work and energy - dr. james hedberg, ccny...

14
James Prescott Joule 1818-1889 K E ch E th U system environment heat, work Work and Energy 1. Introduction 2. Work 3. Kinetic Energy 4. Potential Energy 5. Conservation of Mechanical Energy 6. Ex: The Loop the Loop 7. Conservative and Non-conservative Forces 8. Power 9. Variable and Constant Forces Introduction This is word that means a lot of things depending on the context: 1. Energy Consumption of a Household 2. Energy Drinks 3. Auras & Spiritual Energy 4. Renewable Energy Energy: basics Energy is a scalar quantity. It has SI units of: The unit is called a Joule, after Mr. Joule 1 Joule = 1 Newton × 1 meter The different energies of a system can be transferred between each other. Work Again, we might have word problems here. For us, Work will be defined as the process of transferring energy between a well-defined system and the environment. The energy may go from the system to the environment. Or, it may go from the environment to the system An example of work A constant force is applied this box as it moves across the floor. The work done is equal given by: . This is for the case of a constant force which is applied in the same direction as the box is moving. But what if the force is not in the exact same direction. Energy is another example of a word that we use very often in regular speech. However, in physics it has a specific meaning. kg ⋅ / m 2 s 2 W = Fd PHY 207 - energy - J. Hedberg - 2017 Page 1

Upload: vanthu

Post on 10-Mar-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Work and Energy - Dr. James Hedberg, CCNY physicshedberg.ccnysites.cuny.edu/content/introphysics/energy/...James Prescott Joule 1818-1889 K E ch E th U system environment heat, work

JamesPrescottJoule1818-1889

K

Ech

Eth

Usystem

environment

heat, work

Work and Energy

1.Introduction2.Work3.KineticEnergy4.PotentialEnergy5.ConservationofMechanicalEnergy6.Ex:TheLooptheLoop7.ConservativeandNon-conservativeForces8.Power9.VariableandConstantForces

Introduction

Thisiswordthatmeansalotofthingsdependingonthecontext:

1.EnergyConsumptionofaHousehold2.EnergyDrinks3.Auras&SpiritualEnergy4.RenewableEnergy

Energy: basics

Energyisascalarquantity.IthasSIunitsof:

TheunitiscalledaJoule,afterMr.Joule1Joule=1Newton×1meter

Thedifferentenergiesofasystemcanbetransferredbetweeneachother.

Work

Again,wemighthavewordproblemshere.Forus,Workwillbedefinedastheprocessoftransferringenergybetweenawell-definedsystemandtheenvironment.Theenergymaygofromthesystemtothe

environment.Or,itmaygofromtheenvironmenttothesystem

An example of work

Aconstantforceisappliedthisboxasitmovesacrossthefloor.Theworkdoneisequalgivenby: .Thisisforthecaseofaconstantforcewhichisappliedinthesamedirectionastheboxismoving.

Butwhatiftheforceisnotintheexactsamedirection.

Energyisanotherexampleofawordthatweuseveryofteninregularspeech.However,inphysicsithasaspecificmeaning.

kg ⋅ /m2 s2

W = Fd

PHY 207 - energy - J. Hedberg - 2017

Page 1

Page 2: Work and Energy - Dr. James Hedberg, CCNY physicshedberg.ccnysites.cuny.edu/content/introphysics/energy/...James Prescott Joule 1818-1889 K E ch E th U system environment heat, work

Nowwehavetoconsiderthecomponentoftheforcewhichdoespointinthedirectionofthedistancetraveled.

Whatistheworkbeingdoneonthebagbythepersoncarryingit?

Quick Question 1Iswingaballaroundmyheadatconstantspeedinacirclewithcircumference3m.Whatistheworkdoneontheballbythe10Ntensionforceinthestringduringonerevolutionoftheball?

Kinetic Energy

Wesaidtherewemanydifferentformsenergycantake(chemical,thermal,potential,etc)KineticEnergyistheenergyassociatedwithmovingobjects.

