wood beam analysis - university of michigan

31
Wood Column Analysis Homework 03 Lab 02

Upload: others

Post on 03-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Wood Beam Analysis - University of Michigan

WoodColumnAnalysisHomework 03Lab 02

Page 2: Wood Beam Analysis - University of Michigan

WoodColumnAnalysisHomework 03

Page 3: Wood Beam Analysis - University of Michigan

WoodColumnAnalysisHomework 03

Page 4: Wood Beam Analysis - University of Michigan

WoodColumnAnalysisHomework 03

Page 5: Wood Beam Analysis - University of Michigan

WoodColumnAnalysisHomework 03

Page 6: Wood Beam Analysis - University of Michigan

WoodColumnAnalysisHomework 03

Page 7: Wood Beam Analysis - University of Michigan

WoodColumnAnalysisHomework 03

Page 8: Wood Beam Analysis - University of Michigan

WoodColumnAnalysisHomework 03

Page 9: Wood Beam Analysis - University of Michigan

WoodColumnAnalysisHomework 03

Page 10: Wood Beam Analysis - University of Michigan

WoodColumnAnalysisHomework 03

For the given dimensioned lumber column with 1/3 point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = 15%. Ct = Ci = 1.0. Assume pinned end conditions (K=1).

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Load Type

HEM-FIRSelect Structural

18FT6FT4IN

10INLive Load

Questions 1. Tabulated Allow. Compressive Stress, Fc2. Tabulated Minimum Modulus of Elasticity, Emin3. Load Duration Factor, CD4. Size Factor, CF5. Factored Allow. Modulus of Elasticity, E’min6. Strong Axis (x-x) Slenderness Ratio, lex/d17. Weak Axis (y-y) Slenderness Ratio, ley/d28. Controlling Slenderness Ratio, le/d9. Critical Buckling Design Value for Compression, FcE10. Reference Compression Design Value, Fc*11. Constant for Sawn Lumber, c12. Column Stability Factor, CP13. Factored Allow. Compressive Stress, F'c14. Column Area, A15. Maximum Allowable Axial Load Capacity, Pmax

Page 11: Wood Beam Analysis - University of Michigan

Main Steps1. Tabulated Fc, Emin2. Slenderness Ratios3. Adjustment Factors

for Fc and Emin4. Max. Allowable Stress

F’c5. Max. Allowable

Compressive Load, Pmax

For the given dimensioned lumber column with 1/3 point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = 15%. Ct = Ci = 1.0. Assume pinned end conditions (K=1).

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Load Type

HEM-FIRSelect Structural

18FT6FT4IN

10INLive Load

Questions 1. Tabulated Allow. Compressive Stress, Fc2. Tabulated Minimum Modulus of Elasticity, Emin3. Load Duration Factor, CD4. Size Factor, CF5. Factored Allow. Modulus of Elasticity, E’min6. Strong Axis (x-x) Slenderness Ratio, lex/d17. Weak Axis (y-y) Slenderness Ratio, ley/d28. Controlling Slenderness Ratio, le/d9. Critical Buckling Design Value for Compression, FcE10. Reference Compression Design Value, Fc*11. Constant for Sawn Lumber, c12. Column Stability Factor, CP13. Factored Allow. Compressive Stress, F'c14. Column Area, A15. Maximum Allowable Axial Load Capacity, Pmax

Page 12: Wood Beam Analysis - University of Michigan

1. Tabulated Fc, Emin

Related Questions 1. Tabulated Allow. Compressive Stress, Fc2. Tabulated Min. Modulus of Elasticity, Emin

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Load Type

HEM-FIRSelect Structural

18FT6FT4IN

10INLive Load

1. Tabulated Allow. Compressive Stress, Fc = 1,500 PSI2. Tabulated Min. Modulus of Elasticity, Emin = 580,000 PSI

Page 13: Wood Beam Analysis - University of Michigan

2. Slenderness Ratios

Related Questions 6. Strong Axis (x-x) Slenderness Ratio, lex/d17. Weak Axis (y-y) Slenderness Ratio, ley/d28. Controlling Slenderness Ratio, le/d

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Load TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., Emin

