2.   Swop  Buffers  n  Swop  inventory  buffers  for  capacity  buffers:  by  working  

more  hours  at  key  resources,  in  fact  all  the  tac>cs  in  ‘The  Goal’  

3.   Reduce  Variability  n  Six  Sigma,  Standard  Work,  5S  

4.   Con>nuously  improve  n  Kaizen  ac>vi>es;  TOC  5  steps  

Lean at Wits 270

1.   Schedule  your  plant  at  100%  of  capacity  2.   Start  working.  Variability  happens.  3.   Cycle  >mes  increase,  WIP  piles  up,  delivery  dates  

are  missed  4.   Add  capacity  (over>me?  subcontract?),  or  reduce  

the  number  of  jobs  in  the  plant  5.   Things  get  back  under  control.  6.   So  you  go  go  back  to  step  1  

Lean at Wits 271

  Varia>on  is  much  more  important  where  there  is  high  u>liza>on,  but  is  rela>vely  unimportant  where  there  is  low  u>liza>on.  If  you  are  at  the  low  u>liza>on  end,  Six  Sigma  projects  aimed  at  varia>on  reduc>on  could  be  a  waste  of  >me  and  money!    U>liza>on  generally  has  more  influence  on  queues  (lead  >me)  than  varia>on.      Reducing  process  varia>on  is  not  enough!  Arrival  varia>on  may  be  more  significant    Never  compromise  failure  demand  by  a`empts  to  reduce  varia>on.  

Lean at Wits 272

  The  coefficient  of  varia>on  (C  in  the  formula)  is  σ  /  t  §  Where  σ  is  the  standard  devia>on  of  the  process  >me  §  Where  t  is  the  average  process  >me  

  It  is  not  absolute  varia>on  (σ)  that  is  important,  but  the  ra>o.    So…    Varia>on  is  much  more  important  in  short  cycle  opera>ons  (typically  volume  manufacturing)  than  long  cycle  opera>ons  (many  types  of  service  and  administra>on)    Where  opera>on  >mes  are  long,  it  is  MUCH  more  important  to  ‘get  it  right  first  >me’  than  to  focus  on  reducing  varia>on.  

Lean at Wits 273

Lean at Wits 274

Variabilty Reduction

Excess Inventory

Excess Inventory

ExcessCapacity

ExcessCapacity

DelayTime

DelayTime

From Wallace Hopp, Supply Chain Science

  Constraint  iden>fica>on  should  take  both  varia>on  and  u>liza>on  into  account.  

     Protec>ng  the  constraint  with  a  >me  buffer  is  a  tradeoff  decision  

   The  resource  upstream  of  the  constraint  determines  the  arrival  varia>on  at  the  constraint.  

Lean at Wits 275

Which is the Constraint?

  Eight  Building  Blocks    Ten  Lean  Scheduling  Concepts  

§  See  Lean  Toolbox  4th  edi>on  

Lean at Wits 276

A is a bottleneck or pacemaker, B is a non-bottleneck

A B

Where to place buffer inventory ?

Lean at Wits 277

A is a bottleneck or pacemaker, B is a non-bottleneck

A B

Where to place buffer inventory ?

Lean at Wits 278

A is a bottleneck (or pacemaker), B,C are non-bottlenecks

A B

Where to place buffer inventory ?

C

Lean at Wits 279

Buffer

X

X

X Assembly Constraint Work station

Example from Tomlinson, TPMI

Lean at Wits 280

A requires relatively long changeover, B has short or nil c/o

A C

Where to place a supermarket ? How does A know what to work on ?

D

B

Lean at Wits 281

A is a bottleneck (or pacemaker), B,C are non-bottlenecks

A B

How much inventory in front of A ? Other questions? (from B, from C, from both?)

C

Lean at Wits 282

A, B, C, D are sequential operations

B C

What is the first question to ask ? What determines the location of supermarkets?

A D

Lean at Wits 283

A

C

B

A is a bottleneck, so needs to be protected by inventory What are other considerations?

A, B and C all have

Changeovers

Lean at Wits 284

What are the buffer considerations along the Two sections of power conveyor?

A is a bottleneck

B and C are Non-

bottlenecks The three are

joined by conveyors

A C B

For example, a bottling plant:

Lean at Wits 285

  Demand  Smoothing    Takt  and  Pitch    ONE  Pacemaker    Supermarkets  and  FIFO  Lanes    Runners,  Repeaters,  Strangers    Mixed  Model  Scheduling    Pull  and  Kanban    Smaller  Batch  Sizes  and  EPE    Regular  Material  Handling  Route  (‘Runner’)    Levelling  and  Heijunka  Authorisa>on  

Reference: The New Lean Toolbox Pages 103 - 120

Lean at Wits 286

  Iden>fy  the  most  constrained  machines  or  processes    List  the  products  that  go  through  the  process,  their  weekly  demand  and  their  unit  cycle  >mes.    Calculate  the  sum  of  (weekly  demand  x  cycle  >mes)    Divide  by  available  working  >me  per  week.    Where  this  ra>o  is  >1,  more  than  1  machine  or  over>me  is  needed.    Where  the  ra>o  is  above  approx  0.8  take  care  (remember  queuing  theory  and  dice  game!).  

Lean at Wits 287

buffe

r

Quality Demand

Smoothed demand

Perfect quality

Occasional longer customer waits (but note some customers don’t mind waiting)

Zero tolerance of defects Very strict, receiving, requirements

…and never pass on a defect, even if it means waiting

…and never cause amplification

Lean at Wits 288

Takt time =

Net available time is total time less planned downtime

Required production quantity per day

Net available production time per day

Pitch time = Takt time x Container quantity

Container quantity could be the final packing quantity or the container move quantity. Often “human movable”

Lean at Wits 289

Helps  avoid    Unsynchronised  opera>ons    Amplifica>on    Data  processing  schedule  and  inventory  inaccuracies  

Lean at Wits 290

Reference: Lean Lexicon, LEI

Lean at Wits 291

  If  a  subsequent  opera>on  has  a  changeover  (or  inspec>on)  but  shorter  cycle,  calculate  the  number  required  to  catch  up    If  the  next  opera>on  has  a  longer  cycle  >me,  or  inspec>on,  takt  >me  should  govern  -­‐  but  a  short  FIFO  lane  could  be  appropriate  to  allow  the  previous  opera>on  longer  ‘breathing  space’.  

Lean at Wits 292

  Runners  :  dedicate  facili>es;  may  be  worth  doing  irrespec>ve  of  volume  for  >me  compe>tors    Repeaters  :  build  the  schedule  around  them;  give  them  regular  slots;  make  as  ozen  as  possible  §  repeaters  are  by  regularity,  not  volume  §  two  types  :  high  frequency  -­‐  put  them  into  regular  slots;  and  low  frequency  -­‐  use  priority  kanban  

  Strangers  :  fit  them  around  repeaters;  batch  size  may  be  determined  by  order  quan>ty,  but  transfer  quan>ty  may  differ  

Lean at Wits 293

Product Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Grand Total Frequency Freq Type Culm % Culm Useage12008CABLE ASSY, 3/D/2362, ISS 6 9 12 11 9 9 9 11 14 10 14 6 114 11 Runner 9.53% 11412020CABLE ASSY, 3/D/2492 ISS 3 13 8 4 8 9 11 8 8 5 10 7 91 11 Runner 17.14% 20512057CABLE ASSY RDS KEYPAC ISS 2 11 8 14 11 10 8 5 5 5 10 87 10 Runner 24.41% 29212077CABLE TAMPER LEAD ISS 2 2 3 7 6 8 8 4 9 9 7 9 72 11 Runner 30.43% 364205XFMR (E/K1000), ISSUE 11 6 6 8 4 5 4 4 5 4 5 4 55 11 Runner 35.03% 41912091Cable Assembly, Earth Lead, PAC202 ISSUE 1 1 1 5 2 6 7 3 8 4 6 4 47 11 Runner 38.96% 466218XFMR (11226), ASSEM,ISSUE 14 4 3 4 5 4 4 4 3 4 3 3 41 11 Runner 42.39% 50712087Cable Assembly, GSM Modem, EK1000/2200 6 5 4 2 2 3 3 6 1 4 4 40 11 Runner 45.74% 547176XFMR,COIL, STANDARD RDR,ISSUE4 6 3 3 2 4 4 3 4 3 4 2 38 11 Runner 48.91% 58512110Cable Assembly, E/K Printer 4/E/2431 Issue 0 3 3 8 3 2 4 2 3 4 3 35 10 Runner 51.84% 620164XFMR,UNIVERSAL COIL 1 3 6 3 6 6 2 1 3 31 9 Runner 54.43% 65112078Cable Battery Lead PAC 2200 Issue 2 1 2 5 4 2 2 3 4 3 3 1 30 11 Runner 56.94% 681235Transformer, 240/16.5V 3/D/1947 issue 2 1 3 1 4 3 3 1 2 3 1 4 26 11 Runner 59.11% 70712076Cable SWB To SWB PAC 2284 Issue 2 1 1 4 3 1 2 3 3 2 2 1 23 11 Runner 61.04% 730

