wp2 deliverables 22 - quropequrope.eu/system/files/wp2 - deliverables 22.pdf ·...

36
QUTEEUROPE Deliverable D2.2 Second year WP2 progress report 1 QUTEEUROPE (600788) DELIVERABLE D2.2 SECOND YEAR WP2 PROGRESS REPORT

Upload: others

Post on 26-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     1  

QUTE-­‐EUROPE  (600788)

 

DELIVERABLE  D2.2  SECOND  YEAR  WP2  PROGRESS  REPORT  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 2: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     2  

Work  package  number:  WP2    

Work  package  title:  Coordination  and  Collaboration  

 

The  aim  of  QUTE-­‐EUROPE  work  package  2  is  to  act  as  the  main  coordination  link  for  the  development  of   a   common   pan-­‐European   strategic   vision   for   the   field   of   quantum   information   processing,  communication   and   technologies.  As   such   it   has  been  designed   to  engage   in   a   variety  of   activities  that   focus   on   forward-­‐look,   anticipatory   and   strategy   shaping   actions.   Specifically,   in   addition   to  maintain   and   update   the   Quantum   Information   Processing   and   Communication   (QIPC)   Strategic  Report  on  a   regular  basis   and   contributing   to  white  papers,   reports   and  position  documents,  WP2  coordinates   the   work   of   QUTE-­‐EUROPE   Virtual   Institutes;   and   contribute   to   the   consolidation   of  Regional,  National  and  European  Research  Agendas.  

 

Task  2.1  Strategic  Roadmap  and  other  position  documents  

a)  QIPC  Strategic  report  

The  QIPC  Strategic  Report  (available  @  http://qurope.eu/content/Roadmap)  expresses  the  common  scientific   strategy,  vision  and  goals  of   the  European  QIPC  community,  and  has  become  a   reference  document  for  a  wide  range  of  stakeholders  in  the  field.  The  document  has  been  regularly  updated  by  QUTE-­‐EUROPE  preceding  coordination  actions  (ERA-­‐Pilot  QIST,  QUROPE,  and  QUIE2T).  Currently  it   is  now  at  its  8th  version;  this  revision,  which  was  released  in  February  2013  at  the  end  of  the  QUIE2T  CA,  was  a  quite   important  one  featuring  a  complete  rewriting  of  many  key  parts  of  the  document.  The  next   update   will   be   following   the   major   conference   organized   by   QUTE-­‐EUROPE   later   this   fall,   in  which   a   satellite  meeting   of   the   Virtual   Institutes   experts  will   be   held   in   order   to   appoint   specific  revision  editors  and  organize  the  work.    

The  original  DoW  has  been  amended  to  reflect  the  delivery  of  the    roadmap  update  in  the  Y3  of  the  CA.  

 

b)  Position  documents  

The  unique  position  document  produced   this   year,  has  been   in   response   to  an  online   consultation  procedure   launched  by   the   Future   and  Emerging   Technology   (FET)  unit,   in  order   to   identify   game-­‐changing   directions   for   future   research   in   any   technological   domain.   The   consultation   targeted  scientists   and   researchers   from   the   widest   range   of   disciplines,   innovators,   creators   or   interested  bystanders  and  members  of  civil  society  in  general.  Its  purpose  was  to  initiate  thinking  about  future  proactive   initiatives   to   be   included   in   the   next   FET  workprogramme   for   2016   and   2017,   similar   to  what  was  done  for  preparing  the  FET  call  topics  for  the  ongoing  workprogramme  (2014-­‐2015).    

By  exploiting  the  VI’s  expertise  QUTE-­‐EUROPE  has  elaborated  a  joint  document  discussing  all  that  can  be  done  from  the  quantum  technologies  perspective  (see  attachment  A).    

 

Page 3: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     3  

Task  2.2  QIPC  Virtual  Institutes  

This  year  has  witnessed  a  lot  of  activity  on  the  VI  side.    

a)  Rebranding  of  the  VI  on  Quantum  Technologies  

To  begin  with,  a  minor  issue  has  been  the  renaming  of  the  VI  on  Quantum  Technologies,  as  it  seems  that  quantum  technologies  is  becoming  the  EU  "wording  of  the  Quantum  Information  Processing  and  Communication  field”.  Of  all  the  possible  alternatives,  the  name  “VI  on  Quantum  Sensing,  Metrology  and  Imaging”  was  finally  chosen.    

b)  Creation  of  the  Virtual  Facilities  on  Quantum  Control  and  Quantum  Engineering  

During   the  elaboration  of   the  position  document  described   in  Task  2.1  b)   and   the   consequent  VI’s  brain   storming   activity   for   the   development   of   a   sustainability   strategy   for   the  whole   area,   it   has  become   progressively   clear   the   need   to   add   a   few   new   additional   structures   to   the   existing   ones,  which  would  factor  in  the  evolution  of  the  field  from  the  conception  of  the  original  VIs.  In  fact,  such  new  structures  would:  

(1) Reflect  the  current  status  of  the  Quantum  Technologies  community;    (2) Raise   the   visibility   of   the   identified   new   fields   in   the   physics   and   related   communities,  

funding  agencies  and  industry  partners;  (3) Develop  a  shared  vision  harmonized  with  all  the  existing  VIs;  (4) Coordinate  the  European  efforts  in  the  identified  field.  

After  a  quick  consultation  with  the  community  in  general  and  the  QUTE-­‐EUROPE  Advisory  Board,  the  areas  identified  were  the  ones  of  Quantum  Control  and  Quantum  Engineering.  The  main  reasons  are  briefly  described  in  the  following  paragraphs  

Quantum   Control.   The   CA   “Optimal   Control   of   Quantum   Systems”   (QUAINT,  https://quantumcontrol.eu/)   already   started   a   virtual   structure   equivalent   to   a   VI   on  Quantum   Optimal   Control   in   April   2014   as   a   means   to   promote   the   quantum   control  perspective   and   disseminate   quantum   control   techniques   to   the   broader   quantum  physics  community.  Just   as   in   the   classical   world,   it   is   control   that   turns   scientific   knowledge   into   useful  technology,  managing  production   lines  or  optimizing  the   flow  of   traffic,  quantum  control   is  essential   for   substantial   advancement   of   quantum   technologies   towards   practical  applications.  This  builds  on  the  established  experience  that  quantum  optimal  control  allows  to   improve   relevant   figures  of  merit   by  one   to   two  orders  of  magnitude  without   requiring  any   other   changes;   examples   are   found   in   areas   as   diverse   as   optical   spectroscopy,  photochemistry,  magnetic  resonance  and  quantum  information  processing.  In  today's  efforts  to  engineer  quantum  technologies  from  the  bottom  up,  quantum  optimal  control  has  already  allowed   for   the   realization   of   significant   milestones.   For   example,   atomic-­‐scale   defects   in  diamonds   were   recently   used   as   super-­‐sensitive   magnetic   sensors   and   a   better  understanding  of  photosynthesis  was  used  to  improve  the  design  of  solar  cells.  

Within  this  framework,  it  was  natural  to  include  this  structure  among  the  other  VIs  hosted  by  QUTE-­‐Europe  as  there  is  in  fact  a  consensus  among  practitioners  that  the  design  of  quantum  technologies,  which  are  based  on  interference  and  entanglement  as  major  but  rather  elusive  resources,  will  not  be  possible  or  at  least  be  very  difficult  without  quantum  optimal  control.  

Page 4: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     4  

Its  application  is   in  particular  believed  to  be  crucial   in  order  to  reach  the  required  precision  given  the  sensitivity,  power,  timing  and  accuracy  of  instruments  as  well  as  the  ever-­‐present  interaction  with  the  environment  that  may  destroy  the  quantum  resources.  Quantum  control  will   enable   goals   in   computation,   metrology,   sensing   and   simulation   by   identifying   how  external  control  knobs  must  be  tuned  to  allow  given  hardware  with  all   its   imperfections  to  accomplish   the   required   tasks   in   the  best  possible  way.  Quantum  control   is  also   important  for   quantum   communication   and   information   security,   for   example   by   improving   the  operation   of   quantum   repeaters   or   the   frequency   conversion   of   photons   as   information  carriers,   providing   a   natural   bridge   to   the   VIs   for   Quantum   Communication   and   Quantum  Information  Sciences.  Finally,  quantum  control  bundle  all  European  activities  on  the  control  of  open  systems,  a  current  challenge  at  the  frontier  of  quantum  physics.  Quantum  control  is  an   important   tool   in   that   field   as   it   allows   for   clarifying   what   quantum   tasks   can   be  accomplished   with   what   precision   in   the   presence   of   decoherence.   It   can   also   aid   in  environment   engineering,   i.e.,   in   utilizing   the   environment   to   achieve   what   would   be  unattainable  in  a  closed  quantum  system.  This  is  relevant  for  activities  under  the  umbrella  of  all  QUTE-­‐EUROPE  VIs.  

Quantum  Engineering.  Today  many  deeply  interesting  scientific  questions  remain  at  the  level  of   one   or   two   qubits.   The   questions   which   qubit   representation   works   best   for   a   future  quantum  computer  or  which  realization  of  a  quantum  repeater  is  most  viable,  remain  open  as   well.   At   the   same   time,   within   a   few   years,   large   numbers   of   quantum   bits   must   be  incorporated   and   integrated   with   classical   electronics   to   realize   scientific   goals   such   as  demonstrating  a  CNOT   in  a  surface  code  (which  requires  of  order  50  qubits  combined  with  fast   feedback   for   error   correction).   This   poses   important   new   engineering   challenges   in  quantum  computer  architecture,   integrated  quantum-­‐classical  circuit  design,  and  high-­‐yield  qubit   fabrication.  When   going   from   50   to   500   or   5000   qubits   in   say   10   years,   the   role   of  quantum   engineering  will   grow   even  more   important.   It   also   raises   important   engineering  challenges   in  Quantum  Information  theory,  such  as  practical  quantum  compilers,   languages  and   protocols   for   testing   algorithms   and   simulations.   In   Quantum   Communication   typical  engineering  challenges  involve  network  complexity,  interfacing  with  other  technologies,  etc.  and   using   quantum   bits   in   metrology   and   sensing   also   requires   solving   engineering  challenges.  Some  of  the  engineering  challenges  that  must  be  overcome  are  either  so  pressing  or  so  complex  that  work  must  be  started  today,  despite  the  many  important  unknowns  in  our  field.  Quantum  Engineering  has  therefore  a  two-­‐fold  objective.  The  first  objective  is  to  enable  us  to  address  important  scientific  questions  in  the  coming  years,  from  the  demonstration  of  fault-­‐tolerance   and   logical   qubit   operations   to   the   realization   of  multi-­‐node  quantum  networks.  The   second   objective   is   to   lay   the   foundation   for   real-­‐world   applications   of   quantum  technologies,   for  which   typical   engineering   challenges   such   as  manufacturability,   reliability  and   affordability   all   need   to   be   addressed.     The   ability   to   perform   high   quality   quantum  engineering   will   turn   out   to   be   one   of   the   main   defining   factors   in   moving   forward   both  advancing   science   as   in   ultimately   realizing   innovation   and   economic   value   from   quantum  technologies.    

Over   the  past   few  years  Quantum  Engineering  has  gained  momentum.  The   field   is  still   in  a  nascent   stage,   but   has   reached   a   size   to   be   self-­‐supporting.   Shared   visions   on   research  challenges  have  emerged.  Main  challenges  lie  in  device  construction,  devising  architectures,  developing   (cold)   electronics,   multiplexing   and   routing   of   electrical   and   optical   signals.  

Page 5: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     5  

Several   main   challenges   for   quantum   engineering   are   aligned   with   research   challenges   in  other  fields.  Examples  are  cold  electronics  used  in  LIDAR,  IR  applications,  pedestrian/vehicle  detection   in   cars,   and   3D   integration   is   an   important   new   development   in   classical   circuit  design.  Early  application  of  quantum  engineering  may  in  fact  lie  outside  the  field  of  quantum  technology,   which   will   help   to   maintain   funding,   but   it   will   be   the   quest   for   quantum  technology  that  drives  the  process.  

The   creation   of   these   two   new   virtual   structures   has   been   discussed   first   in   a   teleconference   on  September  the  16th  2014  (for  the  list  of  attendees  and  the  agenda  see  Attachment  B)  and  then  in  a  physical  meeting  held  at  the  MPQ  in  Garching  on  October  the  20th  2014  (see  Attachment  C  for  the  list  of   attendees   and   the   agenda).   Taking   into   consideration   the   fact   that   the   proposed   new   virtual  structures   on   Quantum   Control   and   Quantum   Engineering   have   strong   interfaces   with   all   existing  VI’s,  being  therefore  quite  different  in  nature  form  the  latter,  it  was  decided  to:  

Keep   the   five   existing   VIs   as   "pillars"   of   the   European   Quantum   Technologies   research  community,  corresponding  to  different  application  goals;  

Complement  them  with  two  new  "horizontal"  coordination  structures,  called  Virtual  Facilities  (VFs)  on  Quantum  Control  and  Quantum  Engineering  (see  scheme  on  opposite  page);  

Assign  a  coordinating  figure  (Director  and/or  Executive  Secretary)  to  each  VF.  