HEM-FIRSelect Structural

18FT6FT4IN

10INLive Load1500PSI

580000PSI

1. Tabulated Fc, Emin

Actual size: 3.5” x 9.25”

Page 14: Wood Beam Analysis - University of Michigan

2. Slenderness Ratios

Related Questions 6. Strong Axis (x-x) Slenderness Ratio, lex/d17. Weak Axis (y-y) Slenderness Ratio, ley/d28. Controlling Slenderness Ratio, le/d

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Actual Width, d2actualWide Width, d1Actual Width, d1actualLoad TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., Emin

HEM-FIRSelect Structural

18FT6FT4IN

3.5IN10IN

9.25INLive Load1500PSI

580000PSI

6. Strong Axis (x-x) Slenderness Ratio, lex/d1= Ke x l1 / d1 = 1.0 x 18 x 12/9.25 = 23.351

1. Tabulated Fc, Emin

Le = Ke x L

Page 15: Wood Beam Analysis - University of Michigan

2. Slenderness Ratios

Related Questions 6. Strong Axis (x-x) Slenderness Ratio, lex/d17. Weak Axis (y-y) Slenderness Ratio, ley/d28. Controlling Slenderness Ratio, le/d

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Actual Width, d2actualWide Width, d1Actual Width, d1actualLoad TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., Emin

HEM-FIRSelect Structural

18FT6FT4IN

3.5IN10IN

9.25INLive Load1500PSI

580000PSI

7. Weak Axis (y-y) Slenderness Ratio,ley/d2= Ke x l2 / d2 = 1.0 x 6 x 12/3.5 = 20.571

Le = Ke x L

Page 16: Wood Beam Analysis - University of Michigan

2. Slenderness Ratios

Related Questions 6. Strong Axis (x-x) Slenderness Ratio, lex/d17. Weak Axis (y-y) Slenderness Ratio, ley/d28. Controlling Slenderness Ratio, le/d

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Load TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., Emin

HEM-FIRSelect Structural

18FT6FT4IN

10INLive Load1500PSI

580000PSI

8. Controlling Slenderness Ratio, le/d = lex/d1 = 23.351

Le = Ke x L

Page 17: Wood Beam Analysis - University of Michigan

3. Adjustment Factors for Fc and Emin

Related Questions 3. Load Duration Factor, CD4. Size Factor, CF

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Load TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., EminCt = Ci = 1.0

HEM-FIRSelect Structural

18FT6FT4IN

10INLive Load1500PSI

580000PSI

Page 18: Wood Beam Analysis - University of Michigan

3. Adjustment Factors for Fc and Emin

Related Questions 3. Load Duration Factor, CD4. Size Factor, CF

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Load TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., EminCt = Ci = 1.0

HEM-FIRSelect Structural

18FT6FT4IN

10INLive Load1500PSI

580000PSI

3. Load Duration Factor, CD = 1.0

Page 19: Wood Beam Analysis - University of Michigan

3. Adjustment Factors for Fc and Emin

Related Questions 3. Load Duration Factor, CD4. Size Factor, CF

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Moisture ContentLoad TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., EminCt = Ci = 1.0

HEM-FIRSelect Structural

18FT6FT4IN

10IN15%

Live Load1500PSI

580000PSI

Wet Service Factor for Fc, CM_c = 1Wet Service Factor for FEmin, CM_Emin = 1

Page 20: Wood Beam Analysis - University of Michigan

3. Adjustment Factors for Fc and Emin

Related Questions 3. Load Duration Factor, CD4. Size Factor, CF

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Load TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., EminCt = Ci = 1.0

HEM-FIRSelect Structural

18FT6FT4IN

10INLive Load1500PSI

580000PSI

4. Size Factor, CF= 1

Page 21: Wood Beam Analysis - University of Michigan

3. Adjustment Factors for Fc and Emin

Related Questions 3. Load Duration Factor, CD4. Size Factor, CF

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Load TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., EminCt = Ci = 1.0