12518Cable Assembly, PC Reader Issue 1 2 1 2 1 3 1 1 11 7 Died 87.37% 104512090Cable Assembly, 3/E/2727 Issue B 2 1 1 1 1 2 1 1 10 8 Runner 88.21% 105512085Cable Assembly, Micro Reader, 4/E/2714/iss0 1 2 2 2 2 9 5 Repeater 88.96% 106412051Cable Assembly, 4/E/2511 Issue 2 1 1 1 1 1 1 1 1 8 8 Runner 89.63% 1072216XFMR (19401), ASSEM,ISUE 14 1 1 1 1 1 1 1 1 8 8 Runner 90.30% 108012029CABLE ASSY, 3/E/0350 ISS 3 2 1 1 1 1 1 1 8 7 Runner 90.97% 1088168AFMRAIRCOIL, EKEY, MKII,ISSUE3 1 2 1 1 1 1 1 8 7 Repeater 91.64% 109612028CABLE ASSY, 3/E/0350 ISS 3 1 1 1 1 1 1 1 7 7 Runner 92.22% 110312112COIL CABLE, 4/D/2512 ISS 1 1 1 1 1 1 1 1 7 7 Repeater 92.81% 1110175XFMR, COIL, PAC-KEY SLIMLINE RD 1 1 1 1 1 1 1 7 7 Runner 93.39% 111712518Cable Assembly PC Reader Issue 1 1 1 2 2 6 4 Runner 93.90% 11231863Cable Assy PSU To NTWK Cont Issue 4 1 1 1 1 1 5 5 Repeater 94.31% 112812517E/K Battery Leads - Issue 1 1 1 1 1 4 4 Repeater 94.65% 1132179XFMR COIL,L/P RDR,ISSUE 7 1 1 1 1 4 4 Stranger 94.98% 11361870Cable Assembly, Earth Lead Assembly D7112-X01 - Issue 1 1 1 1 1 4 4 Stranger 95.32% 1140161XFMR COIL,FF 4000,ISSUE 5 1 2 1 4 3 Stranger 95.65% 114412519Cable Assembly, PC Reader Cable 6 Core 1 1 1 3 3 Stranger 95.90% 1147203XFMR Reader (19256), Issue 14 1 1 1 3 3 Stranger 96.15% 1150

Example from Tomlinson, TPMI Lean at Wits 294

Runners Repeaters Strangers

A B C 2 bin

tight kanban

2 bin

MRP

MRP ?

2 bin MRP ?

tight kanban MRP ?

“loose” kanban

tight kanban

Lean at Wits 295

Runners Repeaters Strangers

A B C

MRP

Short L/T

Short L/T

Short L/T

Long L/T

Long L/T

Long L/T

Tight kanban

VMI

2 bin + SS

MRP

MRP

VMI

Kanban

Kanban Kanban

Kanban + SS

Kanban

Kanban + SS MRP

2 bin + SS 2 bin + SS

2 bin

2 bin

Lean at Wits 296

Lean at Wits 297

Lean at Wits 298

  Conver>ng  Strangers  into  Repeaters  §  Design  and  G.T.  §  Product  line  ra>onalisa>on  §  Working  lower  down  in  the  BOM  §  Changeover  /  Batch  size  reduc>on  §  Thinking  Heijunka  (work  slots)  

  Conver>ng  Repeaters  into  Runners  §  As  above,  plus  §  Crea>ng  cells  §  Choosing  machines  or  capacity  rather  than  inventory  

Lean at Wits 299

 Why  is  ABCABCABC  be`er  than  AAABBBCCC  ?   Uniform  material  flow   Balance   Reduced  inventory  §  In  FGI  §  In  WIP  

Lean at Wits 300

“Don’t make anything until it is needed, and then make it very quickly.”

Womack and Jones

“The thing to do is to keep everything in motion, and take the work to the man and not the man to the work.”

Henry Ford, Today and Tomorrow, 1926

Lean at Wits 301

  Withdrawal  (Move)  kanban  §  From  finished  good  supermarket  to  shipping  §  Authorise  movement  §  May  be  ini>ated  by  Heijunka  slots  

  Produc>on  kanban  §  At  workcentres,  to  authorise  produc>on  §  Indicate  parts  to  be  replenished  to  a  finished  goods  supermarket  

  Signal  kanban  §  Authorise  batch  produc>on.  Ozen  triangles  §  Tell  how  many  units  have  been  pulled  from  the  supermarket  

Lean at Wits 302

Kanban

Production

Signal / Triangle In plant Supplier

Move or “withdrawal”

Production card

Adapted from Suzaki The New Manufacturing Challenge Free Press

Lean at Wits 303

Kanban movements

Material movements

Op 1 Op 2 Op 3

Adapted from Bonvik, web.mit.edu

Lean at Wits 304

Kanban movements

Material movements

Op 1 Op 2 Op 3

Adapted from Bonvik, web.mit.edu

Pulling a red leads to replacement of red Pulling a blue leads to replacement of blue

red or blue red or blue red or blue

Lean at Wits 305

Kanban movements

Material movements

Op 1 Op 2 Op 3

Adapted from Bonvik, web.mit.edu

Pulling a red leads to replacement of red Pulling a blue leads to replacement of blue, etc BUT with many products, WIP becomes excessive SO…..

Lean at Wits 306

Kanban movements

Material movements

Op 1 Op 2 Op 3

Adapted from Bonvik, web.mit.edu

So, Card indicates a replacement, but what to make comes from the Schedule at gateway workcentre Other workcentres work on a FIFO basis

Lean at Wits 307

Kanban movements

Material movements

Op 1 Op 2 Op 3

Adapted from Bonvik, web.mit.edu

Lean at Wits 308

Lean at Wits 309

Lean at Wits 310

  Product  based  and  Capacity  based    Squares      Single  card    Dual  card    Priority    Heijunka  board  (10  minute  capacity)    Other  signals  §  golf  ball,  faxban,  e-­‐ban  

  CONWIP  and  POLCA  

Why all

these?

Lean at Wits 311

Number of kanbans =

Daily demand x (EPE frequency + Lead time) + Safety stock

Container size

Lean at Wits 312

Number of kanbans =

Daily demand x (EPE frequency + Lead time) + Safety Stock

Container size

EPE is given in days

(see EPE section)

The replenishment interval from sending the signal to receipt

This is a variable, used to adjust the no of kanbans to a feasible replenish-

ment interval

Used to compensate for

process uncertainties & demand variation

Lean at Wits 313

  Don’t  forget  to  review  kanban  quan>>es  periodically    Especially  when  demand,  lead  >me,  or  supplier  performance  changes    This  is  where  a  computer  system  can  be  useful  -­‐  to  track  significant  changes  and  give  warnings.  

Lean at Wits 314

  No  of  batches  x  changeover  >me  =  constant    Maximum  number  of  changeovers    =  (total  >me  -­‐  >me  for  produc>on)      internal  setup  >me    but  note  if  total  external  setup  >me  is  longer  than  prodn  and  maint  >me,  this  is  the  deciding  factor  

  Changeover  >me  +  (batch  x  cycle)  =  (batch  x  takt)          gives  target  changeover  and  min.  batch    Minimum  batch  =  Weekly  demand  /  max  changeovers  

Lean at Wits 315

  Start  with  the  available  >me  per  day  (allowing  for  rou>ne  main,  OEE)    Subtract  the  total  required  run  >me  per  day  to  give  >me  available  for  changeover    Maximum  changeovers  per  day  =  >me  available  /  average  changeover  >me    Distribute  the  maximum  changeovers  per  day  between  all  the  parts.  More  changeovers  for  A  parts  (perhaps  more  than  1  per  day),  less  changeovers  for  C  parts  (perhaps  less  than  one  per  day).    Leave  a  li`le  slack  >me.  