Each  VI  was  then  asked  to  indicate  what  their  respective  field  needs  from  each  of  the  two  VFs,  which  were   in   turn  asked   to  summarize   the  outcome   in   two  additional   sections   to   the  FET  consultation  /  white  paper  on   sustainability.  At   the  moment  of  writing   this   report,   these  new  sections  are   in   the  making.  

In  this  occasion  it  was  also  decided  to  enlarge  the  community  representation  in  the  VIs,  including  at  the   same   time   in   the   structure   the   geographical   dimension   of   Europe’s   main   quantum   research  centers/clusters.  Therefore  it  was  agreed  to:  

Extend  VI  membership  by  up  to  five  additional  members  per  VI;  

Get  a  more  balanced  representation  over  the  different  quantum  areas  across  the  VIs.  

A  procedure  has  been  set  into  place  in  order  to  identify  suitable  representatives  of  the  various  areas.  The  structure  that  has  finally  emerged  and  approved  is  the  summarized  in  the  following  table.        

     

Page 6: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     6  

Coordinator   A.  Acin                      Virtual  Institute   Computation   Simulation   Communication   Sensing   Theory  

           Director   D.  Esteve   I.  Bloch   N.  Gisin   I.  Walmsley   I.  Cirac  Executive  Secretary  

A.  Wallraff   S.  Kuhr   R.  Thew   K.Banaszek   M.  Wolf  

Members  

R.  Blatt   J.  Bloch   P.  Grangier   M.  Plenio   H.  Buhrman  D.  DiVincenzo   J.  Eisert   R.  Renner   E.  Polzik   M.  Troyer  D.  Loss   M.  Inguscio   G.  Ribordy   J.  Wrachtrup   S.  Wehner  P.  Zoller   M.  Lewenstein   A.  Shields     R.  Werner     L.  Vandersypen   R.  Ursin     A.  Winter  

           Virtual  Facility   Engineering   Control        

  C.  Marcus   S.  Glaser           J.  Morton   F.  Wilhelm          This  has  resulted  in  an  enlarged  Strategic  Advisory  Board  which  is  now  composed  by  the  following  scientists:    

1. Antonio  Acin  2. Konrad  Banaszek  3. Rainer  Blatt  4. Immanuel  Bloch  5. Harry  Buhrman  6. Vladimir  Buzek  7. Tommaso  Calarco  (chair)  8. Nicolas  Cerf  9. Ignacio  Cirac  10. Artur  Ekert  11. Daniel  Esteve  12. Elisabeth  Giacobino  13. Steffen  Glaser  14. Stefan  Kuhr  15. Nicolas  Gisin  16. Atac  Imamoglu  17. Massimo  Inguscio  18. Peter  Knight  19. Leo  Kouwenhoven  20. Stefan  Kuhr  21. Maciej  Lewenstein  22. Charles  Marcus  23. John  Morton  24. Martin  Plenio  25. Eugene  Polzik  26. Gerhard  Rempe  27. Rob  Thew  28. Andreas  Wallraff,  29. Ian  Walmsley  30. Reinhard  Werner  

Page 7: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     7  

31. Frank  Wilhelm-­‐Mauch  32. Michael  Wolf  33. Anton  Zeilinger  34. Peter  Zoller  

 Notice  that  the  carried  out  restructuring  of  the  Virtual  Institutes  together  with  the  addition  of  the  

Virtual  Facilities  should  be  considered  the  final  part  for  the  fulfillment  of  MS3  “Creation  of  a  communication  scheme  for  providing  VIs  expertise”.    

 c)  Virtual  Institutes  highlights    As   usual,   the   different   Virtual   Institutes   (VI)   within   QUTE-­‐EUROPE   prepared   a   selection   of   the  scientific   highlights   of   the   year   2013.   The   present   report   presents   these   highlights,   structured  according  to  the  VI’s.  

Quantum  Computation  VI  highlights  

This   VI   for   Quantum   Computation   integrates   all   groups  which   have   an   effort   aiming   at   building   a  large  scale  quantum  computer,  independently  of  the  physical  system  used  for  this  purpose  (since  as  the  QIPC  Strategic  report  clearly  states  in  its  Executive  Summary  “[...]  it  is  too  early  to  pick  the  winner  implementation  for  the  practical  realization  of  a  working  quantum  device”).  These  includes  trapped  ions  and  neutral  atoms,  cavity  QED,  solid  state  devices  (such  as  superconducting  qubits,  possibly   in  combination  with  circuit  cavity  QED,  and  spin  qubits),  all-­‐optical  devices,  as  well  as  impurity  spins  in  solids,   single   molecular   magnets,   and   all   sort   of   hybridization   between   these   different  implementations.  

The  highlights  of  the  year  2014  for  this  VI  are  the  following:  

Electrical  control  of  a  long-­‐lived  spin  qubit  in  a  Si/SiGe  quantum  dot    E.  Kawakami,  P.  Scarlino,  D.  R.  Ward,  F.  R.  Braakman,  D.  E.  Savage,  M.  G.  Lagally,  M.  Friesen,  S.  N.  Coppersmith,  M.  A.  Eriksson,  L.  M.  K.  Vandersypen  Nature  Nanotechnology  9,  666-­‐670  (2014);  

An  addressable  quantum  dot  qubit  with  fault-­‐tolerant  control-­‐fidelity  M.   Veldorst,   J.   C.   C.   Hwang,   C.   H.   Yang,   A.  W.   Leenstra,   B.   de   Ronde,   J.   P.   Dehollain,   J.   T.  Muhonen,  F.  E.  Hudson,  K.  M.  Itoh,  A.  Morello,  A.S.  Dzurak    Nature  Nanotechnology  9,  981–985  (2014);  

Storing  quantum  information  for  30  seconds  in  a  nanoelectronic  device  J.   T.   Muhonen,   J.   P.   Dehollain,   A.   Laucht,   F.   E.   Hudson,   T.   Sekiguchi,   K.   M.   Itoh,   D.   N.  Jamieson,  J.  C.  McCallum,  A.  S.  Dzurak,  A.  Morello  Nature  Nanotechnology  9,  986–991  (2014)  

Electron  spins   in  semiconductors  are  promising  candidates   for  quantum  computation  because  they  can  be  built  on  microelectronics  technology  and  exhibit  a  weak  interaction  with  the  solid-­‐state  host  material.   Using   silicon   as   a   host   material   for   these   qubits   represents   a   promising   solution   since  dephasing   and   decoherence   times   are   expected   to   be   long   due   to   the   (near)   absence   of   nuclear  spins.  However,  most  pioneering  works  so  far  are  difficult  to  scale  up,  or  use  materials  in  which  the  

Page 8: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     8  

interaction  between  electron  and  nuclear  spins  is  still  strong  enough  to  heavily  disturb  the  phase  of  the  electron  spins,  thus  destroying  the  information  stored  in  the  qubit  very  quickly.  

These  three  works,  appearing  in  the  same  issue  of  Nature  Technology,  confirm  the  expectations  and  demonstrate   that   individual   electron   spins   in   silicon   are   indeed   highly   decoupled   from   their  environment  and  can  be  controlled  coherently  with  high  accuracy.  All  the  three  works  define  a  single  electron  spin  as  one  qubit,  but  each  one  follows  its  own  approach  to  confine  this  single  electron  in  some  nanoscale   device.   The   three   projects   report   good   coherence   times,   especially   the   third   one,  and   fidelities   close   to   the   required   value   for   quantum   error   correction.   These   results   show   that  electron  spins  in  silicon  represent  a  promising  candidate  for  fault  tolerant  qubits.  

***  

Quantum  control  and  process  tomography  of  a  semiconductor  quantum  dot  hybrid  qubit  D.  Kim,  Z.  Shi,  C.  B.  Simmons,  D.  R.  Ward,  J.  R.  Prance,  T.  S.  Koh,  J.  K.  Gamble,  D.  E.  Savage,  M.  G.  Lagally,  M.  Friesen,  S.  N.  Coppersmith,  M.  A.  Eriksson  Nature  511,  70-­‐74  (2014)  

Encoding   quantum   information   in   semiconductor   quantum   dots   offers   long   coherence   times.  However,  their  manipulation  is  often  slower  than  desired.  Previous  work  has  increased  the  speed  of  spin  qubit  rotations  by  making  use  of  integrated  micromagnets,  dynamic  pumping  of  nuclear  spins  or  the   addition   of   a   third   quantum   dot.   However,   these   alternatives   increase   the   complexity   of   the  setup,  which,  in  turn,  make  scalability  and  manufacturability  more  challenging.  

In   their  work,   Kim   and   co-­‐workers   demonstrate   a   quantum-­‐dot   qubit   that   is   a   hybrid   of   spin   and  charge.  It  is  simple,  requiring  neither  nuclear-­‐state  preparation  nor  micromagnets.  The  hybrid  qubit  contains   three   electrons   in   two   dots   and   has   the   advantage   of   allowing   all-­‐electrical   qubit  manipulation  without   the   need   for  microwave   driving   or   local  magnetic   field   gradients.   The   name  “hybrid”  derives  from  the  fact  that  the  qubit  has  both  spin  and  charge  character.  The  charge  aspect  allows   also   for   very   fast   manipulation,   though   at   the   same   time   it   limits   the   qubit   coherence  compared   to   its   relatives.   The   researchers   demonstrate   that   hybrid   qubits   allow   for   fast   rotations  along  two  axes  of  the  Bloch  sphere  with  fidelities  of  85%  in  the  X  direction  and  95%  in  the  Z  direction.  

Superconducting  quantum  circuits  at  the  surface  code  threshold  for  fault  tolerance  R.   Barends,   J.   Kelly,   A.  Megrant,   A.   Veitia,   D.   Sank,   E.   Jeffrey,   T.   C.  White,   J.  Mutus,   A.   G.  Fowler,   B.   Campbell,   Y.   Chen,   Z.   Chen,   B.   Chiaro,   A.   Dunsworth,   C.   Neill,   P.   O’Malley,   P.  Roushan,  A.  Vainsencher,  J.  Wenner,  A.  N.  Korotkov,  A.  N.  Cleland,  J.  M.  Martinis    Nature  508,  500-­‐503  (2014);  

Quantum  computations  on  a  topologically  encoded  qubit  D.  Nigg,  M.  Müller,  E.  A.  Martinez,  P.  Schindler,  M.  Hennrich,  T.  Monz,  M.  A.  Martin-­‐Delgado,  R.  Blatt  Science  345,  302-­‐305  (2014)  

Quantum   error   correction   is   an   essential   ingredient   for   quantum   computation   implementations:  quantum  information  can  be  protected  by  distributing  a  logical  quantum  state  among  many  physical  qubits   by   means   of   quantum   entanglement.   Both   of   these   works   report   the   implementation   of  

Page 9: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     9  

quantum   error   correcting   techniques   in   two   different   technological   platforms:   superconducting  circuits  and  trapped  ions.    

In  the  case  of  superconducting  qubits,  the  surface  code  is  a  natural  choice  for  error  correction,  since  it   uses   only   nearest-­‐neighbour   coupling   and   rapidly   cycled   entangling   gates.   Moreover,   the   gate  fidelity  requirements  are  modest,  with  fidelity  thresholds  of  about  99%.   In  their  work,  Barends  and  co-­‐workers   demonstrate   a   universal   set   of   logic   gates   in   a   superconducting  multi-­‐qubit   processor,  achieving  an  average  single-­‐qubit  gate  fidelity  of  99.92%  and  a  two-­‐qubit  gate  fidelity  of  up  to  99.4%.  This  reported  setup  represents  a  first  step  towards  the  surface  code,  using  five  qubits  arranged  in  a  linear   array   with   nearest-­‐neighbour   coupling.   The   results   demonstrate   that   viability   of   Josephson  quantum  computing  as  a  path  to  scalable  fault-­‐tolerant  quantum  circuits.  

In   the  case  of   trapped   ions,  Nigg  and  co-­‐workers   report  a  quantum  error-­‐correcting   code   in  which  one  qubit   is  encoded   in  entangled  states  distributed  over  seven  trapped   ions.  The  code  can  detect  one  bit  flip  error,  one  phase  flip  error,  or  a  combined  error  of  both,  regardless  on  which  of  the  qubits  they   occur.   Sequences   of   gate   operations   are   applied   on   the   encoded   qubit   to   explore   its  computational   capabilities.   This   seven-­‐qubit   code   represents   a   fully   functional   instance   of   a  topologically   encoded   qubit,   or   color   code,   and   opens   a   route   toward   fault-­‐tolerant   quantum  computing.  

***  

Coherent  suppression  of  electromagnetic  dissipation  due  to  superconducting  quasiparticles  I.  M.  Pop,  K.  Geerlings,  G.  Catelani,  R.  J.  Schoelkopf,  L.I.  Glazman,  M.  H.  Devoret  Nature  508,  369–372  (2014)  

While   superconducting   qubits   represent   a   promising   technological   platform   for   quantum  computation,   a   good   enough   control   of   the  mechanisms   of   decoherence   and   dissipation   in   these  systems   is   still  an  experimental   challenge.   In  particular,   Josephson’s  key   theoretical  prediction   that  quasiparticle   dissipation   should   vanish   in   transport   through   a   junction  when   the   phase   difference  across  the  junction  is  π  has  never  been  observed.    