HEM-FIRSelect Structural

18FT6FT4IN

10INLive Load1500PSI

580000PSI

CT did not applied

Page 22: Wood Beam Analysis - University of Michigan

3. Adjustment Factors for Fc and Emin

Related Questions 5. Factored Allow. Modulus of Elasticity, E’min9. Critical Buckling Design Value for Compression, FcE10. Reference Comression Design Value, Fc*11. Constant for Sawn Lumber, c12. Column Stability Factor, CP

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Moisture ContentLoad TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., EminCD = CM = Ct = CF = Ci = CT = 1.0

HEM-FIRSelect Structural

18FT6FT4IN

10IN15%

Live Load1500PSI

580000PSI

Page 23: Wood Beam Analysis - University of Michigan

3. Adjustment Factors for Fc and Emin

Related Questions 5. Factored Allow. Modulus of Elasticity, E’min9. Critical Buckling Design Value for Compression, FcE10. Reference Comression Design Value, Fc*11. Constant for Sawn Lumber, c12. Column Stability Factor, CP

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Moisture ContentLoad TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., EminCD = CM = Ct = CF = Ci = CT = 1.0

HEM-FIRSelect Structural

18FT6FT4IN

10IN15%

Live Load1500PSI

580000PSI

Page 24: Wood Beam Analysis - University of Michigan

3. Adjustment Factors for Fc and Emin

Related Questions 5. Factored Allow. Modulus of Elasticity, E’min9. Critical Buckling Design Value for Compression, FcE10. Reference Comression Design Value, Fc*11. Constant for Sawn Lumber, c12. Column Stability Factor, CP

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Moisture ContentLoad TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., EminCD = CM = Ct = CF = Ci = CT = 1.0

HEM-FIRSelect Structural

18FT6FT4IN

10IN15%

Live Load1500PSI

580000PSI

5. Factored Allow. Modulus of Elasticity, E’min = Emin x CM x Ct x Ci x CT = 580,000PSI

Page 25: Wood Beam Analysis - University of Michigan

3. Adjustment Factors for Fc and Emin

Related Questions 5. Factored Allow. Modulus of Elasticity, E’min9. Critical Buckling Design Value for Compression, FcE10. Reference Compression Design Value, Fc*11. Constant for Sawn Lumber, c12. Column Stability Factor, CP

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Moisture ContentLoad TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., EminCD = CM = Ct = CF = Ci = CT = 1.0

HEM-FIRSelect Structural

18FT6FT4IN

10IN15%

Live Load1500PSI

580000PSI

10. Reference Compression Design Value, Fc* = Fc x CD x CM x Ct x CF x Ci = 1500PSI

Page 26: Wood Beam Analysis - University of Michigan

3. Adjustment Factors for Fc and Emin

Related Questions 5. Factored Allow. Modulus of Elasticity, E’min9. Critical Buckling Design Value for Compression, FcE10. Reference Compression Design Value, Fc*11. Constant for Sawn Lumber, c12. Column Stability Factor, CP

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Moisture ContentLoad TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., EminCD = CM = Ct = CF = Ci = CT = 1.0Ref. Comp. Design Value, Fc*Fac. Allow. Modulus E’minCtrl Slenderness Ratio, le/d

HEM-FIRSelect Structural

18FT6FT4IN

10IN15%

Live Load1500PSI

580000PSI

1500PSI580000PSI

23.351

9. Critical Buckling Design Value for Compression, FcE = 0.822 x 580000 / 23.3512 = 874.357 PSI

11. Constant for Sawn Lumber, c = 0.8

FcE / Fc* = 874.351 / 1500 = 0.58290

12. Column Stability Factor, CP = (1 + 0.58290) / (2 x 0.8)

- √ { [(1+0.58290) / (2 x 0.8)]2 - 0.58290/ 0.8}= 0.489

Page 27: Wood Beam Analysis - University of Michigan

4. Max. Allowable Stress F’c

Related Questions 13. Factored Allow. Compressive Stress, F'c

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Moisture ContentLoad TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., EminCD = CM = Ct = CF = Ci = CT = 1.0CP = 0.548Ref. Comp. Design Value, Fc*Fac. Allow. Modulus E’minCtrl Slenderness Ratio, le/d