 

Lean at Wits 316

  8  hour  net  working  day;  6  products  with  daily  demand  (in  produc>on  >me)  2,  1,  1,  1,  0.5,  0.5  hours  (total  6)  per  day;  changeover  >me  =  1  hour    1  day  EPE  not  feasible    2  day  EPE  not  feasible    3  day  EPE  just  feasible  (over>me  req’d?)    4  day  EPE  OK;  can  run  A  twice    5  day  EPE  OK;  can  run  A  every  day  (just)  

Lean at Wits 317

  Available  >me  per  day  =  7  x  60  mins  =  420  mins.  

  8  products  (A  to  H);  total  run  >me  for  one  days  demand  =  300  mins  

  Demand  /  day  =  200,  100,  100,  50,  50,  30,  20,  20  

  Time  remaining  for  changeover  =  120  mins  

  Ave  changeover  >me  =  20  mins    No  of  changeovers  per  day  =  120/20  =  6  

Changeover Schedule Prod C/overs Batch EPE A 2 / day 100 0.5 B 1 100 1 C 1 100 1 D 0.5 100 2 E 0.5 100 2 F 0.3 90 3 G 0.3 60 3 H 0.3 60 3

Lean at Wits 318

Replenishment Interval (or EPEI Interval)

EPEI  (the  basis  is):  available  resource  Hme  per  day  -­‐  Hme  to  run  a  day’s  quanHty  of  parts  

=  daily  changeover  Hme  available  Then  make  best  use  of  this  Hme  to  reduce  batch  size  

Lean at Wits

EPEI = Total available time per day -

∑ (changeover time per campaign)

∑ (run times per day)

This gives the EPEI in days and batch size EPEI x daily demand

319

Batch sizing issues   The  EPEI  calculaHon  is  a  check  in  itself:  if  batch  sizes  work  out  larger  than  currently  being  run  then  the  data  is  incorrect  

  Different  machines  may  of  course  have  different  batch  sizes.    If  there  are  skilled  sePers  who  do  the  changeovers,  use  their  net  available  Hme,  not  the  machine  available  Hme  

  Sequence  dependent  changeover  Hmes:  Get  an  indicaHon  of  the  batch  size  as  above,  but  then  use  constant  sequence,  variable  quanHty  (  that  is,  when  next  due  make  up  to  the  target  level  -­‐  fix  this  at  2  x  the  batch  size?)  

  If  you  have  a  flow  sequence,  say  of  3  machines,  take  the  largest  batch  on  any  machine.  

Lean at Wits 320

Supermarkets   Two  possible  locaHons  for  supermarkets  

•  At  the  supplier  workcentre  •  At  the  point  of  use  

  Point  of  use  is  simpler  for  visibility    But  may  have  to  locate  at  the  supplier  due  to  material  handling  consideraHons,  or  for  mulHple  branching  

  Note  there  are  inventory  implicaHons  on  supermarket  sizing  because  the  replenishment  Hme  may  be  longer  if  located  at  the  point  of  use.  This  is  a  reason  for  locaHng  at  the  supplier  point.  

  SomeHmes  both,  to  achieve  both  the  above.  Then  link  via  move  kanbans.    Make  to  order  inventory  does  not  go  in  a  supermarket  

Lean at Wits 321

Sizing of Supermarkets

  Covers  the  batch  quanHty  (EPEI)    Covers  customer  demand  during  the  normal  replenishment  transport  lead  Hme  (order  to  receipt)  

  Covers  buffer  stock  for  customer  demand  variaHon  

  Covers  safety  stock  in  case  of  internal  failure  or  breakdown  

Lean at Wits

Note this variant of the standard Supermarket symbol:

Lead times and Order Points   Replenishment  Lead  Hme  =  Total  Transport  Time  +  setup  and  make  Hme    SomeHmes  the  setup  and  make  Hme  needs  to  be  replaced  by  the  full  EPEI  interval,  when  there  is  likely  to  be  a  queue  of  work  waiHng.  Another  factor  is  whether  other  products  are  being  used  by  the  customer  workcentre  during  the  lead  Hme  -­‐  if  so,  no  demand  takes  place  during  this  Hme,  and  the  queue  Hme  can  be  omiPed.  

  Transport  Hme  is  the  Hme  to  physically  collect  the  kanban  and  to  return  the  batch  a}er  processing.  It  is  the  worst  case  for  the  runner  route  -­‐  note  that  a  runner  may  someHmes  collect  a  kanban  every  second  route.  

  Order  Point  is  customer  demand  *(  lead  Hme  +  safety  stock)  

Lean at Wits 323

  See  The  New  Lean  Toolbox,  page  115    Set  the  EPE  target  interval  (ozen  one  day)    List  the  number  of  products  to  be  made  during  this  EPE  interval    Calculate  the  required  run  >me  during  this  EPE  target  interval    Calculate  the  >me  available  for  changeover  during  this  EPE  interval  (  available  >me  -­‐  total  run  >me  needed)    Calculate  target  changeover  >me  from      (>me  available  for  changeover)/no  of  products  

Lean at Wits 324

  The  pacemaker  of  the  whole  system   Maintains  the  pitch    Completes  a  collect  and  delivery  cycle  every  pitch  increment    Starts  at  Heijunka  box,  and  collects  the  authorised  “work  order”;  goes  the  supermarket  and  picks  this  up;  takes  kanbans  to  cells;  delivers  material;  moves  material;  returns  to  Heijunka  

Lean at Wits 325

Lean at Wits 326

Lean at Wits 327

Products

A B C D E F G H I

Red Zone

Green Zone

Yellow Zone

Black Zone

Spike Demands

Calculate Capacity by Zone Daily

c/o times + run times

If black can’t cope then overtime

Then calculate the time horizon to complete all red and all yellow

Lean at Wits 328

Pitch Increments Today 8 9 10 11 12 13 14 15 16 17 Next Week Week After

Part A

M T W Th F M T W Th F

Part B

Part C

9 10 11 12 13 14 15 16 17 18

Pitches Missed 4

Missed Pitches Analysis No Reason

Lean at Wits 329

Heijunka Extensions: Different Pack out Quantities and Pitch (2)

Lean at Wits

Pitch

Product 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 10:00

Red Break

Green

Blue

Yellow

Red, Green, Yel have different

Pitches to Blue

Two cards per Pitch, except when Blue

May be balanced for 3 pitches

if very different; Otherwise ignore

330

Day-by-the-Hour (or Tally) Board

  Use  as  an  interim  on  the  road  to  Heijunka  Target

Accum Actual

Accum Ahead +

Behind - Causes and

Countermeasures

8:00

9:00 Breakdown

Red card issued

10:00

11:15 Caught up with Extra manning

100

50

50 50

50

50 150

50

50

200

40

70

50

90

140

210

0

-10

+10

-10

Lean at Wits 331

Day by Hour Board: Lake Region

Lean at Wits 332

Lean at Wits 333

Wide aisle 4m

Turning machines

Priority Kanban boards

Lean at Wits 334

Boxes With products accumulate on a roller FIFO

Lane

If boxes accumulate into the red zone, Operators

must stop working on other products and start working on this one, until

the red zone is clear

Lean at Wits 335

Tugger collects Components at 10am

Tugger collects Finished Products

at 11:30am

Production between

10:30 and 11:00

Inside are Details of

the products to be made

And the components

required

Tugger (Runner) goes around

once per hour, but

production is In half hour

increments; so Tugger

collects two Tablets per

round Clear Plastic Tablet,

Perhaps 120mm x 200mm

Lean at Wits 336

  Can  be  linked  to  long-­‐cycle  opera>ons  §  Using  standard  work  packages  §  Some  work  packages  may  repeat  several  >mes  

  Can  be  used  for  warehouse  opera>ons  §  The  Heijunka  box  determines  the  pick  cycles    §  Can  use  >me  mul>ples  e.g.  12,  24,  36  minute  pick  cycles  

  Can  be  used  to  synchronise  various  converging  paths  §  Each  box  slot  contains  cards  which  go  to  several  routes  

Lean at Wits 337

   The  Lean  Toolbox,  4th  edi>on,  relevant  sec>ons    Jeff  Liker,  The  Toyota  Way,  McGraw  Hill,  2004,  Chaps  8  –  10    Hopp  and  Spearman,  Factory  Physics,  Irwin,  2007  (3rd  ed)    Kevin  Duggan,  Crea,ng  Mixed  Model  Value  Streams,  Produc>vity,  2002  

  Goldra`  and  Cox,  The  Goal      See  www.factory-physics.com/  

Lean at Wits 338

  Highly  seasonal   Major  product  families    Some  customized    Some  machining  with  changeover  >mes    Large  items  (2  –  4  m)   MRP  with  MPS    Quality  Issues  

  Laser  cuwng,  Welding,  Pain>ng,  Assembly  of  products    Job  shop  in  above  areas.    Frequent  delivery  failures    5  x  8  hr.  week  with  frequent  over>me.   What  to  do?  