In   their  work,   Pop   and   co-­‐workers   report   the   experimental   observation   of   this   quantum   coherent  suppression   of   the   quasiparticle   dissipation   across   a   Josephson   junction.   The   suppression   of  dissipation,  despite   the  presence  of   lossy  quasiparticle  excitations  above   the   superconducting  gap,  provides   a   powerful   tool   for  minimizing  decoherence   in   quantum  electronic   systems   and   could  be  directly   exploited   in   quantum   information   experiments   with   superconducting   quantum   bits.   In  particular,  coherence  times,  which  have  always  been  determined  by  extrinsic  factors,  are  now  limited  by   physics   intrinsic   to   Josephson   tunneling,   achieving   relaxation   times  well   above   1 ms   in   artificial  atoms  (an  increase  by  two  orders  of  magnitude  from  previous  works).    Quantum  Communication  VI  highlights    This   institute   incorporates  all  groups,  both  theory  and  experimental,  working   in  the  field.  Quantum  Communication  can  be  defined  as  the  art  of  transferring  quantum  states  from  one  place  to  another.  The   general   idea   is   that   quantum   states   encode   quantum   information:   hence   quantum  communication  also  implies  transmission  of  quantum  information.  Quantum  Communication  covers  diverse   aspects   of   basic   physics,   such   as   quantum   optics,   solid   state   physics   and  more,   as  well   as  addressing  more   practical   issues   related   to   implementing   quantum   key   distribution   protocols   and  

Page 10: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     10  

quantum  cryptography.  Additionally,  it  takes  care  of  the  whole  “wiring”  inside  a  quantum  computer  or   simulator,   contributing   to   quantum   repeaters,   interfaces   and   various   hybrid   technologies   for  developing  complex  quantum  networks.  The  highlights  of  the  year  2014  for  this  VI  are  the  following:  

Quantum  teleportation  from  a  telecom-­‐wavelength  photon  to  a  solid-­‐state  quantum  memory  F.  Bussières,  C.  Clausen,  A.  Tiranov,  B.  Korzh,  V.  B  Verma,  S.W.  Nam,  F.  Marsili,  A.  Ferrier,  P.  Goldner,  H.  Herrmann,  C.  Silberhorn,  W.  Sohler,  M.  Afzelius,  N.  Gisin  Nature  Photonics  8,  775-­‐778  (2014);  

Unconditional  quantum  teleportation  between  distant  solid-­‐state  quantum  bits  W.   Pfaff,   B.J.   Hensen,   H.   Bernien,   S.B.   van  Dam,  M.S.   Blok,   T.H.   Taminiau,  M.J.   Tiggelman,  R.N.  Schouten,  M.  Markham,  D.J.  Twitchen,  R.  Hanson  Science  345,  532-­‐535  (2014)  

Quantum   teleportation   allows   for   the   transfer   of   arbitrary,   in   principle,   unknown   quantum   states  from  a   sender   to   a   spatially   distant   receiver,  who   share   an   entangled   state   and   can   communicate  classically.   It   is   essential   for   long-­‐distance   transmission   of   quantum   information   using   quantum  repeaters.   This   requires   the   efficient   distribution   of   entanglement   between   remote   nodes   of   a  network.   These   two   works   report   two   significant   experimental   demonstrations   of   quantum  teleportation,  in  solid-­‐state  quantum  memories  and  between  defects  in  diamond.  

In   the   first  work,  Bussières  and  co-­‐workers  demonstrate  quantum  teleportation  of   the  polarization  state   of   a   telecom-­‐wavelength   photon   onto   the   state   of   a   solid-­‐state   quantum   memory.  Entanglement   is  established  between  a   rare-­‐earth-­‐ion-­‐doped  crystal   storing  a   single  photon   that   is  polarization-­‐entangled  with  a  flying  telecom-­‐wavelength  photon.  The  latter  is  jointly  measured  with  another  flying  polarization  qubit  to  be  teleported,  which  heralds  the  teleportation.  The  fidelity  of  the  qubit   retrieved   from   the   memory   is   shown   to   be   greater   than   the   maximum   fidelity   achievable  without  entanglement,  even  when  the  combined  distances  travelled  by  the  two  flying  qubits  is  25  km  of   standard   optical   fibre.   These   results   demonstrate   the   possibility   of   long-­‐distance   quantum  networks  with  solid-­‐state  resources.  

In   the   second   work,   Pfaff   and   co-­‐workers   demonstrate   unconditional   teleportation   of   arbitrary  quantum   states   between   diamond   spin   qubits   separated   by   3  meters.   The   teleporter   is   prepared  through   photon-­‐mediated   heralded   entanglement   between   two   distant   electron   spins.   The   source  qubit   is   encoded   in   a   single   nuclear   spin.   By   realizing   a   fully   deterministic   Bell-­‐state  measurement  combined  with  real-­‐time  feed-­‐forward,  quantum  teleportation   is  achieved  upon  each  attempt  with  an  average  state  fidelity  exceeding  the  classical  limit.  These  results  establish  diamond  spin  qubits  as  a  prime  candidate  for  the  realization  of  quantum  networks  for  quantum  communication  and  network-­‐based  quantum  computing.  

***  

A  quantum  gate  between  a  flying  optical  photon  and  a  single  trapped  atom  Reiserer,  N.  Kalb,  G.  Rempe,  S.  Ritter  Nature  508,  237-­‐240  (2014);  

Nanophotonic  quantum  phase  switch  with  a  single  atom    T.  G.  Tiecke,  J.  D.  Thompson,  N.  P.  de  Leon,  L.  R.  Liu,  V.  Vuletic,  M.  D.  Lukin  

Page 11: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     11  

Nature  508,  241-­‐244  (2014);    

Nonlinear  π   phase   shift   for   single   fibre-­‐guided  photons   interacting  with   a   single   resonator-­‐enhanced  atom  J.  Volz,  M.  Scheucher,  C.  Junge,  A.  Rauschenbeutel  Nature  Photonics  8,  965-­‐970  (2014);    

Nonlinear  Interaction  between  Single  Photons    T.   Guerreiro,   A.   Martin,   B.   Sanguinetti,   J.   S.   Pelc,   C.   Langrock,   M.   M.   Fejer,   N.   Gisin,   H.  Zbinden,  N.  Sangouard,  R.T.  Thew  Phys.  Rev.  Lett.  113,  173601  (2014)  

Nonlinear  optics  made  significant  progress  in  2014  with  several  experimental  results  demonstrating  optical   gates,   or   switches,   based   on   atomic   systems   that   respond   at   the   single   photon   level,   or  photon-­‐photon  interactions.    

In   the   first  work,  Reiserer  and  co-­‐workers   implement  a  quantum  gate  between   the   spin   state  of   a  single  trapped  atom  and  the  polarization  state  of  an  optical  photon  contained  in  a  faint  laser  pulse.  The   gate   mechanism   is   deterministic   and   robust,   and   is   expected   to   be   applicable   to   almost   any  matter  qubit.  It  is  based  on  reflection  of  the  photonic  qubit  from  a  cavity  that  provides  strong  light–matter  coupling.  To  demonstrate  its  versatility,  they  use  the  quantum  gate  to  create  atom–photon,  atom–photon–photon  and  photon–photon  entangled  states  from  separable  input  states.    

In  the  second  work,  Tiecke  and  co-­‐workers,  by  strongly  coupling  a  photon  to  a  single  atom  trapped  in  the  near  field  of  a  nanoscale  photonic  crystal  cavity,  realize  a  system  in  which  a  single  atom  switches  the   phase   of   a   photon   and   a   single   photon   modifies   the   atom’s   phase.   They   experimentally  demonstrate  an  atom-­‐induced  optical  phase  shift  that  is  nonlinear  at  the  two-­‐photon  level,  a  photon  number  router  that  separates  individual  photons  and  photon  pairs  into  different  output  modes,  and  a   single-­‐photon   switch   in   which   a   single   ‘gate’   photon   controls   the   propagation   of   a   subsequent  probe  field.  

In  the  third  work,  Volz  and  co-­‐workers,  implement  a  strong  interaction  between  individual  photons.  They  demonstrate  a  fibre-­‐based  nonlinearity  that  realizes  an  additional  two-­‐photon  phase  shift  close  to   the   ideal  value  of  π.  They  employ  a  whispering-­‐gallery-­‐mode  resonator,   interfaced  by  an  optical  nanofibre,  where  the  presence  of  a  single  rubidium  atom  in  the  resonator  mode  results  in  a  strongly  nonlinear   response.   They   show   that   this   results   in   entanglement   of   initially   uncorrelated   incident  photons,  which  represents  an  important  step  towards  photon-­‐based  scalable  quantum  logics.  

In   the   last   work,   Guerreiro   and   co-­‐workers   report   the   nonlinear   interaction   between   two   single  photons.  Each  photon   is   first  generated   in   independent  parametric  down-­‐conversion  sources.  They  are  subsequently  combined  in  a  nonlinear  waveguide  where  they  are  converted  into  a  single  photon  of  higher  energy  by  the  process  of  sum-­‐frequency  generation.  This  results  in  the  direct  generation  of  photon   triplets.   This   work   highlights   the   potential   for   quantum   nonlinear   optics   with   integrated  devices,   with   applications   in   quantum   communication   such   as   device-­‐independent   quantum   key  distribution.  

***  

 

Page 12: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     12  

Bidirectional  and  efficient  conversion  between  microwave  and  optical  light    R.  W.  Andrews,  R.  W.  Peterson,  T.  P.  Purdy,  K.  Cicak,  R.  W.  Simmonds,  C.  A.  Regal,  and  K.  W.  Lehnert  Nature  Physics  10,  321-­‐326  (2014)  

Hybrid  quantum   systems   that   allow   for   the   transduction  between  different  operating   regimes   and  different   physical   systems   are   key   enabling   technologies   for   complex   quantum   systems.   A  microwave-­‐to-­‐optical  converter   in  a  quantum  information  network  could  be  useful  to   link  quantum  processors  through  low-­‐loss  optical  fibres  and  enabling  a  large-­‐scale  quantum  network.  However,  no  current  technology  can  convert  low-­‐frequency  microwave  signals  into  high-­‐frequency  optical  signals  while  preserving  their  quantum  state.    

In   their   work,   Andrews   and   co-­‐workers   demonstrate   a   converter   that   provides   a   bidirectional,  coherent   and   efficient   link   between   the   microwave   and   optical   portions   of   the   electromagnetic  spectrum.     The   converter   is   used   to   transfer   classical   signals   between  microwave   and  optical   light  with  conversion  efficiencies  of  ∼10%,  and  achieve  performance  sufficient  to  transfer  quantum  states  if   the   device  were   further   precooled   from   its   current   4   K   operating   temperature   to   temperatures  below  40  mK.  The  implementation  attains  a  conversion  efficiency  of  four  orders  of  magnitude  over  previous  efforts.  

***  

Measurement-­‐Device-­‐Independent  Quantum  Key  Distribution  over  200  km    Y-­‐L.  Tang,  H-­‐L.  Yin,  S-­‐J.Chen,  Y.  Liu,  W-­‐J.  Zhang,  X.  Jiang,  L.  Zhang,  J.  Wang,  L-­‐X.  You,  J-­‐Y.  Guan,  D-­‐X.  Yang,  Z.  Wang,  H.  Liang,  Z.  Zhang,  N.  Zhou,  X.  Ma,  T-­‐Y.  Chen,  Q.  Zhang,  and  J-­‐W.  Pan  Phys.  Rev.  Lett.  113,  190501  (2014)  

Measurement-­‐device–independent   quantum   key   distribution   (MDIQKD)   represents   a   valid  alternative   for   quantum   cryptography.   It   requires   fewer   assumptions   for   security   than   standard  prepare-­‐and-­‐measure   schemes,   while   its   implementation   is   less   demanding   than   fully   device-­‐independent  protocols.  

In   their   work,   Tang   and   co-­‐workers   report   the   first   long-­‐distance   implementation   of  MDIQKD.   By  developing   a   75   MHz   clock   rate   fully   automatic   and   highly   stable   system   and   superconducting  nanowire   single-­‐photon  detectors  with  detection  efficiencies  of  more   than  40%,   they  demonstrate  the  secure  implementation  of  MDIQKD  up  to  distances  of  the  order  of  200  km  and  achieve  a  secure  key   rate   3   orders   of   magnitude   higher   than   previous   efforts.   These   results   provide   the   most  advanced  demonstration  of  this  technique.  