HEM-FIRSelect Structural

18FT6FT4IN

10IN15%

Live Load1500PSI

580000PSI

1500PSI580000PSI

21.6

3. Adjustment Factors for Fc and Emin

13. Factored Allow. Compressive Stress, F’c = Fc* x CP = 1500 x 0.489 = 733.5 PSI

Page 28: Wood Beam Analysis - University of Michigan

5. Max. Allowable Compressive Load, Pmax

Related Questions 14. Column Area, A15. Maximum Allowable Axial Load Capacity, Pmax

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Moisture ContentLoad TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., EminCD = CM = Ct = CF = Ci = CT = 1.0CP = 0.548Ref. Comp. Design Value, Fc*Fac. Allow. C Stress, F’cFac. Allow. Modulus E’minCtrl Slenderness Ratio, le/d

HEM-FIRSelect Structural

18FT6FT4IN

10IN15%

Live Load1500PSI

580000PSI

1500PSI822 PSI

580000PSI21.6

4. Max. Allowable Stress F’c

14. Column Area, A = 32.38 IN2

Page 29: Wood Beam Analysis - University of Michigan

5. Max. Allowable Compressive Load, Pmax

Related Questions 14. Column Area, A15. Maximum Allowable Axial Load Capacity, Pmax

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Moisture ContentLoad TypeTab. Allow. Comp. Stress, FcTab. Min. Mod. Elast., EminCD = CM = Ct = CF = Ci = CT = 1.0CP = 0.548Ref. Comp. Design Value, Fc*Fac. Allow. C Stress, F’cFac. Allow. Modulus E’minCtrl Slenderness Ratio, le/d

HEM-FIRSelect Structural

18FT6FT4IN

10IN15%

Live Load1500PSI

580000PSI

1500PSI822 PSI

580000PSI21.6

4. Max. Allowable Stress F’c

F’c fc_actual>822 PSI

Allowable Actual

= P/A

F’c = Pmax/A

Pmax = F’c x A

15. Maximum Allowable Axial Load Capacity, Pmax = 733.5 x 32.38 = 23750.73LBS

Page 30: Wood Beam Analysis - University of Michigan

For the given dimensioned lumber column with 1/3 point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = 15%. Ct = Ci = 1.0. Assume pinned end conditions (K=1).

Datasheet Wood SpeciesWood GradeStrong Axis Length, L1Weak Axis Length, L2Narrow Width, d2Wide Width, d1Load Type

HEM-FIRSelect Structural

18FT6FT4IN

10INLive Load

Questions 1. Tabulated Allow. Compressive Stress, Fc2. Tabulated Minimum Modulus of Elasticity, Emin3. Load Duration Factor, CD4. Size Factor, CF5. Factored Allow. Modulus of Elasticity, E’min6. Strong Axis (x-x) Slenderness Ratio, lex/d17. Weak Axis (y-y) Slenderness Ratio, ley/d28. Controlling Slenderness Ratio, le/d9. Critical Buckling Design Value for Compression, FcE10. Reference Compression Design Value, Fc*11. Constant for Sawn Lumber, c12. Column Stability Factor, CP13. Factored Allow. Compressive Stress, F'c14. Column Area, A15. Maximum Allowable Axial Load Capacity, Pmax

Main Steps1. Tabulated Fc, Emin2. Slenderness Ratios3. Adjustment Factors

for Fc and Emin4. Max. Allowable Stress

F’c5. Max. Allowable

Compressive Load, Pmax

Page 31: Wood Beam Analysis - University of Michigan

WoodColumnAnalysisLab 02

https://miro.com/app/board/o9J_lUnrvr8=/

Hints 1. Use Weak Axis Data d2 = 0.0625in to calculate r2. Calculate Pcr for three situations3. Calculate L/r for three situations4. Calculate Pmax5. Draw diagram based on (L/r, Pcr), three pairs6. Mark Pmax on the diagram

Keys (Show your steps on your answer sheet)r = 0.018042 in6”: Pcr = 2.298 lbs, L/r = 332.5943”: Pcr = 9.194 lbs, L/r = 166.2971”: Pcr = 82.74 lbs, L/r = 55.432Pmax = 74.141 lbs

Diagram similar to the lab sheet’s diagram, show the points

Watch the Video First !