Lean at Wits 339

Three  stages    Job  Shop    TOC    Lean  Flow  

Lean at Wits 340

Lean at Wits 341

Lean at Wits 342

  Customers  and  Value      §  for  Customers  and  all  

Stakeholders  §  Benefit  /  (Costs  +  Harm);    §  Value  demand  vs  Failure  

Demand  (or  Rework)    People  §  Deming’s  94  /6  §  Trust  §  Mo>va>on  and  ‘small  wins’  

§  The  brain  and  thinking.  Bias.  

  System    §  end-­‐to-­‐end  value  streams  §  holis>c,  integrated,  with  

feedback    Process  efficiency  

§  Flow  efficiency  not  resource  efficiency  

§  Con>nuous  improvement  §  The  ‘big  five’  opera>ons  

concepts  §  Timing  

  Innova>on  §  S  curves  and  the  need  for  

breakthrough  

 Lean at Wits

343

Change…

Lean at Wits 344

“And let it be noted that there is no more delicate matter to take in hand, nor more dangerous to conduct, nor more doubtful in its success, than to set up as a leader in the introduction of changes. For he who innovates will have for his enemies all those who are well off under the existing order of things, and only the lukewarm supporters in those who might be better off under the new. This lukewarm temper arises partly from the fear of adversaries who have the laws on their side and partly from the incredulity of mankind, who will never admit the merit of anything new, until they have seen it proved by the event”. Niccolo Machiavelli

The Physics of (Lean) Change?   “Physical  laws  apply  everywhere,  whether  or  not  you  choose  to  believe  in  them’    says  astronomer  

Neil  deGasse  Tyson.        In  1918  Emmy  Noether  proved  that  the  laws  of  physics  are  consequences  of  deep  symmetries.  ‘A  

thing  is  symmetrical  if  there  is  something  you  can  do  to  it  so  that,  a}er  you  have  finished  doing  it,  it  looks  the  same  as  before’  (Like  some  Lean  ‘transformaHons’…)  

  Newton’s  Laws    First  law:  An  object  remains  at  rest  or  conHnues  to  move  at  constant  velocity  unless  acted  on  by  an  

external  force    Second  law:  F  =  ma.  The  sum  of  forces  on  an  object  is  equal  to  the  mass  of  the  object  mulHplied  by  

the  acceleraHon  of  the  object.  Third  law:  When  one  body  exerts  a  force  on  a  second  body,  the  second  body  simultaneously  exerts  a  force  equal  in  magnitude  and  opposite  in  direcHon  on  the  first  body.  

  Third  Law.  For  every  acHon  there  is  an  equal  and  opposite  reacHon  

  Thermodynamics    The  Second  Law  states  that  "in  all  energy  exchanges,  if  no  energy  enters  or  leaves  the  system,  the  

potenHal  energy  of  the  state  will  always  be  less  than  that  of  the  iniHal  state."  This  is  also  commonly  referred  to  as  entropy.  

Lean at Wits 345

Hawthorne Studies

  ‘…in  other  words,  the  mystery  seemed  to  lie  within  the  worker,  rather  than  within  the  system.  This  impulse  to  blame  –  or  credit  –  the  individual  person,  rather  than  the  system  within  whiich  he  or  she  works,  although  completely  anHtheHcal  to  quality  management  principles,  persists  to  this  day.’  •  Quoted  in  John  Butman,  ‘Juran:  A  lifeHme  of  Influence’,  Wiley,  1997  –  drawing  on  Elton  Mayo.  

Lean at Wits 346

Does this sound like Deming’s 94 / 6 Rule?

Drive out Fear

Lean at Wits 347

A Lean Leader’s First Duty

  To  culHvate  a  culture  that  is  intolerant  to  Systemic  Failure    And  reduces  Process  Ignorance.    Problems  are  opportuniHes  to  be  solved  and  not  to  be  ignored.  

Lean at Wits 348

From Steve Spear

Leadership Styles

Lean at Wits 349

From Liker and Hoseus, Toyota Culture, 1998, p334

Jack Smith…

  Learning  to  Lead  at  Toyota..  

Lean at Wits 350

Jack Smith: Parts A, B, C Harvard Business School Case Study

Leadership ‘moves’ for Lean

Number   Leadership  Moves  

1   Leaders  must  be  teachers  

2   Build  tension,  not  stress  

3   Eliminate  fear  and  comfort  

4   Lead  through  visible  parHcipaHon,  not  proclamaHon  

5   Build  lean  into  personal  pracHce  

Lean at Wits 351

From Flinchbaugh and Carlino, The Hitchhikers Guide to Lean, 2006, page 32

Three interacting concepts…

352

Kata Repetition

‘Small and varied Wins’

‘Yet’

Rituals e.g. church Frequency

and Severity

‘Filters’

Maths Army

recruits Students

Amygdala and Cortex

The Progress Principle

‘Pygmalion’ Effect

Myth of Genius

and Talent

Habit and Practice

‘Brainwash’ Nazis &

Jews Korea

prisoners

Lean at Wits

Three interacting concepts…

353

Kata Repetition

‘Small and

varied Wins’

Yet

Kaizen

PDSA

Respect

Leader Standard

Work

Idea Feedback

Feedback from others and

from work itself

Ongoing Mentoring

Genuine Listening

‘Zero Tolerance’ of

Defects, mess

Heijunka

Andon

A3: break into small chunks

Learning cycles: single and

double

Go see

Reflection Hansei

AARs

TWI Practice not Talent

Lean at Wits

Excellence and Habit

  “We  are  what  we  repeatedly  do.  Excellence,  then,  is  not  an  act,  but  a  habit”  •  Aristotle  

Lean at Wits 354

Three interacting concepts…

Lean at Wits 355

Kata Repetition

‘Small Wins’

Yet and Confirmation

Bias

Kaizen

PDSA

Respect

Leader Standard

Work

Idea Feedback

Feedback from others and

from work itself

Ongoing Mentoring

Genuine Listening

‘Zero Tolerance’ of

Defects, mess

Heijunka

Andon

A3: break into small chunks

Learning cycles: single and

double

Go see

Reflection Hansei

AARs

TWI Practice not Talent

Kaizen, Leader Standard Work, Kata, Repetition

  David  Mann  Leader  Standard  Work   Mike  Rother  Toyota  Kata    Steve  Spear  Chasing  the  Rabbit,  Uncovering    Deming    PDSA    Schwartz    Sony:  PracHcing  Simple  Rituals    

»  Daily  walks,  breaks,  no  e  mails  

  Gladwell    ‘10,000  hour  rule’  for  Mastery  »  ‘How  do  you  get  to  Carnegie  Hall?’  »  List  of  75  innovators  and  inventors  »  David  Shenk,  The  Genius  in  All  of  Us’,  Icon,  2010    

Lean at Wits 356

More on..Kaizen, Kata, Repetition, Learning, Motivation

  Colvin      TWI  

       AAR      Amabile  

   Koenigsaecker  Duhigg    

  Talent  is  Overrated    Do  it  again;  ConHnue  unHl  you  know  they  know    Every  Hme,  not  judgmental    Small  step,  conHnuous  feedback  as  moHvator   MulHple  Kaizens    Habit  

 

Lean at Wits 357

Lean at Wits 358

Lean at Wits 359

Dilbert knows about bias..