Quantum  Information  Sciences  VI  highlights    This  Institute  comprises  all  theoretical  efforts  in  the  field.  In  fact,  the  development  of  QIPC  has  been  driven   by   theoretical   work   of   scientists   working   on   the   boundary   between   Physics,   Computer  Science,  Mathematics,  and   Information  Theory.   In  the  early  stages  of  this  development,  theoretical  work  has  often  been  far  ahead  of  experimental  realization  of  these  ideas.  At  the  same  time,  theory  has  provided  a  number  of  proposals  of  how  to   implement  basic   ideas  and  concepts   from  quantum  information   in   specific   physical   systems.   These   ideas   are   now   forming   the   basis   for   successful  experimental  work  in  the  laboratory,  driving  forward  the  development  of  tools  that  will  in  turn  form  

Page 13: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     13  

the  basis   for  all   future  technologies  which  employ,  control  and  manipulate  matter  and  radiation  at  the  quantum  level.  

The  highlights  of  the  year  2014  for  this  VI  are  the  following:  

Ultimate  classical  communication  rates  of  quantum  optical  channels  V.  Giovannetti,  R.  Garcia-­‐Patrón,  N.  J.  Cerf,  A.  S.  Holevo    Nature  Photonics  8,  796-­‐800  (2014)    

Optical   channels,   such   as   fibers   or   free-­‐space   links,   are   ubiquitous   in   today's   telecommunication  networks.  A  complete  physical  model  of  these  channels  must  necessarily  take  quantum  effects  into  account  to  determine  their  ultimate  performances.  Single-­‐mode,  phase-­‐insensitive  bosonic  Gaussian  channels   have   been   extensively   studied   over   past   decades,   given   their   importance   for   practical  applications.   In   spite   of   this,   a   long-­‐standing   unsolved   conjecture   on   the   optimality   of   Gaussian  encodings  has  prevented  finding  their  classical  communication  capacity.    

In   their  work,   Giovannetti   and   co-­‐workers   solve   this   conjecture   by   proving   that   the   vacuum   state  achieves  the  minimum  output  entropy  of  these  channels.  This  establishes  the  ultimate  achievable  bit  rate   under   an   energy   constraint,   as   well   as   the   long   awaited   proof   that   the   single-­‐letter   classical  capacity  of  these  channels  is  additive.  This  result  represents  a  breakthrough  in  quantum  information  theory,  solving  a  long-­‐standing  open  conjecture.  

***  

Disproving  the  Peres  conjecture  by  showing  Bell  nonlocality  from  bound  entanglement  T.  Vértesi,  N.  Brunner    Nature  Communications  5,  5297  (2014)  

Quantum   entanglement   and   quantum   nonlocality   are   among   the  most   central   phenomena   in   the  field  of  quantum  information  theory,  being  responsible  for  the  advantage  of  quantum  protocols  over  classical  ones  for  information  processing.  Although  related,  the  exact  connection  between  these  two  concepts   is   still   not   completely   understood.   In   1999,   Peres   conjectured   that   nonlocal   correlations  could   only   be   observed   on   quantum   states   with   distillable   entanglement.   Since   there   exist  undistillable  states,  called  bound  entangled  states,   if  Peres  conjecture  was  true   it  would  mean  that  this  class  of  states  would  be  useless  for  any  quantum  information  protocols  that  require  nonlocality.    

In   their  work,   Vertesi   and  Brunner   disprove   the   Peres   conjecture   by   showing   that   bipartite   bound  entangled  state  can  violate  a  Bell  inequality,  that  is,  it  shows  nonlocal  correlations  although  it  is  not  possible  to  distill  its  entanglement.  This  work  also  solves  a  long-­‐standing  conjecture  in  the  field.  

***  

Local  tests  of  global  entanglement  and  a  counterexample  to  the  generalized  area  law  D.  Aharonov,  A.  W.  Harrow,  Z.  Landau,  D.  Nagaj,  M.  Szegedy,  U.  Vazirani    Proceedings  of  FOCS  2014,  246  (2014)  

Maximally  entangled  states  are  a  valuable  resource  for  quantum  information  tasks  and  detecting  its  presence   represents   a   very  meaningful   question.   Can   two   parties   test  whether   their   joint   state   is  maximally   entangled   while   exchanging   only   a   constant   number   of   qubits?   A   seemingly   unrelated  

Page 14: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     14  

question  is  the  validity  of  the  generalized  area  law  for  the  growth  of  entanglement  on  ground  states  of  quantum  many  body  systems.    Specifically,  it  considers  lattice  systems  described  by  gapped  local  Hamiltonians,  i.e.  where  only  local  interactions  between  two  neighboring  particles  are  allowed.  The  area   law   conjectures   that   for   every   bipartition   of   the   system,   the   amount   entanglement   in   the  ground  state  is  bounded  by  a  constant  times  the  size  of  the  boundary  of  the  system.    

In   their   work,   Aharonov   and   co-­‐workers   develop   a   new   technique   using   quantum   expanders   that  provides   a   definite   answer   for   both  questions.   They   show   that,   surprisingly,   a   constant   amount  of  resources   is   sufficient   to   verify   a   global   property   of   a   bipartite   quantum   system,   namely   the   state  being  maximally  entangled.    On  the  other  hand,  they  disprove  the  generalized  area  law  conjecture  by  providing  a  counterexample.  

***  

Exponential  improvement  in  precision  for  simulating  sparse  Hamiltonians    D.  W.  Berry,  A.  M.  Childs,  R.  Cleve,  R.  Kothari,  R.  D.  Somma  Proceedings   of   the   46th   ACM   Symposium   on   Theory   of   Computing   (STOC   2014),   283-­‐292  (2014)  

Simulation  of  quantum  mechanical  systems  is  a  major  potential  application  of  quantum  computers.  

Indeed,  the  problem  of  simulating  Hamiltonian  dynamics  was  the  original  motivation  for  the  idea  of  quantum  computation.  

In   their   work,   Berry   and   co-­‐workers   provide   a   quantum   algorithm   for   simulating   the   dynamics   of  sparse   Hamiltonians   with   complexity   sublogarithmic   in   the   inverse   error,   an   exponential  improvement   over   previous  methods.  Unlike   previous   approaches   based  on  product   formulas,   the  query   complexity   is   independent   of   the   number   of   qubits   acted   on,   and   for   time-­‐varying  Hamiltonians,   the   gate   complexity   is   logarithmic   in   the  norm  of   the  derivative  of   the  Hamiltonian.  The  algorithm  is  based  on  a  significantly  improved  simulation  of  the  continuous,  and  fractional,  query  models   using   discrete   quantum   queries,   showing   that   the   former   models   are   not   much   more  powerful  than  the  discrete  model  even  for  very  small  error.  Finally,  they  prove  that  the  algorithm  is  optimal  as  a  function  of  the  error.  

***  

Fully  device  independent  quantum  key  distribution  U.  Vazirani,  T.  Vidick  Phys.  Rev.  Lett.  113,  140501  (2014)  

Although  quantum  key  distribution  (QKD)  is  one  of  the  major  achievements  of  quantum  information  science,   its   security   proofs   rely   on   certain   assumptions   on   the   devices   used   in   the   protocol.   To  overcome  this  serious  limitation,  device-­‐independent  QKD  (DIQKD)  has  been  developed  as  a  method  to   guarantee   security   even   in   the   case   the   devices   are   uncharacterized.   Much   effort   has   been  devoted   in  devising  DIQKD  protocols   that  extract  an  amount  of  key   that   is   linear   in   the  number  of  uses  of  the  devices,  which  are  secure  against   increasingly  general  eavesdropping  strategies  and  are  robust   to   the   presence   of   noise.     However,   the   best   known   protocols   were   either   based   on   the  assumption  that  the  devices  had  no  internal  memory  or  were  polynomially  inefficient  and  unable  to  

Page 15: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     15  

tolerate   noisy   devices.   This   raised   an   essential   question:   is   device-­‐independent  QKD  even  possible  without  independence  assumptions  in  a  realistic,  noise-­‐tolerant  scenario?  

In  their  work,  Vazirani  and  Vidick  give  a  positive  answer  to  this  important  question.  They  provide  the  first   complete   device-­‐independent   proof   of   security   of   quantum   key   distribution   that   tolerates   a  constant  noise  rate  and  guarantees  the  generation  of  a  linear  amount  of  key.    

***  

Detecting  nonlocality  in  many-­‐body  quantum  states  J.  Tura,  R.  Augusiak,  A.  B.  Sainz,  T.  Vértesi,  M.  Lewenstein,  and  A.  Acín    Science  344,  1256  (2014)  

Numerous   studies   have  been   carried  out   regarding   entanglement   of  many-­‐body  quantum   systems  particles,  since  it  proves  to  be  a  fundamental  key  aspect  to  understanding  their  properties.  However,  very   little   work   has   been   done   concerning   the   nonlocality   of   these   systems,   simply   because   the  known  Bell   inequalities   involve  correlations  among  many  parties  which  are  out  of   reach  within   the  current   experimental   technology.   As   a   consequence,   nonlocality   of   many-­‐body   quantum   systems  cannot  be  tested  experimentally  

In  their  work,  Tura  and  co-­‐workers  designed  classes  of  multipartite  Bell  inequalities  constructed  from  the  easiest-­‐to-­‐measure  quantities,  the  two-­‐body  correlators.  These  inequalities  are,  nevertheless,  capable  of  revealing  the  nonlocality  properties  of  many-­‐body  quantum  states,  in  particular  those  relevant  for  nuclear  and  atomic  physics.  In  addition,  the  inequalities  proposed  by  this  study,  can  be  verified  by  measuring  the  total  spin  components  of  the  particles,  which  opens  a  new  window  to  experimental  detection  of  many-­‐body  nonlocality  in  physical  systems  in  which  individual  particles  cannot  be  addressed.    Quantum  Metrology,  Sensing  and  Imaging  VI  highlights  

Many  branches  of  QIPC  have  gone  past  the  proof-­‐  of-­‐principle  phase,  and  in  the  short  term  the  first  technological   applications   of   quantum   coherence   and   entanglement   will   appear.   This   institute  embraces  all  groups/industries  working  on  the  different  aspects  of  these  technologies  which  can  be  split  into  two  main  categories:  either  technologies  that  represent  genuine  applications  of  QIPC  (e.g.,  quantum   cryptography,   quantum   metrology,   quantum   imaging,   quantum   random   number  generators,   etc.),   or   technologies   instrumental   in   developing   QIPC   devices   (e.g.,   single-­‐   and  entangled-­‐photon  sources  and  detectors,  chips  for  ion  and  atom  traps,  etc.).  

The  highlights  of  the  year  2014  for  this  VI  are  the  following:  

Using  Entanglement  Against  Noise  in  Quantum  Metrology  R.  Demkowicz-­‐Dobrzański,  L.  Maccone  Phys.  Rev.  Lett.  113,  250801  (2014)  

Quantum   metrology   provides   super-­‐classical   scaling   in   measurement   precision   by   exploiting  quantum  effects.  A  crucial  question  in  the  field  is  to  understand  when  entangled  states  lead  to  super-­‐classical  scaling.  

Page 16: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     16  

In  their  work,  Demkowicz-­‐Dobrzański  and  Maccone  analyze  the  role  of  entanglement  among  probes  and   with   external   ancillas   in   quantum   metrology.   In   the   absence   of   noise,   it   is   known   that  unentangled  sequential   strategies  can  achieve   the  same  Heisenberg  scaling  of  entangled  strategies  and   that  external  ancillas  are  useless.  This   changes   in   the  presence  of  noise;   the  work  proves   that  entangled   strategies   can   have   higher   precision   than   unentangled   ones   and   that   the   addition   of  passive   external   ancillas   can   also   increase   the   precision.   They   also   analyze   some   specific   noise  models  and  use  the  results  to  conjecture  a  general  hierarchy  for  quantum  metrology  strategies  in  the  presence  of  noise.  

***  

Joint  estimation  of  phase  and  phase  diffusion  for  quantum  metrology  M.  D.  Vidrighin,  G.  Donati,  M.  G.  Genoni,  X.-­‐M.  Jin,  W.  S.  Kolthammer,  M.  S.  Kim,  A.  Datta,  M.  Barbieri,,  I.  A.  Walmsley  Nature  Communications  5,  3532  (2014)  

Phase   estimation   is   one   of   the   most   studied   quantum   metrology   situations,   with   wide-­‐ranging  practical   applications.   In   many   realistic   situations,   phase   and   phase   diffusion   may   vary   in   time.  Consequently,   the   accuracy   of   phase   estimation   may   be   affected   by   varying   estimates   of   the  magnitude  of  phase  diffusion.  

In   their   work,   Vidrighin   and   co-­‐workers   investigate   the   joint   estimation   of   a   phase   shift   and   the  amplitude   of   phase   diffusion   at   the   quantum   limit.   For   several   relevant   instances,   this  multiparameter  estimation  problem  can  be  effectively  reshaped  as  a  two-­‐dimensional  Hilbert  space  model,   encompassing   the   description   of   an   interferometer   phase   probed   with   relevant   quantum  states.   For   these   cases,   a   trade-­‐off   bound   is   derived   on   the   statistical   variances   for   the   joint  estimation  of  phase  and  phase  diffusion,  as  well  as  optimum  measurement  schemes.  This  bound   is  then   used   to   quantify   the   effectiveness   of   an   actual   experimental   set-­‐up   for   joint   parameter  estimation  for  polarimetry.    