Someexamplekineticenergies

1.Antwalking: J2.Personwalking: J3.Bullet:5000J4.Car@100kph~ J5.Fasttrain~ J

Quick Question 2Twoballsofequalsizearedroppedfromthesameheightfromtheroofofabuilding.Oneballhastwicethemassoftheother.Whentheballsreachtheground,howdothekineticenergiesofthetwoballscompare?(assumenoairresistance)

Work and Kinetic Energy

W = d = F⋅ d = Fd cosθF∥

a)30Jb)20Jc)10Jd)0.333Je)0J

KE = m12

v2

1 × 10−8

1 × 10−5

5 × 105

1 × 1010

a)Thelighteronehasonefourthasmuchkineticenergyastheotherdoes.b)Thelighteronehasonehalfasmuchkineticenergyastheotherdoes.c)Thelighteronehasthesamekineticenergyastheotherdoes.d)Thelighteronehastwiceasmuchkineticenergyastheotherdoes.e)Thelighteronehasfourtimesasmuchkineticenergyastheotherdoes.

PHY 207 - energy - J. Hedberg - 2017

Page 2

Page 3: Work and Energy - Dr. James Hedberg, CCNY physicshedberg.ccnysites.cuny.edu/content/introphysics/energy/...James Prescott Joule 1818-1889 K E ch E th U system environment heat, work

final position

initial position

final position

initial position

Sincetheworkisrelatedtotheamountofenergyeitherenteringorleavingasystem,wecanestablisharelationshipbetweentheworkdoneonanobjectandthekineticenergy.

Potential Energy

Wecanstoreenergyinagravitationalsystembyseparatingthetwoobjects.Thecat,whenliftedofftheground,hasagravitationalpotentialenergy.

PotentialEnergyisonlydependentontheheight!Itdoesn’tmatterthepathanobjecttakeswhileclimbinghigherawayfromtheearth.Anyroutewhichendsatthesamepointwillimpartthesameamountofgravitationalpotentialenergytotheobject.

Work and Potential Energy

Changingthepotentialenergyofanobjectrequireswork.

Inthecaseofgravity:"Thechangeinthegravitationalpotentialenergyofanobjectisequaltothenegativeoftheworkdonebythegravitationalforce"

Gravity does positive work

Inthiscaseweletanobjectdrop,andgravitydoespositivework.

Gravity does negative work

Inthiscase,weraiseanobject,andgravitydoesnegativework.

W = K − K = m − mEf E012

v2f

12

v20

= mghUg

ΔU = −W

Δ = −UG WG

PHY 207 - energy - J. Hedberg - 2017

Page 3

Page 4: Work and Energy - Dr. James Hedberg, CCNY physicshedberg.ccnysites.cuny.edu/content/introphysics/energy/...James Prescott Joule 1818-1889 K E ch E th U system environment heat, work

Play/Pause

Quick Question 3Abeamisbeingraisedbyaconstructioncranewithanaccelerationupwards(+ydirection).Calltheworkdonebythecabletension: andtheworkdonebyGravity: .Whichofthefollowingistrue:

Quick Question 4Abeamisbeingloweredbyaconstructioncraneaconstantvelocity.Calltheworkdonebythecabletension: andtheworkdonebyGravity: .Whichofthefollowingistrue:

Work - Energy

Let'snowtakealookatsystemswhichhavebothkineticandpotentialenergy.Forexample:thisboxwhichislocatedatadistanceabovetheground.

Usually,we'llcalltheground .

Ifthesearetheonlytwotypesofenergyinthesystem,thenwehaveaveryspecialsituation.Wecandefinethetotalmechanicalenergyenergyofthesystemasthekinetic+potential.

Conservation of Mechanical Energy

Ifwedon'tworryaboutanyofthoseretardingforceslikefrictionorairresistance,thenwecansaythatthetotalmechanicalenergyofasystemremainsthesameastimeadvances.

or

Upondroppingaball,thetotalmechanicalenergyisconserved.

Knowingthisconservationlaw,wecanuseeither tofind ,or tofind .