Lean at Wits 360

Avoiding Bias

  You  can’t  do  it  yourself!      It  is  intuiHve  (or  System  One)  thinking.  AutomaHc.  Unconscious.  So,  never  self  contradicted  and  hence  is  believed.  Context  dependent.  (e.g.  What  does  ‘walk  to  the  bank’  mean  to  you?)    System  Two  Thinking  is  slow,  efforkul,  deliberate.    But  you  can  check  for  System  One  bias  with  your  people  or  teams.    See  the  12  tests  in  Daniel  Kahneman,  ‘Before  You  Make  that  Big  Decision’,  HBR,  June  2011,  pp51-­‐60  

Lean at Wits 361

Beware Halo Effect and Saliency Bias

  Halo:  Companies  deemed  ‘excellent’  are  frequently  circled  by  Halos.  Once  branded  as  excellent,  people  tend  to  assume  that  ALL  their  pracHces  are  exemplary.  The  same  goes  for  ‘excellent’  leaders.  A  company’s  success  is  frequently  aPributed  to  a  leader  –  and  success  will  conHnue  as  long  as  that  leader  is  in  place.  •  See  Phil  Rosenzweig,  ‘The  Halo  Effect’  

  Saliency  Bias:  A  past  successful  case  study  is  taken  as  evidence  of  or  analogy  for  good  pracHce.  Of  course,  the  circumstances  likely  to  be  different.  •  See  Daniel  Kahneman,  ‘Fast  or  Slow’  

Lean at Wits 362

David Mann on Culture and Lean Leadership

 David  Mann  considers  the  culture  of  an  organizaHon  to  be:  “…the  sum  of  peoples’  habits  related  to  how  they  get  their  work  done”.    He  defines  the  term  as  “…a  concept  we  make  up  to  organize  and  get  a  handle  on  what  we  have  seen  or  experienced.”  There  are  four  elements:  

1.   Leader   standard   work   –   where   a   rouHne   ‘checklist’   is   developed   to  standardize  a  porHon  of  a  team  leader  or  supervisor’s  day  to  ensure  that  essenHal  elements  of  their  job  are  performed.  

2.   Visual  controls  –  to  enable  the  leader  to  monitor  performance  at  a  glance  by   walking   around   the   area.     To   visually   manage   their   area   through  observing  what  is  in  control  and  what  is  out  of  control.  

3.   Daily   accountability   process   –   acHng   upon   performance   as   observed  through  the  visual  controls  and  ensuring  correcHve  measures  are  put   in  place  for  items  idenHfied  as  being  out  of  control.  

4.   Leadership   discipline   –   ensuring   standard   work   is   adhered   to,  guaranteeing   the   integrity   of   the   process   is   controlled   and   all   other  elements  are  sustained.  

363 Lean at Wits

Daily Accountability Board

Lean at Wits 364

Creating and Sustaining Improvement: Example of System Dynamics

capability

Pressure to do Work

Time spent on improvement

Investment in capability

Work Harder

Desired Performance

Performance Gap

Pressure to improve

Work Smarter

Shortcuts

Actual performance Time spent

working

Reinvestment

delay

After Repenning and Sterman, ‘Nobody ever gets credit for fixing problems that never happened’, California Management Review, Summer 2001, pp 64 - 88 Lean at Wits 365

From Nelson Repenning and John Sterman, ‘Nobody Ever Gets Credit for Fixing Problems that Never Happened: Creating and Sustaining Process Improvement’ California Management Review Summer 2001

Lean at Wits 366

From Lake Region Manufacturing, Ireland Lean at Wits 367

Deming on Pay and Measures

  “Reward  for  good  performance  may  be  the  same  as  reward  to  the  weatherman  for  a  pleasant  day”        The  New  Economics,  p  28  

  “A  numerical  goal  accomplishes  nothing.  Only  the  method  is  important,  not  the  goal.  By  what  method?  A  numerical  goal  leads  to  distorHon  and  faking,  especially  when  the  system  is  not  capable  to  meet  the  goal”        The  New  Economics,  p  31  

  “IncenHve  pay  and  pay  for  performance,  among  others,  are  forces  of  destrucHon.  These  forces  cause  humiliaHon,  fear,  self-­‐defence,  compeHHon  for  gold  star,  high  grade,  high  raHng  on  the  job.  They  lead  anyone  to  play  to  win,  not  for  fun.  They  crush  out  joy  in  learning,  on  the  job,  in  innovaHon.  Extrinsic  moHvaHon  gradually  replaces  intrinsic  moHvaHon,  self  esteem,  dignity”        The  New  Economics,  p  121  

   

Lean at Wits 368

Seddon’s view:

Lean at Wits 369

Conventional Thinking Better Thinking

Purpose

Measures

Method

Begin here: Think Purpose from the customer’s view

Derive measures

Creates de facto purpose

Liberates

Begin here: Impose targets And standards

Constrains method

From John Seddon, The Whitehall Effect, Triachy Press, 2015

Motivation Flowchart

370

Is the task mostly

routine?

1. Offer a rationale for

why the task is

necessary

Can you increase the task’s challenge or variety, make it

less routine, or connect it to a larger

purpose?

Concentrate on building a healthy, long-term motivational environment that pays

people fairly and fosters autonomy, mastery and purpose. Avoid ‘if then’ rewards in almost all circumstances.

Consider unexpected, noncontingent ‘now that’ rewards. And those rewards will be

more effective if:

Yes, I can

That’s pretty hard

Use rewards, even ‘if then’

rewards, but be sure to:

2. Acknowledge that the task is

boring

3. Allow people to complete the task in their own

way

2. They provide useful information,

rather than an attempt to control

1. They offer praise and

feedback rather than things

people can touch or spend

Yes

No

From: Daniel H Pink, Drive, Canongate 2009

Lean at Wits

Deming’s Profound Knowledge (or, Why Things Go Wrong!)

  System  •  HolisHc,  opHmizing  a  part  does  not…,  feedback  •  relaHonships  between  the  parts  are  crucial  

  VariaHon  •  Is  a  fact  of  life;  snapshots  are  not  valid  observaHons  •  Common  or  special  causes  

  Theory  of  Knowledge  •  ‘without  theory  knowledge  has  no  meaning’  •  Do  PDCA  against  a  hypothesis;  otherwise  can’t  learn  •  Be  interested  in  failures  that  disprove  –  more  valuable  than  success    stories  

  Psychology  •  Only  intrinsic  moHvaHon  moHvates  in  the  long  term  •  Extrinsic  moHvators  undermine  in  the  long  term  •  Management  must  create  the  condiHons  for  intrinsic  moHvaHon  –  a  gemba  style  helps  

with  this.  

Lean at Wits 371

X: Cross Functional Working

  EssenHal  to  Lean,  but  a  problem  of  experHse    Socio-­‐Technical  Working…..  

Lean at Wits 372

Lean at Wits 373

Measures

Lean at Wits 374

Targets and Measures

Lean at Wits 375

Process and Person Measures

Lean at Wits 376

Measures should…   Provide  short-­‐term  indicators  of  problems  and  no-­‐problems    Be  part  of  a  feedback  loop  of  surfacing  and  resolving  problems    Focus  on  improving  performance    Be  capable  of  being  acted  upon.    Relate  to  learning  or  capability  of  the  process  or  people  

Lean at Wits 377

The Power of Measurement   ‘What  gets  rewarded  gets  done’  Michael  LeBoeuf’s  ‘GMP’    But      ‘You  get  what  you  measure’  -­‐  more  fundamental?  ‘Most  individuals  and  organizaHons  don’t  get  what  they  want  because  they  don’t  measure  what  they  really  want’.    Examples…..  

   (see  Michael  Blastland  and  Andrew  Dilnot,  The  Tiger  that  Isn’t,  Profile,  2007  and  Dean  Spitzer,  Transforming  Performance  Measurement,  AmaCom,  2007)  

Lean at Wits 378

Two types of Mesures

1.  InformaHonal  measurement  -­‐  used  for  informaHonal  purposes  

2.  MoHvaHonal  measurement  -­‐  used  for  rewards  and  punishment  

The  first  can  be  a  powerful  aid;  the  second  almost  invariably  negaHve.    

Lean at Wits

Adapted from Dean Spitzer, Transforming Performance Measurement, AmaCom, 2007

379

Two other types of Measures

  ObjecHve  -­‐  fact  based;  can  be  observed  and  verified    SubjecHve  -­‐  a  maPer  of  opinion  or  judgement,  and  an  opportunity  for  revenge,  prejudice,  fear,  etc.  