***  

Heisenberg-­‐Limited  Atom  Clocks  Based  on  Entangled  Qubits  E. M.  Kessler,  P.  Kómár,  M.  Bishof,  L.  Jiang,  A. S.  Sørensen,  J.  Ye,  M. D.  Lukin  Phys.  Rev.  Lett.  112,  190403  (2014)  

The  improvement  of  frequency  standards  using  quantum  resources,  such  as  entanglement  has  been  actively  explored  in  recent  years.  The  use  of  entangled  resources,  in  principle,  allows  one  to  surpass  the  classical  limit  on  precision.  However,  a  characterization  of  the  improvement  obtainable  by  using  entanglement  requires  a  detailed  investigation  of  the  decoherence  present  in  the  system.    

In  their  work,  Kessler  and  co-­‐workers  present  a  quantum-­‐enhanced  atomic  clock  protocol  based  on  sets   of   sequentially   larger   Greenberger-­‐Horne-­‐Zeilinger   (GHZ)   states   that   achieve   the   best   clock  stability   allowed   by   quantum   theory   up   to   a   logarithmic   correction.   Importantly,   the   protocol   is  designed  to  work  under  realistic  conditions  where  the  drift  of  the  phase  of  the  laser  interrogating  the  atoms  is  the  main  source  of  decoherence.  They  compare  and  merge  the  new  protocol  with  existing  state  of  the  art  interrogation  schemes,  and  identify  the  precise  conditions  under  which  entanglement  

Page 17: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     17  

provides   an   advantage   for   clock   stabilization:   it   allows   a   significant   gain   in   the   stability   for   short  averaging  time.  

***  

Increasing  Sensing  Resolution  with  Error  Correction  G.  Arrad,  Y.  Vinkler,  D.  Aharonov,  A.  Retzker  Phys.  Rev.  Lett.  112,  150801  (2014);  

Quantum  Error  Correction  for  Metrology  E. M.  Kessler,  I.  Lovchinsky,  A. O.  Sushkov,  M. D.  Lukin  Phys.  Rev.  Lett.  112,  150802  (2014);  

Improved  Quantum  Metrology  Using  Quantum  Error  Correction  W.  Dür,  M.  Skotiniotis,  F.  Fröwis,  B.  Kraus  Phys.  Rev.  Lett.  112,  080801  (2014)  

Understanding  quantum  metrology  in  noisy  environments  is  crucial  for  the  development  of  quantum  sensing  techniques.   In  particular,   it   is   relevant  to  know  where  the  effect  of  noise  and  decoherence  limits  the  achievable  gain  in  precision  by  quantum  entanglement.    

These  works  consider  the  use  of  quantum  error  correction  techniques  to   improve  the  sensitivity  of  quantum  metrology  in  noisy  scenarios.  

In  the  first  work,  Arrad  and  co-­‐workers  utilize  quantum  error  correction  to  prolonging  the  coherence  time   of   sensing   protocols   beyond   the   fundamental   limits   of   current   techniques.   They   develop   an  implementable  sensing  protocol  that  incorporates  error  correction,  and  discuss  the  characteristics  of  these  protocols   in  different  noise  and  measurement  scenarios.  They  examine   the  use  of  entangled  versus   separable   states,   and   error   correction’s   reach   of   the   Heisenberg   limit.   They   show   that  measurement  precision  can  be  enhanced  for  both  one-­‐directional  and  general  noise.    

In   the   second   work,   Kessler   and   co-­‐workers   also   analyze   the   use   of   quantum   error   correction   to  improve   quantum   metrology   in   the   presence   of   noise.   They   identify   the   conditions   under   which  these  techniques  allow  one  to  improve  the  signal-­‐to-­‐noise  ratio   in  quantum-­‐limited  measurements,  and   demonstrate   that   it   enables,   in   certain   situations,   Heisenberg-­‐limited   sensitivity.   They   finally  discuss   specific   applications   to   nanoscale   sensing   using   nitrogen-­‐vacancy   centers   in   diamond   and  show   improvements   on   the   measurement   sensitivity   and   bandwidth   under   realistic   experimental  conditions.    

In  the  third  work,  Dür  and  co-­‐workers  also  show  how  quantum  error  correction  techniques  improve  the   achievable   gain   in   precision   by   quantum   entanglement   in   some   noisy   situations.   This   is  demonstrated   in   two  scenarios,   including  a  many-­‐body  Hamiltonian  with   single-­‐qubit  dephasing  or  depolarizing  noise  and  a   single-­‐body  Hamiltonian  with   transversal  noise.   In  both  cases,  Heisenberg  scaling,  and  hence  a  quadratic  improvement  over  the  classical  case,  can  be  retained.  For  the  case  of  frequency  estimation  they  find  that  the  inclusion  of  error  correction  allows,  in  certain  instances,  for  a  finite  optimal  interrogation  time  even  in  the  asymptotic  limit.    

***  

Page 18: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     18  

Quantum  seismology  E.  G.  Brow,  W.  Donnelly,  A.  Kempf,  R.  B.  Mann,  E.  Martín-­‐Martínez,  and  N.  C.  Menicucci  New  Journal  of  Physics  16,  105020  (2014)  

Entanglement   farming   is   a   protocol   that   involves   successively   sending  pairs   of   “particle   detectors”  (such   as   atoms,   ions,   molecules,   etc)   transversely   through   an   optical   cavity.   As   pair   after   pair  traverses   the   cavity,   the   field   approaches   a   fixed-­‐point   state,  where   every   pair   of   atoms   emerges  from  the  cavity  in  the  same  state,  which  is  generically  entangled.  The  fixed  point  is  generally  stable  to  small  changes  in  the  parameters.  

In   their  work,  Brow  and  co-­‐workers   show  that   this   robustness  breaks  down  dramatically  when   the  frequency   at   which   atoms   traverse   the   cavity   is   at   resonance   with   a   multiple   of   the   cavity’s  fundamental  frequency.    

They   use   this   effect   to   propose   a   quantum   mechanical   method   of   detecting   weak   vibrational  disturbances.   Taking   advantage   of   an   extremely   precise   resonance   effect,   it   is   possible   to   find   a  regime  where  the  fixed-­‐point  state  is  highly  sensitive  to  perturbations,  even  harmonic  vibrations  with  frequencies  several  orders  of  magnitude  below  the  cavityʼs  natural  frequency.  This  sensitivity  may  be  useful  for  high  precision  metrology.  

Quantum  Simulation  VI  highlights  

Quantum   simulation   (QS)   of   physical   and   artificial   systems   is   now   becoming   the   focus   of   many  branches   of   QIPC.   Some   branches   are   already   mature   enough   to   perform   groundbreaking   QS  experiments   and   implementations,   while   for   other   branches   QS   constitutes   a   driver   of   the  development   of   powerful   hardware   platforms   and   protocols.   This   institute   provides   a   common  agenda  and  a  common  language  for  all  QIPC  groups  and  projects.  It  is  cross-­‐disciplinary  and  directly  addresses  the  kind  of  development  that   is  expected  to  be  the  main  QIPC  road   in  at   least   the  short  term.   It   embraces   transformational   aspects   in   a   unified   manner,   preparing   useful   applications   to  profit  from  progress  in  hardware,  and  providing  a  driver  for  quantum  technologies  and  the  scaling  up  QIPC  platforms.  

The  highlights  of  the  year  2043  for  this  VI  are  the  following:  

Experimental  realization  of  the  topological  Haldane  model  with  ultracold  fermions  G.  Jotzu,  M.  Messer,  R.  Desbuquois,    M.  Lebrat,  T.  Uehlinger,  D.  Greif,  T.  Esslinger  Nature  515,  237–240  (2014);  

Observation  of  topological  transitions  in  interacting  quantum  circuits  P.  Roushan,  C.  Neill,  Y.  Chen,  M.  Kolodrubetz,  C.  Quintana,  N.  Leung,   M.   Fang,   R.   Barends,  B.  Campbell,  Z.  Chen,  B.  Chiaro,  A.  Dunsworth,  E.  Jeffrey,  J.  Kelly,  A.  Megrant,  J.  Mutus,  P.  J.  J.  O’Malley,  D.  Sank,  A.  Vainsencher,   J.  Wenner,  T.  White,  A.  Polkovnikov,  A.  N.  Cleland,   J.  M.  Martinis    Nature  515,  241–244  (2014)  

The   discovery   of   topological   phases   in   condensed-­‐matter   systems   has   changed   the   modern  conception   of   phases   of   matter.   The   Haldane   model   on   a   honeycomb   lattice   is   a   paradigmatic  example   of   a  Hamiltonian   featuring   topologically   distinct   phases   of  matter.   In   fact,   the  model   has  

Page 19: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     19  

provided   the   conceptual   basis   for   theoretical   and   experimental   research   exploring   topological  insulators  and  superconductors.    

These   two   works   report   the   experimental   simulation   of   the   Haldane   model   in   two   different  platforms,  namely  optical  lattices  and  superconducting  circuits.  

In   the   case   of   optical   lattices,   Jotzu   and   co-­‐workers   report   the   experimental   realization   of   the  Haldane  model  and  the  characterization  of   its   topological  band  structure,  using  ultracold   fermionic  atoms   in  a  periodically  modulated  optical  honeycomb   lattice.   In   the  setup,   time-­‐reversal   symmetry  and   inversion   symmetry   are   broken,   which   opens   a   gap   in   the   band   structure.   The   competition  between  the  two  broken  symmetries  gives  rise  to  a  transition  between  topologically  distinct  regimes.  The   approach,  which   allows   for   tuning   the   topological   properties   dynamically,   is   suitable   even   for  interacting  fermionic  systems.  This  work  represents  a  crucial  step  towards  cold-­‐atom  realizations  of  exotic  phenomena  such  as  fractional  quantum  Hall  phases  and  fractional  Chern  insulators.  

In   the   case   of   superconducting   circuits,   Roushan   and   co-­‐workers   investigate   basic   topological  concepts  of  the  Haldane  model  after  mapping  the  momentum  space  of  this  condensed-­‐matter  model  to   the   parameter   space   of   a   single-­‐qubit   Hamiltonian.   In   addition   to   constructing   the   topological  phase   diagram,   they   visualize   the   microscopic   spin   texture   of   the   associated   states   and   their  evolution   across   a   topological   phase   transition.   They   also   study   the   topology   in   an   interacting  quantum  system,  which  requires  a  new  qubit  architecture  that  allows  for  simultaneous  control  over  every  term  in  a  two-­‐qubit  Hamiltonian.  By  exploring  the  parameter  space  of  this  Hamiltonian,  they  discover   the   emergence   of   an   interaction-­‐induced   topological   phase.   This   work   establishes   a  powerful  platform  to  study  topological  phenomena  in  quantum  systems.  

***  

Observation  of  chiral  currents  with  ultracold  atoms  in  bosonic  ladders  M.  Atala,  M.  Aidelsburger,  M.  Lohse,  J.  T.  Barreiro,  B.  Paredes,  I.  Bloch  Nature  Physics  10,  588–593  (2014)  

The  Meissner  effect  is  the  hallmark  signature  of  a  superconductor  exposed  to  a  magnetic  field.  For  a  type-­‐II  superconductor,  full  screening  of  the  applied  external  field  occurs  up  to  a  critical  field.  Below  this  value,  the  superconductor  acts  as  a  perfect  diamagnet  in  the  so-­‐called  Meissner  phase.  For  fields  above  the  critical  value,  however,  the  superconductor  is  not  able  to  fully  screen  the  applied  field  and  an  Abrikosov  vortex  lattice  phase  is  formed  in  the  system.    

In  their  work,  Atala  and  co-­‐workers  report  on  the  observation  of  chiral  Meissner  currents  in  bosonic  ladders  exposed   to  a   strong  artificial  magnetic   field.  By   suddenly  decoupling   the   individual   ladders  and  projecting  into  isolated  double  wells,  they  are  able  to  measure  the  currents  on  each  side  of  the  ladder.   For   large  coupling   strengths  along   the   rungs  of   the   ladder,   they   find  a   saturated  maximum  chiral   current,   which   is   analogous   to   the   surface   currents   in   the  Meissner   effect.   Below   a   critical  inter-­‐leg  coupling  strength,  the  chiral  current  decreases  in  good  agreement  with  the  expectations  for  a  vortex  lattice  phase.  This  work  opens  the  path  to  exploring  interacting  particles  in  low  dimensions  exposed  to  a  uniform  magnetic  field.  

***  

Page 20: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     20  

Non-­‐local  propagation  of  correlations  in  quantum  systems  with  long-­‐range  interactions  P.   Richerme,   Z.-­‐X.   Gong,   A.   Lee,   C.   Senko,   J.   Smith,   M.   Foss-­‐Feig,   S.   Michalakis,   A.   V.  Gorshkov,  C.  Monroe  Nature  511,  198-­‐201  (2014);  

Quasiparticle  engineering  and  entanglement  propagation  in  a  quantum  many-­‐body  system  P.  Jurcevic,  B.  P.  Lanyon,  P.  Hauke,  C.  Hempel,  P.  Zoller,  R.  Blatt,  C.  F.  Roos  Nature  511,  202-­‐205  (2014)  

The  maximum  speed  with  which  information  can  propagate  in  a  quantum  many-­‐body  system  directly  affects  how  quickly  distant  parts  of  the  system  can  become  correlated.  For  systems  with  only  short-­‐range   interactions,   Lieb  and  Robinson  derived  a   constant-­‐velocity  bound   that   limits   correlations   to  within  a  linear  effective  ‘light  cone’.  However,  little  is  known  about  the  propagation  speed  in  systems  with   long-­‐range   interactions,   since   analytic   solutions   rarely   exist   and   the  best   long-­‐range  bound   is  too  loose  to  accurately  describe  the  relevant  dynamical  timescales  for  any  known  spin  model.  