WT WG

a) > 0 & > 0WT WG

b) > 0 & < 0WT WG

c) < 0 & > 0WT WG

d) < 0 & < 0WT WG

e) = 0 & = 0WT WG

WT WG

a) > 0 & > 0WT WG

b) > 0 & < 0WT WG

c) < 0 & > 0WT WG

d) < 0 & < 0WT WG

e) = 0 & = 0WT WG

h

h = 0

= KE + UEmechanical

=Emechi

Emechf

m + mg = m + mg12

v2i

hi

12

v2f

hf

= constant = KE +Emech Ugrav

h v v h

PHY 207 - energy - J. Hedberg - 2017

Page 4

Page 5: Work and Energy - Dr. James Hedberg, CCNY physicshedberg.ccnysites.cuny.edu/content/introphysics/energy/...James Prescott Joule 1818-1889 K E ch E th U system environment heat, work

h

1

2

m

2h

h

1

2

m

h = 0

h

-h

1

2

m

h = 0

Play/Pause

30ºL

L

h

Quick Question 5Theblockstartsfromrestatpoint1.Usingtheconservationofmechanicalenergy,determinethespeedoftheblockatpoint2.

Quick Question 6Theblockstartsfromrestatpoint1.Usingtheconservationofmechanicalenergy,determinethespeedoftheblockatpoint2.

Quick Question 7Theblockstartsfromrestatpoint1.Usingtheconservationofmechanicalenergy,determinethespeedoftheblockatpoint2.

A car on a hill.

Quick Question 8If =4meters,howhighistheball?Thatis,findthedistance .

Block on a ramp

a)v = (2gh)2

b)v =gh√

2m

c)v = 2gh− −−

√d)v = 0

a)v = (4gh)2

b)v =gh√

4m

c)v = 2gh− −−

√d)v = 4gh

− −−√

a)v = (4gh)2

b)v =gh√

4m

c)v = 2gh− −−

√d)v = 4gh

− −−√

L h

Example Problem #1:

PHY 207 - energy - J. Hedberg - 2017

Page 5

Page 6: Work and Energy - Dr. James Hedberg, CCNY physicshedberg.ccnysites.cuny.edu/content/introphysics/energy/...James Prescott Joule 1818-1889 K E ch E th U system environment heat, work

h

Here'sa5kgblockonaramp,where ,andh=20meters.Findtheworkdonebygravityandthefinalspeed.

θ = 25∘

Wewanttocalculatetheworkdonebygravity:

So,weneedtodecomposethetwovectorsintocomponents.Let'scallthehorizontaldirection+xtotheleft,andthevertical+yup.Thus,inunitvectornotion,theforceofgravitywillbe:

andthedisplacementwillbe:

Now,wecanexecutethedotproductusingunitvectors:

Since and thisdotproductsimplifiesto:

whichwillbetheworkdonebygravity.Noticehowthatissameasifwejustlettheboxfallfromadistance abovetheground.Thissituationoccursbecausetheforceofgravityisaconservativeforce,i.e.itispathindependent.

Tofindthespeedatthebottomoftheramp,wecanusethework-energytheoremwhichrelatestheworkdonetothechangeinkineticenergy:

Initially,theboxisatrest,sothereisnokineticenergy:

Thekineticenergyatthebottomoftherampwillbegivenby:

Thus,the willbe Settingthisequaltotheworkdonethatwecalculatedabove:

allowsustosolvefor :

Thisresultshouldlookfamiliar.

Notice:weuseregular,non-rotatedcoordinatesforthisproblem.Tryitwithrotatedaxesandseewhatyouget.Shoulditbedifferent?

W = ⋅ dFG

= −mgFG j

d = − hh

tan θi j

W = ⋅ d = [−mg ] ⋅ [ − h ]FG jh

tan θi j

⋅ = 1i i ⋅ = 0i j

W = mgh

h

ΔKE = Workdone

K = 0Ei

K = mEf

12

v2

ΔKE m12

v2

mgh = m12

v2

v

v = 2gh− −−

PHY 207 - energy - J. Hedberg - 2017

Page 6

Page 7: Work and Energy - Dr. James Hedberg, CCNY physicshedberg.ccnysites.cuny.edu/content/introphysics/energy/...James Prescott Joule 1818-1889 K E ch E th U system environment heat, work

r

v

vtop

Play/Pause

Play/Pause

success failAtthetopoftheloop,thesumofforcespointingtowardsthegroundwillbegivenby:

Ex: The Loop the Loop

Wesawthatifthevelocityoftheobjectwaslargeenough,thenitwouldremaininsideincontactwiththeloop.