It  is  the  second  that  gives  big  problems.  Looking  good  as  opposed  to  being  good.    Who  is  measuring  whom?  (Witgenstein’s  ruler)    Measurement  should  be  a  non-­‐judgemental  process  of  collecHng,  analysing,  and  most  

importantly  understanding  what  is  being  measured.  

Lean at Wits

Adapted from Dean Spitzer, Transforming Performance Measurement, AmaCom, 2007

380

Dysfunctional Measurement

  CheaHng  (see  for  example  LeviP  in  Freakonomics,  2006)    Measuring  too  much  -­‐  and  ignoring  most  of  the  signals  -­‐  a  complete  waste  or  delusion  

  Driving  behaviour  that  favors  the  individual  but  is  dysfuncHonal  to  the  organizaHon.  

Whether  measurement  dysfuncHons  occur  has  less  to  do  with  the  number  and  more  to  do  with  how  people  respond  to  the  measure.  

 Almost  everyone  has  experienced  negaHve  measurement  used  to  expose  negaHve  

things  -­‐  errors,  cost  overruns  etc  -­‐  and  trigger  negaHve  emoHons    -­‐  fear,  threat,  blame,  defensiveness  

Lean at Wits

Adapted from Dean Spitzer, Transforming Performance Measurement, AmaCom, 2007

381

Four Keys to Transformational Measurement

  Context  •  Everything  that  surrounds  the  measurement  -­‐  social,  psychological  -­‐  effecHve  

measurement  can  only  occur  in  a  posiHve  context.  Process  not  person.  

  Focus  •  Measure  the  right  thing,  don’t  measure  too  much,  the  vital  few  

  IntegraHon  •  A  framework,  balanced,  aligned,  adapHve  

  InteracHvity  •  About  ongoing  measures,  acted  upon  in  real  Hme,  using  feedback  loops.  ‘A  social  

process,  not  a  technical  process’.  

Lean at Wits

Adapted from Dean Spitzer, Transforming Performance Measurement, AmaCom, 2007

382

‘Four Steps to Redemption’

1.  Select  the  right  things  to  measure  n  End  to  end  processes,  not  verHcal  silos  n  Determine  the  ‘drivers  of  enterprise’.  (e.g  having  the  right  stock  available  when  needed.)  

2.  Measure  these  right  things  in  the  right  way  n  Value  and  Failure  Demand  (e.g  call  compleHon  rates.)  n  Precision,  Accuracy,  Overhead,  Reliability,  Validity,  Robustness  n  MulHple  measures  (OEE  and  schedule  aPainment)  

3.  Embed  the  metrics  in  a  disciplined  process  for  improvement,  not  blame  n  Ways  in  which  the  measures  will  be  acted  on:  who,  visual  progress  n  Problems  with  process  design;  problems  with  execuHon.  These  need  different  responses;  

which  of  these  is  the  cause?  (Deming  94/6  rule)  4.  Create  an  organizaHonal  value  system  that  uses  the  measures  for  ongoing  

performance  measurement  n  Role  modeling,  rewards,  implementaHon,  arHculaHon,  commitment  

Lean at Wits

From: Michael Hammer, ‘The 7 Deadly Sins’, MIT Sloan Management Review Spring 2007

383

Problem

  P  sells  for  £  90;  demand  is  100  units  /  week    Q  sells  for  £100;  demand  is  50  units  /  week    There  are  four  resources  -­‐  A,  B,  C,  D,  each  with  the  same  fixed  cost.   Work  Hme  is    40  hrs  per  week  (2400  mins)    Total  fixed  costs  (labour  and  rent)  is  £6000  /  week  

Lean at Wits 384

We have a simple BOM and Routing

Lean at Wits

P Q

D 15 min

Purchase Part

£5/unit D

5 min

C 10 min

C 5 min

B 15 min

A 15 min

B 15 min

A 10 min

RM1 £20/u

RM2 £20/u

RM3 £20/u

385

Contribution

  P:  £90  -­‐  £  40  -­‐  £5  =  £45  /  unit    Q:  £100  -­‐  £40  =  £60  /  unit  

 Make  Q  !  

Lean at Wits 386

Extensions

  By  purchasing  tooling  for  £2000  we  can  increase  the  load  on  C  (central)  from  5  to  7  minutes,  which  reduces  the  load  on  B  (central)  from  15  to  14  minutes    Should  we  go  with  this?  

Lean at Wits 387

Extensions (2)

  ConvenHonal  CosHng:    The  total  Hme  to  make  a  Q  has  increased!  -­‐  so  No!  

  “Lean  AccounHng”    Looking  at  the  LP,  C  is  irrelevant;  but  any  improvement  in  B  will  go  directly  to  the  boPom  line.  A  saving  of  130  units  x  1  min  =  130  min.  Means  130/30=4  units  @  £60  =  £240  for  an  outlay  of  £2000  -­‐  an  8  week  payback!  

Lean at Wits 388

Problem 2: Before and After..

Lean at Wits

Adapted from Brian Maskell

CNC Machine

Inspect & Pack

Drill

Grind

Inspect & Pack

Grind

Drill Turn on Lathe

U Batch of 3000

One piece flow

1 minute

4 minute

6 minute

4 minute

4 minute

6 minute

4 minute

4 minute

Labour time = 15 mins Labour Cost = £5 Overhead = £5 x 3 = £15 Material = £2 Total £22

Lead time = 6 weeks Inventory 25 days Batch size = 3000 On-time deliv = 82%

Labour time = 18 mins Labour Cost = £6 Overhead = £6 x 3 = £18 Material = £2 Total £26

Lead time = 2 days Inventory = 2 days Batch = 300 (1 day) On time deliv = 99%

389

Accounting for Lean and the New Kitchen

  In  2007  we  had  a  new  kitchen  installed,  a}er  a  flood.    The  costs,  of  course,  must  be  apporHoned  between  all  future  meals.    It  is  now  too  expensive  to  eat  at  home.    So  cooking  must  be  outsourced…..  

Lean at Wits 390

Basic Measures

  Customer  Service  or  saHsfacHon    Lead  Time    Schedule  Adherance    Inventory  Turns  (WIP  to  SWIP)  

Lean at Wits 391

QCDMMS

Lean at Wits 392

Cell Measures (by day)

  Day  by  the  hour  Schedule  aPainment  •  And  deviaHon  reasons  

  First  Time  Through  •  ROTIF  aPainment  •  (Start  -­‐  (Scrap  +  Rework))  at  each  workstaHon  mulHplied  

 WIP  to  SWIP  •  Actual  vs.  Standard  work  in  process  audited  daily  

  OEE  •  On  selected  machines  •  For  the  cell  as  a  whole?  

Lean at Wits From Maskell & Baggaley Practical Lean Accounting 393

Value Stream Measures (by week)

  Sales  per  Person    On-­‐Hme  Shipment  

•  Orders  in  full  shipped  against  customer  requirements  

  Dock-­‐to-­‐dock  Time  •  (RM+WIP+FGI)  /  (products  shipped  /  hours  in  week)  •  Can  use  representaHve  components  e.g.  unit  containers  

  First  Hme  through  •  (Start  -­‐  (Scrap  +  Rework))  at  each  workstaHon  mulHplied  

  Average  cost  per  unit  •  See  next  page  

  Accounts  receivable  days  outstanding  

Lean at Wits From Maskell & Baggaley Practical Lean Accounting 394

Features of Hoshin   3  Levels  of  review  (tasks,  strategies,  system)    Use  real  feedback  on  last  periods’  actual  planning  process,  and  deployment.      Avoid  blame  (“It  is  my  fault  that  you  are  doing  the  wrong  job”  -­‐  system  not  person)  (No  blame  does  NOT  mean  no-­‐one  gets  fired)  

  Ask  if  the  work  that  is  being  done  right  now  is  the  right  thing  to  do    Modifying  the  objecHves  part  way  through  if  necessary    If  30%  of  the  projects  are  late,  you  need  to  know  why.  If  0%  are  late,  you  also  need  to  know  why  

  Real  research  is  required  -­‐  that  is  why  you  cannot  have  more  than  a  few  suppliers  involved,  a  more  than  a  few  Hoshins.  Hoshin  focuses  on  breakthrough.  