Both  of  these  works  report  the  experimental  investigation  using  trapped  ions  of  quantum  correlation  propagation   in   systems   with   long-­‐range   interactions.   In   the   first   work,   Richerme   and   co-­‐workers  apply  a  variable-­‐range  Ising  spin  chain  Hamiltonian  and  a  variable-­‐range  XY  spin  chain  Hamiltonian  to  a   far-­‐from-­‐equilibrium   quantum   many-­‐body   system   and   observe   its   time   evolution.   For   several  different  interaction  ranges,  they  determine  the  spatial  and  time-­‐dependent  correlations,  extract  the  shape   of   the   light   cone   and  measure   the   velocity   with   which   correlations   propagate   through   the  system.   In   the   second   work,   Jurcevic   and   co-­‐workers   implement   a   similar   experiment.   Using   the  ability   to   tune   the   interaction   range   in   trapped   ion   systems,   they   also   study   the   information  propagation  in  systems  with  long-­‐range  interactions.  

These   two   works   open   the   possibility   for   studying   a   wide   range   of   new   many-­‐body   dynamics   of  interacting  quantum  systems.  

***  

Two-­‐dimensional  lattice  gauge  theories  with  superconducting  quantum  circuits,  D.  Marcos,  P.  Widmer,  E.  Rico,  M.  Hafezi,  P.  Rabl,  U.-­‐J.  Wiese,  P.  Zoller  Annals  of  Physics  351,  634-­‐654  (2014)  

Despite   significant   progress   and   efforts,   lattice   gauge   theories   remain   to   be   challenging   to   be  simulated  on  classical  computers.    A  quantum  simulator  of  U(1)   lattice  gauge  theories  can  however  be  implemented  with  superconducting  circuits.  This  allows,  for  instance,  the  investigation  of  confined  and  deconfined  phases  in  quantum  link  models,  and  of  valence  bond  solid  and  spin  liquid  phases  in  quantum  dimer  models.    

In  their  work,  Marcos  and  co-­‐workers,  show  how  state-­‐of-­‐the-­‐art  superconducting  technology  allows  one   to   simulate   these   phenomena   in   relatively   small   circuit   lattices.   By   exploiting   the   strong   non-­‐linear  couplings  between  quantized  excitations  emerging  when  superconducting  qubits  are  coupled,  they   show   how   to   engineer   gauge   invariant   Hamiltonians,   including   ring-­‐exchange   and   four-­‐body  Ising   interactions.   They   also   demonstrate   that,   despite   the   presence   of   decoherence   and   disorder  effects,  minimal  circuit  instances  suffice  to  investigate  properties  such  as  the  dynamics  of  electric  flux  strings   or   signaling   confinement   in   gauge   invariant   field   theories.   The   experimental   realization   of  

Page 21: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     21  

these   models   in   larger   superconducting   circuits   could   address   open   questions   beyond   current  computational  capability.  

 

Task  2.4  Sustainability  

The  position  document   “Quantum  Technologies   in  H2020”   (attachment  A),   represents  a   very  good  starting  point  for  the  development  of  a  white  paper  for  sustainability,  as  it  already  expresses  a  broad  consensus  of  the  community  on  assessing  both  the  state-­‐of-­‐the-­‐art  and  the  future  directions  of  the  different  subareas.  We  are  currently  working  on  an  expanded  version  following  the  restructuring  of  the  Virtual  Institutes  that  we  just  completed  (see  the  description  of  Task  2.2.b).    

As   far   as   P6   CHALMERS   is   concerned,   it   should   be   noticed   that   during   Y2   it   has   worked   towards  assessing  the  European  competiveness  in  the  Quantum  Technologies  area,  and  the  resources  needed  to   lead   the   development.   Its   conclusions   are   illustrated   by   the   contribution   it   submitted  independently   to   the   aforementioned   FET   public   consultation   procedure,   and   reported   in  Attachment  D.  This  material  will  be   further  developed  and  fully   integrated  with  novel  material  and  views   thus   representing   valuable   input   into   the   process   of   expanding   the   document   “Quantum  Technologies   in   H2020”   (Attachment   A),   to   be   carried   out   during   Y3   by   the   new   QUTE-­‐EUROPE  Virtual  Institutes  and  Facilities  previously  described.  In  particular,  CHALMERS  focus  on  monitoring  of  the  developments  in  superconducting  circuits  will  provide  material  to  the  VI  of  Quantum  Computing,  the  VI  of  Quantum  Simulation  and   the  VF  on  Quantum  Engineering,   in   the  preparation  of   the   final  version  of  both  the  QIPC  Strategic  Report  as  well  as  the  White  Paper  on  sustainability.  

Finally,  on  this  task,  a  number  of  activities  of  partners  FBK/UULM  addressing  the  sustainability  of  the  entire  area  should  be  reported.  These  have  materialized  in  the  following  meetings:  

• 15.01.2015  –  Meeting  QUTE-­‐EUROPE  in  Paris  (follow  up  new  Virtual  Institute).  This  strategic  meeting  was   planned   in   order   to   implement   the  modification   to   the   virtual   institutes   and  virtual  facilities,  with  the  aim  of  creating  a  wider  and  solid  basis,  the  foundation,  of  possible  future  participation  to  project  call  such  for  instance  a  flagship.  

• 18-­‐19.01.2014   Quantum   Lunch   at   the   European   Parliament,   Organised   by   TUDELFT  (Quantum   Engineering).   This   event   was   organised   by   TUDELFT,   recently   involved   in   the  structure   of   the   virtual   institutes   and   virtual   Facilities   with   the   aim   of   raising   awareness  about  the  relevance  of  QT,  especially  for  future  perspective  and  in  order  to  keep  up  with  the  challenges   coming   from   USA   and   China   (which   has   been   pushing   on   quantum   technology  with  tremendous  strength)  

• 20.10.2014-­‐  QUTE  EUROPE  meeting  at  MPQ.  This  meeting  was  a  prosecution  of  a  year-­‐long  effort   to   steer   the   community   toward   a  more   solid   and   inclusive   structure,   expanding   the  existing  virtual  institute  and  incorporating  also  Virtual  Facilities  on  Quantum  Engineering  and  Quantum  Control  

• 24.08.2014   –   Business   lunch   with   Dr.   K.   Kirby,   CEO   of   the   American   Physical   Society,   for  Collaboration   with   APS   on   Quantum   Technologies.   The   discussion   during   this   meeting  revolved  around  a  possible   collaboration  with   the  APS   for  possible  development  of   the  QT  field.  

• 09-­‐11.07.2014   –   Meeting   on   Quantum   Technologies   for   Photonics   with   DG   CNECT   this  meeting  was  part  of  the  effort  to  bridging  the  QT  topics  also  within  the  field  of  Photonics:  QT,  in  fact,  has  opened  a  collaboration  with  the  Photonics  21  platform.  

Page 22: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     22  

• 21-­‐22-­‐05.2014  –  CHISTERA  meeting.  The  aim  of  this  meeting  was  to  explore  the  possibilities  for   the   QT   community   to   take   part   to   long   term   co-­‐funded   projects,   such   as   those   like  ERANET  and  ERANET  Cofund.  

• 29.04.2014  –  FET  flagship  Consultation:  this  consultation,  promoted  by  the  EC,  was  aimed  to  explore   the   feasibility   of   a   QT   flagship   project.   The   aim   of   such   flagship   would   be   to  coordinate   the  whole   community   at   large,   possibly   in   a  more   inclusive  way   that   has   been  done   so   far.   Prof   Calarco   took  part   as  member   of   the   the   European  Academy  of   Sciences,  where  he  is  actively  promoting  QT  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Attachments:  Annex  A:  Quantum  Technologies  in  H2020  Annex  B:  Virtual  Institute  Online  meeting  Annex  C:  QUTE-­‐EUROPE  meeting  Annex  D:  Chalmers  contribution  to  the  FET  online  consultation      

Page 23: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     23  

 

ANNEX  A  

 

Quantum  technologies  involve  the  control  and  manipulation  of  quantum  systems  to  achieve  results  not   possible   with   classical   matter.     Naively,   they   can   be   seen   just   as   the   next   step   on   from  nanotechnology   while   still   following   traditional   paradigms.   However,   quantum   technologies   give  much  more   than   this   as   they   transfer   technological   applications   to   a   different   physical   framework  where   devices   are   described   by   quantum   laws.   All   technologies   derive   their   power   and   their  limitations   from   the   laws   of   physics.   Thus,   bringing   technology   to   a   new   and   broader   physical  framework   can   provide   fundamentally   new   capabilities.   And   in   fact,   these   quantum   technologies  offer  much  more  than  cramming  more  and  more  bits   to  silicon  and  multiplying   the  clock–speed  of  the  ubiquitous  microprocessors:  they  support  entirely  new  modes  of  computation  with  qualitatively  new  and  powerful  algorithms  based  on  quantum  principles,  that  do  not  have  any  classical  analogues;  they   also   offer   provably   secure   communications,   simulation   capabilities   unattainable  with   classical  processors  and  sensors  and  clocks  with  unprecedented  sensitivity  and  accuracy.  

The   present   document   provides   an   overview   on   the  main   advances   in   the   last   years   in   quantum  technologies  and  identifies  game-­‐changing  directions  for  future  research.  Moreover,  it  discusses  how  all   this   research  effort   can  be   incorporated  within   future  proactive   initiatives   to  be   included   in   the  next  FET  work  programme  for  2016  and  2017.    

Since  many  years,  quantum  technologies  have  experienced   impressive  progress  and  gained  a   clear  European   dimension.   There   are   already   several   important   on-­‐going   national   efforts,   such   as   the  recent   UK   investment   of   £270M.   Yet,   a   comprehensive   European   synergy   is   essential   for   the   full  development  of  the  field.  From  a  scientific  point  of  view,  a  comparably  high  level  of  synergy  needs  to  be  maintained  between  the   fundamental  and  the  application-­‐oriented  side  of  quantum  technology  research,  according  to  the  approach  that  FET  has  followed  in  this  field  since  its  inception.    

The   framework   for   interaction   and   coordination   with   the   scientific   branches   of   the   EU   research  community   in   quantum   technologies   is   structured   around   a   set   of   five   Virtual   Institutes   (VIs):   the  Virtual   Institute   of   Quantum   Communication,   the   Virtual   Institute   of   Quantum   Computation,   the  Virtual   Institute  of  Quantum  Information  Sciences,   the  Virtual   Institute  of  Quantum  Simulation  and  the  Virtual   Institute  of  Quantum  Metrology,   Sensing,   and   Imaging.   Each  VI  unites   some  prominent  experts   in   the   corresponding   field,   providing   a   contact   point   for   consultation   and   feedback   in   the  relevant   areas.   The   different   VIs   have   partially   overlapping   research   agendas   to   facilitate   close  collaborations,   complementing   rather   than   duplicating   each   other.     This   document   is   structured  around  the  same  five  areas  and  has  been  prepared  in  collaboration  with  the  Directors  and  Executive  

Quantum  Technologies  in  H2020  

 

Page 24: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     24  

Secretaries  of  all  the  VIs.  For  each  of  the  areas,  it  describes  the  main  objectives,  the  state  of  the  art  and  the  future  challenges.  

Quantum  Communication  

Objectives:  Quantum  communication  is  the  art  of  transferring  a  quantum  state  from  one  location  to  another;   in   this   way   information,   or   resources   such   as   entanglement,   can   be   distributed   among  different  locations.  From  an  application  point  of  view,  a  major  interest  has  been  focused  on  Quantum  Key  Distribution  (QKD),  as  this  offers  a  provably  secure  way  to  establish  a  confidential  key  between  distributed  partners.  This  has  the  potential  to  solve   long-­‐standing  and  central  security   issues   in  our  information  based   society   as  well   as   emerging  problems  associated  with   long   term   secure   storage  (e.g.  for  health  records  and  infrastructure)  and  will  be  critical  for  the  secure  operation  of  applications  involving  the  Internet  of  Things  (IoT)  and  cloud  networking.  