Asuccessfulloop-the-looplookslikethis.Theballremainsinphysicalcontactwiththeroadatalltimes.(Thisisanotherwayofsayingthenormalforceisnotzero.)

Quick Question 9Aftertheballloosescontactwiththeloop,whichofthefollowingdottedlinesshowsthemostlikelytrajectory?

Anunsuccessfulloop-the-looplookslikethis.Theballloosesphysicalcontactwiththeroadatalltimes.(Thisisanotherwayofsayingthenormalforcebecomeszero.)

Inthecasewherethevelocityisnotfastenoughtogettheballallthewayaroundtheloop,theballloosescontactwiththeroadnearthetop.

∑ = w + = maFground FN

PHY 207 - energy - J. Hedberg - 2017

Page 7

Page 8: Work and Energy - Dr. James Hedberg, CCNY physicshedberg.ccnysites.cuny.edu/content/introphysics/energy/...James Prescott Joule 1818-1889 K E ch E th U system environment heat, work

Sincethisiscircularmotion,wehave

Thuswecanwrite:

r

vtop

h

Quick Question 10Whatistheminimumvelocityatthetopoftheloopneededtocompletetheloop-the-loopforaregular,nofriction,slidingobject.

Quick Question 11Whatisanexpressionfor thatwouldleadtoaspeedsotheballmaintainscontactatalltimes?

Conservative and Non-conservative Forces

Mostoftheforceswehaveseencanbeclassifiedasnon-conservative.TheexceptionisGravity.

ma = mv2

r

+ = mmg weight

FN

v2

r

a)v > rg−−√b)v > (rg)2

c)v > rg√

d)v > ∞e)v > 2rg

−−−√

h

a)h > 5r

b)h > 3r

2c)h > 3r

d)h > 5r

2

Herearetwodefinitionsforaconservativeforce:

1.AforceisconservativeiftheworkitdoestomoveanobjectfrompointAtopointBdoesnotdependontheroutechosen(akathepath)togetfrompointAtopointB.

2.Aforceisconservativeifthereiszeronetworkdonewhilemovinganobjectaroundaclosedloop,thatis,aroundapaththathasthesamepointforthebeginningandtheend.

ExamplesofConservativeForcesGravitationalforceElasticspringforceElectricforce

andNon-conservativeforces:StaticandkineticfrictionalforcesAirresistanceTensionNormalforce

PHY 207 - energy - J. Hedberg - 2017

Page 8

Page 9: Work and Energy - Dr. James Hedberg, CCNY physicshedberg.ccnysites.cuny.edu/content/introphysics/energy/...James Prescott Joule 1818-1889 K E ch E th U system environment heat, work

h

ShownaretwopathsthataboxcantaketogetfrompointAtopointBIfwelookatthechangeinpotentialenergy, ,thenwe'llseethattheWorkdonebygravityontheboxineithercaseisequaltozero.And,foranyotherpathyoucanimagine,it'salsozero.

Movingaboxalong2pathsinthepresenceoffriction.Thesituationisverydifferentifweaskabouttheworkdoneagainstfrictionduringthesetwopaths.Path2willrequiremoreworkthanpath1.

Andso,forceslikefrictionandairresistanceareconsiderednon-conservative.Wecanhoweveraccountfortheseforcesinouranalysisofcertainsystems.

Ifthechangeinenergyisnon-zero,bewteentheinitialandfinaltimesofamechanicalsystem,thentheremustbesomenon-conservativeforcesdoingworkduringthemotion.

Now,wehavearampthathassomefriction.

Howcanwedescribethemotionofaboxonthisramp?