Lean at Wits 395

What do you need to do to win an Olympic Medal?

  __________________    __________________    __________________    __________________    __________________  

Lean at Wits 396

Policy Deployment Exercise   Pick  an  achievement  that  you  or  your  (sport?)  team  are  aiming  at    Using  the  matrix,  work  through  the  

•  Aims  •  Projects  •  Delivery  •  Results  

  Establish  the  relaHonships  between  the  elements    IdenHfy  responsibiliHes  

Lean at Wits 397

Hoshin Cascade

Lean at Wits

Middle Management

Horizontal Deployment And Understanding

Senior Management Create Policy

Implementation Level Devise Implementation Plans

deploy

goals

means

deploy

actions

means

review

review

398

Unipart Policy Deployment

Lean at Wits

aims

projects

results

delivery

What are the policy

Objectives? Why is success

Important?

What are the Project

Deliverables? What are the

SMART KPI’s

What projects are the team Expected to complete so as

To achieve the aims?

Market, operational and Financial Benefits expected by period end

To what extent Do the projects

Contribute to the aims?

To what extent Do the results

Contribute to the aims? To what extent

Does each deliverable Contribute to the results

What will each project Deliver?

To what extent?

399

Deployment

Lean at Wits 400

Hoshin and A3

Lean at Wits

Purpose

Current and 5 whys

Future state

implement

Purpose

Current and 5 whys

Future state

implement

Purpose

Current and 5 whys

Future state

implement

Purpose

Current and 5 whys

Future state

implement

Purpose

Current and 5 whys

Future state

implement

401

Ford 1: From Jan Krafkik in Womack ‘Gemba Walks’ 2nd ed

Ford’s  system,  all  three  producHon  lines  were  converted  to  a  steady  pace,  powered  by  moving  chains.  The  plant  employed  go/no-­‐go  gauges  to  catch  defecHve  parts  at  the  source  and  assure  complete  interchangeability,  cellularized  parts  fabricaHon  with  operaHons  located  in  process  sequence,  a  crude  pull  system  for  managing  the  movement  of  parts  toward  their  point  of  use  on  the  line,  and  standardized  work  at  a  steady  pace.    All  in  a  new  building  designed  with  con,nuous  flow  as  its  central  objec,ve.  Most  of  the  individual  elements  had  been  previously  tried  in  some  form:  it  was  their  combinaHon  in  a  complete  system  that  produced  Highland  Park’s  remarkable  leap  in  producHvity  and  velocity.    These  events  of  1914  deserve  to  be  celebrated  for  their  transformaHon  of  world  industrial  pracHce.  And  I  hope  someone  at  Ford  will  seize  the  opportunity  on  the  occasion  of  the  centennial.    The  Lean  Community  should  celebrate  too,  because  what  happened  at  Highland  Park  was  foundaHonal  for  lean  thinking.  Henry  Ford  and  his  associates  were  the  first  truly  systemaHc  lean  thinkers,  with  a  passion  for  dramaHcally  increasing  value  while  eliminaHng  waste  through  careful  process  analysis  from  raw  materials  to  finished  product.  Much  of  what  Toyota  achieved  later  was  built  on  Ford’s  shoulders,  as  Taiichi  Ohno  at  Toyota  freely  acknowledged.    Because  of  its  enormous  achievements,  for  a  long  Hme  Highland  Park  existed  in  my  mind’s  eye  as  Ford’s  stately  Temple  of  Flow.  This  bubble  was  rudely  popped  a  few  years  ago  when  I  took  a  Gemba  walk  and  found  a  sadly  dilapidated  and  largely  empty  structure.  Since  my  visit  I  have  asked  myself:  What  happened  a}er  the  great  breakthrough  of  1914?  What  can  we  learn  from  what  happened?  And  what  might  happen  next  at  Highland  Park.    As  Ford’s  plant  was  reaching  its  zenith  in  the  1920s,  Henry  was  racing  to  complete  his  new  complex  –  the  Rouge  –  on  the  southwest  edge  of  Detroit.  While  Highland  Park  was  dedicated  to  a  single  vehicle,  with  the  idea  of  maximizing  the  velocity  of  product  flow  from  start  to  finish,  the  Rouge  complex  was  dedicated  to  scale.  Parts  for  many  types  of  vehicles,  to  be  assembled  all  over  the  world,  were  cranked  out  -­‐-­‐  not  in  process  villages  within  one  plant  but  in  process  factories  on  the  massive  site.  The  buildings  needed  for  each  category  of  item  –  engines,  transmissions,  bodies,  various  types  of  parts  –  and  more  massive  buildings  for  transformaHons  of  materials–  steel  mills,  foundries,  forges  –  were  connected  by  conveyors  under  central  control.    This  seemed  impressive  to  visitors,  but  in  pracHce  large  buffers  of  parts  were  needed  at  many  points  to  insure  steady  producHon.  While  Ford  could  claim  that  the  plant  started  with  iron  ore  on  day  one  and  produced  a  finished  vehicle  2.5  days  later,  this  was  simply  the  sum  of  the  Hme  needed  for  the  value  creaHng  steps.  Actual  start-­‐to-­‐finish  Hme,  including  waits  in  buffers,  was  many  Hmes  longer  and  for  the  vehicles  assembled  elsewhere  –  up  to  90%  

Lean at Wits 403

Ford 2: From Jan Krafkik in Womack ‘Gemba Walks’ 2nd ed

  But  the  Rouge  was  a  compelling  idea  in  an  age  of  industrial  concentraHon  and  scale  economies.  If  a  lot  was  good,  then  even  more  was  bePer,  and  the  Rouge  was  the  most  anyone  could  imagine.  When  the  new  facility  completed  in  1927  in  Hme  for  the  Model  A,  Ford  also  offered  a  new  name  –  “mass  producHon”—to  tout  his  achievement.  The  term  “flow  producHon”  that  Ford  had  coined  earlier  to  describe  Highland  Park  quickly  disappeared  from  use.    

  (It  bears  men>on  that  Ford’s  concept  of  “mass  produc>on”  at  the  Rouge  was  where  Toyota  started  its  thinking  about  lean  produc>on  and  was  the  concept  our  MIT  automo>ve  team  set  out  with  in  our  global  survey  of  manufacturing  performance.  In  the  1980s  we  were  simply  unaware  of  the  significance  of  the  system  created  earlier  at  Highland  Park.)    

  Once  the  Rouge  was  in  place,  Highland  Park  became  an  anachronism.  Too  small  for  the  body  shop  needed  for  stamped  steel  vehicles,  seemingly  too  ramped  with  its  machines  crowded  Hghtly  together  to  minimize  movement,  too  focused  on  a  single  product.  Highland  Park  simply  didn’t  scale  in  an  age  of  scale.  So,  when  Model  T  producHon  came  to  an  end  in  1926,  Ford  converted  Highland  Park  to  high-­‐volume  producHon  of  certain  categories  of  parts  (for  shipment  to  assembly  plants  around  the  world)  and  to  low-­‐volume  assembly  of  a  few  vehicles  such  as  delivery  trucks  for  the  Post  Office.    

  Over  Hme,  as  Ford’s  original  objecHve  of  auto  ownership  for  everyone  became  widespread,  workers  could  drive  to  new  plants  far  away  from  the  high  land  costs  of  the  city.  Cheap  land  on  the  city’s  edge  made  it  possible  to  spread  out  producHon  on  one  level,  making  Highland  Park  look  too  verHcal,  with  its  five  floors  and  gravity  slides  that  moved  parts  from  fabricaHon  in  the  top  of  the  building  to  final  assembly  at  the  boPom.  In  just  a  few  years  Highland  Park  had  become  the  picture  of  the  old-­‐fashioned  factory.    

  A}er  1930,  producHon  declined  slowly  at  Highland  Park,  and  with  it  the  populaHon  of  the  Hny  (3  square  miles)  city  surrounding  the  plant,  which  had  grown  from  4,000  in  1910  just  as  the  plant  opened  to  a  peak  of  53,000  in  1930.  Decline  was  checked  for  a  while  by  the  presence  of  Chrysler’s  corporate  headquarters  and  engineering  center  a  few  blocks  away,  but  Highland  Park’s  descent  accelerated  a}er  the  boom  years  of  World  War  II  when  all  capacity  of  any  type  was  needed.  By  1973  Ford  disconHnued  manufacturing  at  Highland  Park  and  in  1974  the  property  was  sold  to  a  developer  who  tore  down  a  few  of  the  buildings  to  create  a  shopping  mall  (which  also  failed.)  A}er  Chrysler  le}  for  the  northern  suburbs  in  1993,  to  be  close  to  the  homes  of  its  managers  and  engineers,  the  trend  gathered  speed  and  by  2012  Highland  Park  had  a  fi}h  of  the  populaHon  (11,000)  of  the  peak.    