State  of  the  art:   In  the  last  years  the  field  has  seen  enormous  progress,  as  QKD  systems  have  gone  from   table-­‐top   experiments   to   compact   and   autonomous   systems   and   now   a   growing   commercial  market.   More   generally   there   has   been   an   explosion   in   the   number   of   groups   active   in   the   field  working   on   increasingly   diverse   physical   systems.   Quantum  memories   and   interfaces   have  moved  from   theory   to  a  wide   range  of  proof-­‐of-­‐principle  demonstrations  with  encouraging   results   for   the  future.   Conceptually,   the   idea   of   device   independent   quantum   information   processing   made   its  appearance  and  has  already  started  to  find  experimentally  feasible  applications.  While  the  realisation  of   basic   quantum   communication   technologies   is   becoming   more   routine   in   the   laboratory,   non-­‐trivial  problems  emerge   in  high-­‐bit-­‐rate  systems  and   long-­‐distance  applications  as  we   interface   the  different  technologies  and  as  the  network  complexity  increases.    

Future  directions:  One  of  the  emerging  areas  of  interest  for  quantum  communication  schemes  is  in  connecting  the  nodes  within  quantum  simulators,  which  can  either  be  all   located  in  the  one  lab,  or  more  interestingly,  in  distributed  scenarios  -­‐  the  tools  from  quantum  communication  playing  the  role  of  wiring   circuits   for   these  quantum  computers.  A  particular   application   is   a  network  of   entangled  clocks  providing  precise  and  secure  world   time   reference.  While   there   remain  many  challenges   for  proof-­‐of-­‐principle   laboratory   demonstrations,   the   transition   to   deployment   in   real-­‐world  environments   defines   a   new   set   of   challenges   in   the   quantum   information   domain.   The   issues   of  scale,   range,   reliability,   and   robustness   that   are   critical   in   this   transition   cannot   be   resolved   by  incremental  improvements,  but  rather  need  to  be  addressed  by  making  them  the  focal  point  of  the  research  and  technology  development  agenda  as  we  work  towards  a  quantum  internet.  To  succeed,  this  needs   to   target   the  underlying   technologies,   ranging   from  fundamental  aspects  of  engineering  quantum  systems  to  integrating  quantum  and  classical,  e.g.  fast  (classical)  opto-­‐electrical  systems,  as  well  as  the  end-­‐user  applications  themselves.  

In  particular  the  following  need  to  be  addressed:  

Quantum   networks,   beyond   point-­‐to-­‐point,   exploring   novel   protocols,   possibly   hybrid  (continuous-­‐variable  and  discrete)  systems.  Quantum  repeater  concepts  will  also  be  critical  in  the  context  of  computation  and  simulation,  both  for  short  distance  scales  (local)  or   large  (distributed)  processing  systems.  

Deterministic  and  scalable  technologies  involving  on-­‐demand  photonic  sources,  or  heralded  sources  with  quantum  memories,  including  quantum  memories  with  multimode  capacity.  

Interfaces   allowing   for   the   coherent   transduction   of   quantum   states   between   different  physical  systems.  

Page 25: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     25  

The   synchronisation   and   stabilisation   of   distributed   quantum   systems   and   their  characterisation  –  in  particular,  their  quantification  with  local  measurements.  

Device-­‐independent   quantum   information  processing   needs   to   be   further   investigated   and  ways   to  move   from   purely   theoretical   concepts   to  more   practical   scenarios   will   be   highly  relevant.   In  particular,   addressing  both  QKD  and  quantum  random  number  generation  and  providing   a   new  perspective  with   the   potential   to   also  minimise   security   assumptions   and  hence  simplify  the  security  of  real-­‐world  quantum  communication.  

Systems   that  exploit   increased  complexity,  e.g.  using   integrated  quantum  photonics,  which  would  allow  new  functionality  and  protocols  in  quantum  networking.    

Quantum  Computation  

Objectives:   A   quantum   computer   is   a   device   that   harnesses   some   of   the   basic   laws   of   quantum  mechanics  in  order  to  solve  problems  in  more  efficient  ways  than  classical  (standard)  computers.  The  main  objective  in  the  field  of  quantum  computation  is  to  build  such  a  device.  Other  objectives  include  the  development  of  quantum  algorithms   to   solve   specific  problems,   and   the   creation  of   interfaces  between  quantum  computers  and  communication  systems.  The  construction  of  a  quantum  computer  with   thousands   of   quantum   bits   would   have   tremendous   consequences   on   the   security   in  communications   (like  the   internet),  by  breaking  most  of  everyday  used  cryptography.   It  would  also  allow  us  to  solve  certain  problems  that  the  most  powerful  super  computers  are  not  able  to  solve  now  or   in   the   near   future,   and   possibly   never;   in   particular,   those   dealing   with   quantum   many-­‐body  systems,  as  they  appear  in  different  fields  of  physics,  chemistry,  and  material  science.  

State  of  the  art:  We  already  know  that  the  basic  principles  of  quantum  computation  are  correct  and  there  is  no  fundamental  obstacle  in  constructing  such  a  powerful  machine.  The  basic  building  blocks  of   a   quantum   computer   have   been   demonstrated   with   many   different   technologies,   including  trapped  ions,  neutral  atoms,  photons,  NV-­‐centers  in  diamonds,  quantum  dots,  and  superconducting  devices.   Small   prototypes   have   been   built   using   some   of   those   technologies,   and   some   of   the  quantum  algorithms  have  been  demonstrated.  The  most  advanced  technologies  at  the  moment  are  trapped   ions   and   superconducting   qubits.  With   the   first   one,   coherent   control   has   been   achieved  with  up  to  15  qubits.  Although  the  control  of  the  latter  is  still  not  at  the  level  of  the  first,  it  has  the  potentiality   of   being   scaled   up   much   more   easily.   With   both   technologies,   proof-­‐of-­‐principle  experiments  on  quantum  error  correction  have  been  carried  out.    

Future   directions:   Despite   the   strong   efforts   devoted  by  many   scientists   during   the   last   years,   the  objective   of   building   a   quantum   computer   remains   as   a   central   challenge   in   science.   The   main  obstacle   to  build  a  quantum  computer   is   the  presence  of  decoherence,   i.e.,  undesired   interactions  between  the  computer’s  constituents  and  the  environment.  Standard  isolation  is  not  a  valid  solution,  since   it   seems   impossible   to   reach   the   levels   of   isolation   that   are   required   in   large   computations.  Therefore,   the   construction   of   such   a   device   will   require   the   use   of   quantum   error   correction  techniques.  It   is  not  clear,  however,  which  (already  or  not  yet  existing)  technology  will  be  optimally  suited  for  the  implementation  of  such  techniques  in  a  scalable  way  and/or  in  distributed  settings.  On  a   different   note,   we   only   know   a   limited   class   of   problems   where   a   quantum   computer   could  overcome   the   limitations   of   classical   ones,   and   thus   theoretical   studies   for   applications   of   such  devices  need  to  be  further  pursued.  

Some  specific  future  directions  of  research  include:  

Page 26: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     26  

Further   development   of   all   current   technologies   to   understand   their   limitations   and   find  ways  around  them.    

Assessment  of  the  capabilities  of  different  technologies  for  being  scaled  up.   Optimization   of   the   performance   of   error   correcting   codes,   by   both   increasing   the   error  

threshold  and  decreasing  the  overhead  of  required  qubits.     Investigation  of  new  ways  of  performing  quantum  computation,   in  particular  based  on  self-­‐

correcting  codes  (as  they  appear  in  topological  systems).   Development   of   new   quantum   algorithms   and   search   for   problems   where   quantum  

computers  will  be  required.   Development  of  quantum  complexity  theory  and  its  application  to  many  body  physics.   Building  interfaces  between  quantum  computers  and  communication  systems.   Development   of   quantum-­‐proof   cryptography   to   achieve   forward-­‐in-­‐time   security   against  

possible  future  decryption  (by  quantum  computers)  of  encrypted  stored  data.    

Quantum  Information  Sciences  

Objectives:   The   development   of   quantum   technologies   has   been   driven   by   theoretical   work   of  scientists   working   on   the   boundary   between   Physics,   Computer   Science,   Mathematics,   and  Information   Theory.   In   the   early   stages   of   this   development,   theoretical   work   has   often   been   far  ahead  of  experimental  realization  of  these  ideas.  At  the  same  time,  theory  has  provided  a  number  of  proposals   of   how   to   implement   basic   ideas   and   concepts   from   quantum   information   in   specific  physical   systems.   These   ideas   are   now   forming   the   basis   for   successful   experimental   work   in   the  laboratory,   driving   forward   the  development  of   tools   that  will   in   turn   form   the  basis   for   all   future  technologies  which  employ,  control  and  manipulate  matter  and  radiation  at  the  quantum  level.  

State  of  the  art:  in  recent  years,  novel  theoretical  ideas  have  been  proposed,  extending  the  range  of  applicability  of  quantum  information  protocols.  The  novel  scenario  of  device-­‐independent  quantum  information   processing   has   emerged,   where   protocols   are   defined   independently   of   the   inner  working   of   the   devices   used   in   the   implementation.   This   new   approach   has   led   to   self-­‐certified  schemes   for   QKD   and   randomness   generation.   A   strong   theoretical   effort   has   opened   quantum  simulation   to   quantum   field   theories   and   quantum   chemistry.   From   a   purely   information   theory  point   of   view,   non-­‐additivity   effects   of   channel   capacities   with   no   classical   analogue   have   been  proven.  Finally,  quantum  information  theory  has  established  strong  bridges  with  other  fields,  such  as  condensed  matter,  quantum  thermodynamics,  biology  or  quantum  gravity.  The  study  of  topological  systems   for   quantum   information   purposes,   the   development   of   novel   numerical  methods   for   the  classical   simulation  of  many-­‐body  quantum  systems,   the  study  of  Hamiltonian  complexity  or,  more  recently,   the   use   of   quantum   information   techniques   for   a   better   understanding   of   the   physics   of  black   holes,   as   well   as   applications   in  mathematics   and   computer   science,   are   examples   of   these  synergies.  

Future  directions:  the  impressive  experimental  progress  in  controlling  quantum  particles  has  brought  the   field   to   a   regime   where   experimental   setups   can   hardly   be   simulated   in   existing   classical  computing  devices.    The  design  of  methods  to  estimate,  control  and  certify  these  complex  setups  is  essential   for   the  development  of   the   field.  Also,  we  expect  quantum   information   theory   to  extend  and  strengthen  its  applicability  to  other  fields,  providing  new  insights   in  quantum  thermodynamics,  many-­‐body  physics  or  quantum  gravity.  The  recent  device-­‐independent  scenario,  in  which  protocols  are  defined   independently  of   the   inner  working  of   the  devices,   also  offers  promising  perspectives,  especially  for  cryptographic  applications.  

Page 27: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     27  

Relevant  research  directions  for  the  next  years  include:  

Methods   for   the   reconstruction   and   estimation   of   complex   quantum   states   or   channels  beyond  tomography  protocols,  which  are  as  hard  as  simulating  a  quantum  system  classically.  

Methods  for  the  certification  and  validation  of  quantum  processes;  benchmarking  of  purely  quantum  effects  with  no  classical  analogue.  

Methods  for  error  correction  beyond  quantum  computation  and  study  of  their  application  to  quantum  simulation,  communication  or  sensing.  

Methods  for  the  control  of  complex  quantum  setups   Development   of   device-­‐independent   solutions:   novel   protocols,   general   framework   for  

security  analysis  in  this  approach  or  feasible  proposals  for  their  experimental  realization.   Novel   applications   of   quantum   information   concepts   in   other   fields,   such   as  

thermodynamics,   many-­‐body   systems,   mathematics,   computer   science,   biology,   quantum  chemistry,  high-­‐energy  physics  or  quantum  gravity.  

Development  of  undecidability  theory.    

Quantum  Simulation  

Objectives:  Quantum  simulation  uses  controllable  quantum  systems  to  investigate  the  properties  of  other   complex   quantum   systems,   and   can   tackle   problems   that   are   beyond   the   computational  capability   of   any   classical   computer.   Initial   experimental   and   theoretical   work   has   been   mainly  directed  towards  the  quantum  simulation  of  condensed  matter  systems,  such  as  bosonic  or  fermionic  particles   in   lattices,   but  more   recent  work   also   encompasses   such   diverse   fields   as   quantum   field  theory,  cosmology  and  high-­‐energy  physics.  

State   of   the   art:   Experimental   platforms   for   quantum   simulation   comprise   ultracold   atomic   and  molecular   quantum   gases,   ion   traps,   polariton   condensates,   circuit-­‐based   cavity   quantum  electrodynamics   and  arrays  of   quantum  dots  or   Josephson   junctions.  All   of   these  platforms  aim   to  explore  the  potential  of  quantum  simulations  for  different  fields  of  science.  The  first  demonstrations  of   quantum   simulation   were   performed   on   ultra-­‐cold   atoms.   In   this   platform,   the   quantum-­‐gas  microscope   technique   has   opened   up   novel   possibilities   to   probe   and   manipulate   cold-­‐atom  quantum  simulators  at  the  single-­‐particle  level.  For  trapped  ions,  the  extraordinary  level  of  control  of  motional  and  internal  quantum  states  has  enabled  for  example  the  realization  of  a  digital  quantum  simulator,   and   analogue   quantum   simulation   of   different   spin   systems.   Recently,   also   solid-­‐state  systems  like  coupled  arrays  of  cavities  or  superconducting  qubit  arrays,  or  arrays  of  defect  centres,  are  being  explored  for  quantum  simulation  purposes.  