ΔUgrav

W = −Δ = mg(h− h) = 0UG

Hereisanexampleofaconservativeforceinteractingwithabox.IfweslidetheboxfrompointAtoBalongpath1,wecancalculatetheworkdonebyfiguringouttheworkdonebygravitytogofromthegrounduptotheapex,andthenbackdowntotheground.Addingthesetwoworkstogetherwillresultinzero,sinceonthewayup,gravityispointingagainstthedisplacementvector:[ )]andonthewaydown,gravitywillbeinthesamedirectionasthedisplacementvector:[ ].Thus,thesetwovaluesareequalinmagnitudebutoppositeinsignandsowhenthatareaddedtogetherwillbeequaltozero.Inthecaseofpath2,theworkdonebygravitywillbezeroalso,sincethereisnochangeinheightalongthepath.Thus,nomatterhowwechosetogofromtheAtoB,thenetworkdonebygravitywillbezero.Thisisthedefinitionofaconservativeforce.

d cos(FG 180∘

d cos(FG 0∘

Now,ifyouwanttomovetheboxfromAtoB,butareaskingabouttheworkdonebyfrictionontheboxduringthemotion,theshorterpath(path1)willresultinlesswork.Sincetheforceoffrictionisalwaysoppositetothedirectionofmotion,therewillneverbethecaseofcancelingoutlikewehadinthegravitationalcase.Path2willleadtomoreworkbeingdonebykineticfriction,whichisthereforeconsideredanon-conservativeforce.

= −WNC Ef E0

Example Problem #2:

PHY 207 - energy - J. Hedberg - 2017

Page 9

Page 10: Work and Energy - Dr. James Hedberg, CCNY physicshedberg.ccnysites.cuny.edu/content/introphysics/energy/...James Prescott Joule 1818-1889 K E ch E th U system environment heat, work

Achild,startingfromrest,slidesdownaslide.Onthewaydown,akineticfrictionalforce(anonconservativeforce)actsonher.Thechildhasamassof50.0kg,andtheheightoftheslideis18m.Ifthekineticfrictionalforcedoes Joulesofwork,howfastisthechildgoingatthebottomoftheslide?

Iftheobjectslidesdownahillwithanelevationof10m,wherewillitstop?Considertheslopedpartfrictionlessandtheroughpartatthebottomhavinga equalto0.3.

10 m µ = 0

µ = .3

Power

Again,here'sanotherwordwehavetobeverycarefulwith.Wemightbeusedtocallinganythingthatseemsstrong'morepowerful'.Forushowever,we'llneedtorestrictouruseofthewordpowertodescribehowfastaprocessconvertsenergy.

TheSIunitofpoweriscalledthewatt:

AunitofpowerintheUSCustomarysystemishorsepower:1hp=746WUnitsof[power-time]canalsobeusedtoexpressenergy(e.g.kilowatt-hour)

Weshouldbeabletounderstandthesemysteriousdocumentsnow.HowmanyJoulesofenergydidIuse?HowmanypushupswouldIhavetodotogeneratethatmuchenergy?

Example Problem #3:

6.50 × 103

Example Problem #4:

μk

Power = P =changeinenergy

time

1watt = 1joule/second = 1kg ⋅ /m2 s3

1kWh = (1000W)(3600s) = 3.6 × J106

Example Problem #5:

PHY 207 - energy - J. Hedberg - 2017

Page 10

Page 11: Work and Energy - Dr. James Hedberg, CCNY physicshedberg.ccnysites.cuny.edu/content/introphysics/energy/...James Prescott Joule 1818-1889 K E ch E th U system environment heat, work

F

∆x

F

∆x

F

∆x

F

∆x

Iusedtoworkoutonarowingmachine.EachtimeIpulledontherowingbar(whichsimulatestheoars),itmovedadistanceof1.1minatimeof1.6s.Therewasalittledisplaythatshowedmypoweranditsaid90Watts.HowlargewastheforcethatIappliedtotherowingbar?

Agokartweighs1000kgandacceleratesat4m/s2for4seconds.Whatistheaveragepower?

Variable and Constant Forces

Inthemostbasicsituation,theforceappliedtoanobjectwasconstant.Whenthisisthecase,theWorkwasgivenby:

Thisisalsoequaltothe"areaunderthecurve"

Work done by a variable force

However,it'salsopossiblethattheworkwillvaryasafunctionofdistance.Inthiscase,theworkwillnotbegivenbythestandardform,because,theFisnotconstant.