Lean at Wits 404

Ford 3: From Jan Krafkik in Womack ‘Gemba Walks’ 2nd ed

Today  the  buildings  on  the  site  are  mostly  empty  except  for  some  document  storage  for  Ford  and  a  garment  warehouse.  In  2011  the  City  of  Highland  Park  removed  two  thirds  of  its  street  lamps  due  to  inability  to  pay  the  electric  bill.  Forty  percent  of  the  remaining  populaHon  is  living  below  the  poverty  level.  In  100  years  the  Temple  of  Flow  transiHoned  from  the  most  dynamic  industrial  site  in  the  world  in  a  rapidly  expanding  city,  to  an  abandoned  industrial  relic  in  one  of  the  poorest  and  most  dangerous  places  in  America.  Is  there  any  way  out  of  this  smoking  crater?    I  think  there  is,  and  for  reasons  that  go  far  beyond  any  consideraHons  of  urban  redevelopment.  In  recent  decades  the  car  industry  has  progressed  from  a  collecHon  of  naHonal  industries  to  a  completely  globalized  acHvity  with  a  few  massive  companies  selling  the  same  products  in  many  markets.  As  product  technology  has  converged  on  stamped  steel  bodies  and  every  manufacturer  strives  to  sell  in  every  market,  the  scale  requirements  for  each  vehicle  “plakorm”  (on  which  a  number  of  body  styles  are  o}en  based)  have  risen  to  a  million  –  or  even  two  million  –  vehicles  per  year.  In  this  situaHon,  massive  assembly  plants  -­‐-­‐  with  250,000  to  500,000  units  of  capacity  -­‐-­‐  make  imminent  sense.  A  facility  with  the  scale  of  Highland  Park  has  no  place.    However,  the  massive  scale  requirements  of  this  strategy  leave  many  white  spaces  in  the  market  where  smaller  numbers  of  buyers  may  want  vehicles  with  very  different  capabiliHes.  These  vehicles  can’t  be  produced  on  the  five  or  six  standard  plakorms  of  every  car  maker.  AlternaHve  power  vehicles,  high-­‐end  sports  cars,  specialty  trucks,  and  city  cars  are  examples.  The  common  characterisHc  of  these  vehicles  is  that  they  are  suited  for  extruded  aluminum  or  fiber-­‐composite  body  structures  with  plasHc  surface  panels,  which  are  cost  effecHve  at  scales  of  up  to  about  50,000  units  per  year.    A  recently  announced  example  is  the  BMW  i3,  an  all-­‐electric  vehicle  with  a  fiber  composite  tub  for  the  passenger  compartment,  extruded  aluminum  structures  at  both  ends  for  the  engine  and  the  storage  compartment,  and  a  snap-­‐on  plasHc  skin.  BMW  plans  to  build  it  in  a  Hny,  dedicated  factory  in  Munich  near  the  delivery  center  it  has  created  for  customers  to  receive  its  top-­‐of-­‐the  line  vehicles.  (By  contrast  Tesla  and  Fysker  opted  for  new  moHve  power  vehicles  but  with  convenHonal  metal  bodies  and  chose  to  build  them  in  abandoned  tradiHonal  car  plants:  NUMMI  in  Fremont,  California,  in  the  case  of  Tesla,  and  GM’s  Wilmington,  Delaware,  light  truck  plant  for  Fysker’s  aborHve  effort  to  develop  a  second,  high-­‐volume  vehicle.    With  luck,  Tesla  might  generate  enough  volume  to  jusHfy  a  high-­‐scale  plant.  A  bePer  approach  for  those  who  follow  is  to  use  a  new  technology  body  as  well,  and  target  lower  volumes,  building  addiHonal  modules  of  producHon  if  necessary.)    Looking  at  Highland  Park  in  this  new  situaHon,  one  can  see  a  double  opportunity:  A  producer  could  use  the  exisHng  building  to  fabricate  major  components  on  the  upper  floors  and  drop  them  to  final  assembly  on  the  ground  floor,  at  a  modest  investment  compared  with  current  car  industry  norms.  The  building  is  already  there  and  the  state  and  federal  governments  would  doubtless  help  with  the    

Lean at Wits 405

Innovation, Design and NPD Overlaps

John Bicheno 2015 406

Innovation

Design Process

Cost Reduction

New Product Introduction

‘Design Thinking’

‘Lean Startup’

Innovation…

John Bicheno 2015 407

Innovation

“Adjacent Possible”

Disruptive Technology

TRIZ

…and many others

‘Adjacent Possible’ is discussed at length in Steven Johnson, Where Good Ideas Come From, Penguin, 2010

Creativity: •  Insight •  Improvisation •  Divergent Thinking

Design Process…

John Bicheno 2015 408

Design Process

Reinertsen and Kingman

Concurrent and

Simultaneous Engineering

‘LAMDA’

Risk

‘The Innovators Method’ ‘Set Based’

And Cadence (Toyota)

Tradeoffs: Product Price, Product Cost,

Production Cost, Time to Market

Design for Manufacture

(DFM) Learning Cycles

And Rapid Prototyping

Design Cost Reduction..

John Bicheno 2015 409

Cost Reduction

Value Engineering

Group Technology

Target Costing

“Variety Effectiveness Process”

Market Analysis Product Analysis

Part Analysis

Design Wastes

Variety Analysis Tools (VAT) (Galsworth)

From Gwendolyn Galsworth, Smart Simple Design Reloaded, Visual Lean Enterprise Press, 2015

Contribution analysis And

Contribution / b-neck minute

Design Thinking..

John Bicheno 2015 410

‘Design Thinking’

IDEO

Service Design

Systems Thinking

Vanguard?

Lean Consumption ‘Good Product /

Bad Product’ (Adams)

‘Double Diamond’

(Exploration and Exploitation)

New Product Introduction..

John Bicheno 2015 411

New Product Introduction

3P

Experimentation

Ramp Up: One feature at a time; Phase in transition

Supplier Partnership

Lean Startup

John Bicheno 2015 412

‘Lean Startup’

Agile Software

SCRUM

Lean Customer

Development

Kanban for

Software

Innovation: Recent Articles in HBR

  ‘Build  an  InnovaHon  Engine  in  90  days’,  HBR,  Dec  2014,  p60    ‘The  Discipline  of  Business  ExperimentaHon’,  Dec  2014,  p70  (Useful  for  dissertaHons!)    ‘Leading  your  team  into  the  unknown’,  HBR,  Dec  2014.  p80  (This  is  a  summary  of  the  book  ‘The  Innovator’s  Method)    ‘How  I  did  it…Intuit’s  CEO  on  Building  a  Design-­‐Driven  company’,  Jan  2015,  p35  

John Bicheno 2015 413

John Bicheno 2015 414

Creativity   Insight  

•  The  goat  problem  •  Right  and  le}  brain    •  What  do  pine,  crab,  source  have  in  common?  •  No  such  thing  as  a  single  sudden  flash;  rather  brain  working  in  

background    Improvising  

•  The  brick  test:  how  many  uses  of  a  brick?  (Gilford  and  USAF  during  WW2).  Points  1  to  5  for  creaHve  uses  

•  IQ  and  creaHvity      Divergent  Thinking  

•  Jazz  •  Switch  one  of  the  steps  (like  puung  marmalade  then  rubbing  the  

toast)  •  RouHne,  easy,  non-­‐thinking  tasks  ;  relax  and  do  something  different  

John Bicheno 2015 415

Move one stick to make a different goat

Creativity…and Kata

  Kata:  reinforcing  and  building  pathways  and  habits  •  ‘The  more  you  do  something,  the  more  likely  you  are  to  do  it  again’  (Gilbert)  

  CreaHvity:  breaking  pathways  and  habits  •  Seeing  things  differently;  establishing  new  pathways  

  System  1  and  System  2  ?  

John Bicheno 2015 416