However,theworkisstillequaltothe"areaunderthecurve"

Work done by a variable force

Wedon'thavethetools(i.e.integration)tobeabletodomuchwiththisatthislevelofphysics.

Work done by a variable force

Todealwiththesesituations,we'llhavetousesomeintegrationtechniques.Here'sanappliedforcethatvariesasthesquareofthedistance.Wecouldfigureouttheareaunderthecurve,whichdoesequalthework,butperformingtheintegral

Inthiscase:

Example Problem #6:

W = F⋅ d

W ≠ F⋅ d

W = F(x)dx∫ xf

xi

W = dx =∫ xf

xi

x2 13

x3∣∣∣xf

xi

PHY 207 - energy - J. Hedberg - 2017

Page 11

Page 12: Work and Energy - Dr. James Hedberg, CCNY physicshedberg.ccnysites.cuny.edu/content/introphysics/energy/...James Prescott Joule 1818-1889 K E ch E th U system environment heat, work

In the case of 3d:

Ifourforcesarevariableand3dimensional,(andperhapsnotpointeddirectlyinthedirectionofthedisplacement),thenwehavetousesomemoredevelopedvectorcalc:

Or,ifweintegrateoverthedistance:

Sinceworkisascalar,thenthesetermswilljustaddupwithoutanycomplications.

Recoverthework-kineticenergyequation?

Weshouldbeabletoshowthatthisgetsbacktokineticenergysomehow...

Basedontheabove:

Nowwecantakethederivativewithrespecttox:

Drawplotsofthegravitationalpotentialenergyandthegravitationalforceforanobjectasafunctionofheightabovetheearth.Consideronlysmalldistancesabovethesurfaceoftheearth.

Iftheforcefromanelasticbandwhenstretchedisgivenby ,whatwouldthechangeinpotentialenergybeforanobjectattachedtotherubberbandandpulledbackbyadistanced?(kisaconstantthatisdeterminedbytherubberbandmaterial)Plottheforceandasfunctionsofdistance.

dW = F⋅ dr = dx+ dy+ dzFx Fy Fz

W = dW = dx+ dy+ dz∫ rf

ri

∫ xf

xi

Fx ∫ yf

yi

Fy ∫ zf

zi

Fz

W = F(x)dx∫ xf

xi

ΔU(x) = −W = −FΔx

F(x) = −dU(x)

dx

Example Problem #7:

Example Problem #8:

F = −kx

Urubberband

PHY 207 - energy - J. Hedberg - 2017

Page 12

Page 13: Work and Energy - Dr. James Hedberg, CCNY physicshedberg.ccnysites.cuny.edu/content/introphysics/energy/...James Prescott Joule 1818-1889 K E ch E th U system environment heat, work

U

∆x

A

B

C

DE

F

0.5 1.0 1.5 2.0 2.5 3.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.0

0.5

1.0

Quick Question 12Hereisthepotentialenergyofanunknownasafunctionofdistancealongthex-axis.Wherewouldthatforcebethelargest,andpointedinthepositivedirection?

Adiatomicmoleculehastwoatoms(H2forexample).Ifthepotentialenergyofsuchasystemisgivenby:

Findtheequilibriumseparationofsuchamolecule.Thatis,findadistance thatwillleadtozeronetforceoneachatom.(AandBarejustconstants)

HereareplotsofthePotentialfunction,anditsderivative(i.e.force).

Force Microscopy

Moreinfo:IntrotoAFM

Emmy

EmmyNoetherwasatheoreticalphysicistwhodidpioneeringworkinthestudyofconservationprinciples.

Example Problem #9:

U = −A

r12

B

r6

r

U = −1

r12

1

r6

PHY 207 - energy - J. Hedberg - 2017

Page 13

Page 14: Work and Energy - Dr. James Hedberg, CCNY physicshedberg.ccnysites.cuny.edu/content/introphysics/energy/...James Prescott Joule 1818-1889 K E ch E th U system environment heat, work

23March1882–14April1935

PHY 207 - energy - J. Hedberg - 2017

Page 14