Future   directions:   The   challenges   of   the   science   of   quantum   simulation   can   be   divided   into   four  categories  that  need  to  be  addressed:    

Novel   manipulation   and   detection   schemes   for   quantum   many-­‐body   systems   to   further  improve   the   controllability   of   artificial   quantum   matter   realized   for   quantum   simulation  purposes.   This   includes   improving   fidelities   of   present   preparation   schemes,   as   well   a  devising  novel  measurement  and  control  techniques  and  also  include  identifying  completely  novel  systems  for  quantum  simulations.  

Extend   the   reach   of   quantum   simulations   into   other   fields   of   science,   e.g.   quantum   field  theories   in   high-­‐energy   physics,   nuclear   physics,   cosmology   (simulation   of   non-­‐equilibrium  dynamics),  biology,  chemistry  and  material  science.    

Novel  strategies  toward   lower  temperatures  and  entropies  of  many-­‐body  systems.  This  will  allow   exploring   novel   quantum   phases   of   matter   that   could   find   important   impact   in  metrology  (e.g.  atomic  clocks),  quantum  computing  or  material  science.    

Page 28: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     28  

Novel  strategies  for  the  verification  of  quantum  simulations,  studying  how  finite  temperature  errors   and   imperfections   in   implementations   of   couplings   affect   the   resulting   many-­‐body  state.    

Quantum  Metrology,  Sensing,  and  Imaging  

Objectives:  Specifically  quantum  phenomena  such  as  coherence  and  entanglement  can  be  exploited  to  develop  new  modes  of  measurements,   sensing,   and   imaging   that  offer  unprecedented   levels  of  precision,   spatial   and   temporal   resolution,   and   possibly   auto-­‐compensation   against   certain  environmental   factors,   such   as   dispersion.   These   promising   applications   require   development   of  techniques   that   will   be   robust   against   noise   and   imperfections   to   be   deployed   in   real-­‐world  scenarios.  Quantum  technologies  will  benefit  in  particular  time  and  frequency  standards,  light-­‐based  calibration,   gravitometry,   magnetometry,   accelerometry,   including   the   prospects   of   offering   new  medical  diagnostic  tools.      

State   of   the   art:   Reaching   quantum-­‐enhanced   precision   beyond   standard   quantum   limits   in  metrology  relies  on  generating  non-­‐classical  collective  states  of  atoms  and  non-­‐classical  multi-­‐photon  states   of   light.   Extensive   effort   has   been   dedicated   to   these   goals   with   proof-­‐of-­‐principle  demonstrations   in   the   atomic   domain   and   the   first   squeezed-­‐light-­‐enhanced   operation   of   a  gravitational  wave  detector  with  practical  suppression  of  vacuum  fluctuations.  Novel  concepts,  such  as  systems  with  an  effective  negative  mass  or  negative  frequency  have  been  shown  to  be  capable  of  providing   magnetometry   with   virtually   unlimited   sensitivity.   Possibilities   to   define   new   frequency  standards   have   been   explored   with   the   readout   based   on   quantum   logic   techniques   borrowed  directly  from  the  field  of  quantum  computing  and  with  entangled  atoms  providing  ultimate  quantum  sensitivity.   Enormous   progress   has   been   made   on   single   photon   sources,   both   deterministic   and  heralded,   that  can  be  used   for  optical   calibration  as  well  as  a  building  block   for  photonic  quantum  communication   and   computing.   Artificial   atoms   (such   as   nitrogen   vacancy   centers)   have   been  investigated  as  ultraprecise  sensors  e.g.  in  magnetometry.  

Future   directions:   Original   techniques   are   needed   to   make   quantum-­‐enhanced   metrology   and  sensing   deployable   in   non-­‐laboratory   environments.   Because   of   the   wide   range   of   prospective  applications   and   their   specificity,   a   broad   range   of   physical   platforms   needs   to   be   considered,  including  (but  not  limited  to)  trapped  ions,  ultra-­‐cold  atoms  and  room-­‐temperature  atomic  vapours,  artificial  systems  such  as  quantum  dots  and  defect  centers,  as  well  as  all-­‐optical  set-­‐ups  based  e.g.  on  nonlinear  optical  interactions.  Thorough  theoretical  analysis  of  noise  mechanisms  is  needed,  leading  to  feasible  proposals  that  will  be  subsequently  implemented  to  realize  quantum-­‐enhanced  strategies.    In  particular  the  following  need  to  be  addressed:  

Novel  sources  of  non-­‐classical  radiation  and  methods  to  engineer  quantum  states  of  matter  are  required  to  attain  quantum-­‐enhanced  operation.    

Develop   detection   schemes   that   are   optimized   with   respect   to   extracting   relevant  information   from   physical   systems,   with   optimization   criteria   selected   for   specific  applications.   These   techniques   may   find   applications   in   other   photonic   technologies,   e.g.  increasing  transmission  rates  in  optical  communication.  

Micro-­‐  and  nanofabrication  of  quantum  sensors  including  integration  with  fiber  networks   Development   of   hybrid   quantum   sensors   that   use   optimal   quantum   interfaces   for  

transduction  of  signals  across  the  electro-­‐magnetic  radiation  spectrum.  

Page 29: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     29  

Compact   solutions   for   quantum   imaging,   allowing   for   the   interconversion   of   detected  frequencies  including  preservation  of  coherence,  as  well  as  quantum  ranging  and  timing  that  can  suppress  the  spatial/temporal  spread  of  transmitted  signals.      

Implementation  of  entanglement  assisted  atom  clocks   Study  of  the  performance  of  quantum  sensing  protocols   in  realistic  regimes   including  noise  

and  losses.   Extend  the  reach  of  quantum  sensing  and  metrology  into  other  fields  of  science  to  uncover  

novel  natural  phenomena,  e.g.  biology,   fundamental  physics,  high-­‐energy  physics,  quantum  gravity.    

Global  perspective  and  role  in  the  work  programme  

While   the  previous  presentation  has  been  structured  along   the  different  VI’s,   the   field  of  quantum  technologies   has   to   proceed   as   a   coherent   and   unified   research   effort.   Indeed,   many   synergies  among  the  different  research  directions  are  expected  and  essential  to  attain  the  previous  objectives.  To   name   just   a   couple   of   illustrative   examples,   detection   and   state-­‐preparation   techniques  developed   in   the   context   of   quantum   communication  will   find   an   application   in   sensing   scenarios,  and  error-­‐correction   techniques  developed   in   the  context  of  quantum  computation  will  be  needed  for   the  certification  of  quantum  simulations.   In  this  sense,   the  role  of  basic  science  and  theoretical  new   ideas   is   essential,   as   new  disruptive   theoretical   proposals   can   significantly   boost  many  of   the  previous  promising  applications  of  quantum  technologies.  Progress  in  all  of  these  areas  is  reliant  on  fundamental  research  to  improve  and  find  new  enabling  technologies  and  concepts.    

Quantum  technologies  are  already  present  in  the  current  work  programme.  Recently,  there  has  been  a  proactive  call  on  quantum  simulation.  There  are  also  explicit  mentions  to  quantum  concepts  in  the  work  programme:  in  ICT  25  -­‐  2015:  Generic  micro-­‐  and  nano-­‐electronic  technologies,  projects  may  include  activities  “related  to  modelling  and  simulation:  e.g.  quantum  and  atomic  scale  effects”  or  study  “new  computing  paradigms  like  quantum  computing”;  in  ICT  26  -­‐  2014:  Photonics  KET,  new  device  concepts  “based  on  quantum  optics  or  quantum  technologies”  are  mentioned  in  the  context  of   disruptive   sensing   technologies;   finally,   in   ICT   32-­‐2014:   Cybersecurity,   Trustworthy   ICT,   post-­‐quantum  key  distribution  and  several  aspects  of  QKD  appear.  

In   our   vision,   the   framework   programme   for   the   next   years   is   a   key   funding   mechanism   to  support   and   unite   all   the   previous   research   activities,   from  basic   theoretical   research   to   industrial  applications.   In   this   sense,   we   expect   quantum   technologies   to   gain   an   even  more   visible   role   in  future  research  funding  in  Europe.  A  proactive  call  on  quantum  technologies,  complementary  to  the  recent  one  on  quantum  simulations,   is  timely  and  can  help   in  bringing  the  developments  described  above   much   closer   to   applications.   As   mentioned,   theoretical   ideas   should   remain   visible   in   the  programme,   as   we   are   still   far   from   understanding   all   that   quantum   properties   can   offer   for  technological  purposes.   Finally,  we  also  expect  quantum  aspects   to   increase   their   relevance   in   the  photonics,   security   and   nano-­‐technologies   programs.   For   instance,   the   possibility   of   self-­‐certified  protocols   using   device-­‐independent   techniques   brings   cryptographic   applications   to   a   significantly  stronger   level   of   security  where   a  much   lower   level   of   trust   is   needed  on   the   provider.   Also,   new  photonic  devices  operating  at  the  quantum  scale  will  emerge  from  the  research  effort   in  photonics  and  nano-­‐technologies.  In  this  sense,  calls  in  these  programs  parallel  to  those  in  FET  can  be  expected  to  deliver  a  major  synergy  effect.  

Let  us  conclude  by  mentioning  that  bridging  the  gap  between  blue-­‐sky  research  and  applications  will  take  time  and  several   iterations.   It  should  also  be  understood  at  this  early  stage  of  researching  

Page 30: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     30  

quantum  technologies   that   in  all   likelihood   there  will  not  be  one  single   solution,  but  many,  on   the  way  to  developing  this  key  enabling  technology  of  the  21st  century  and  to  build  a  quantum  industry.  

 This  memorandum  is  endorsed  by  

Nicolas  Gisin   (Director,  VI  of  Quantum  Communication),  Rob  Thew  (Executive  Secretary,  VI  of  Quantum  Communication),  Juan-­‐Ignacio   Cirac   (Director,   VI   of   Quantum   Computation),  M.  Wolf   (Executive   Secretary,   VI   of   Quantum   Computation),  Peter  Zoller  (Director,  VI  of  Quantum  Information  Science),  Antonio  Acin  (Executive  Secretary,  VI  of  Quantum  Information  Science),   Immanuel   Bloch   (Director,   VI   of   Quantum   Simulation),   Stefan   Kuhr   (Executive   Secretary,   VI   of   Quantum  Simulation),   Ian   Walmsley   (Director,   VI   of   Quantum   Metrology,   Sensing,   and   Imaging),   Konrad   Banaszek   (Executive  Secretary,   VI   of  Quantum  Metrology,   Sensing,   and   Imaging);   QUTE-­‐EUROPE   External   Advisory   Board:   Rainer   Blatt,   Harry  Buhrman,   Nicolas   Cerf,   Artur   Ekert,   Atac   Imamoglu,   Massimo   Inguscio,   Sir   Peter   Knight,   Leo   Kouwenhoven,   Maciej  Lewenstein,  Martin   Plenio,   Eugene   Polzik,   Gerhard   Rempe,   Reinhard  Werner,   Anton   Zeilinger;   Tommaso   Calarco   (QUTE-­‐EUROPE  Roadmap  coordinator),  Daniele  Binosi  (QUTE-­‐EUROPE  Executive  Secretary)  

 

   

Page 31: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     31  

Annex  B    

Virtual  Institute  Online  meeting    Date:  16.09.2014,  from  14:00  to  16:00  Place:  Virtual  meeting    Participants:  

1. Acin  Antonio  2. Banaszek  Konrad  3. Binosi  Daniele  4. Blatt  Rainer  5. Burhman  Harry  6. Buzek  Vladimir  7. Calarco  Tommaso  8. Cerf  Nicolas  9. Cirac  Ignacio  10. Gisin  Nicolas  11. Kouwenhoven  Leo  12. Kurh  Stefan  13. Lewenstein  Maciej  14. Polzik  Eugene  15. Steffen  Glaser  16. Thew  Rob  17. Walmsley  Ian  18. Werner  Reinhard  19. Willhelm  Frank  20. Zeiliger  Anton  21. Ziman  Mario  22. Zoller  Peter  

 

Agenda:  

Presentation  of  the  Quantum  Control  VI   Presentation  of  the  Quantum  Engineering  VI   Vote  on  the  new  virtual  institute  

 

Minutes:  

The  meeting  was  called  since  in  the  previous  year  the  need  of  a  restructuring  of  the  Virtual  Institutes  emerged  as  necessary  in  order  to  better  address  the  constant  evolution  of  the  Quantum  Technology  community.   The   meeting   started   with   the   presentation   of   the   possible   structure   of   the   virtual  institute   of   Quantum   Control.   After   a   brief   discussion,   the   second   new   virtual   institute,   Quantum  Engineering  was  presented.  To  this  followed  a  discussion  about  how  to  properly  integrate  these  new  insititutes  in  the  pre-­‐existing  structure.  One  of  the  main  point  under  discussion  was  how  to  properly  mark  the  difference   in  scope  between  the  new  and  the  old   institutes.  More  specifically,  one  of  the  

Page 32: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     32  

suggestions  was  to  have  the  Quantum  Engineering  Institute  as  an  overarching  structure,  supposedly  embracing   all   the   other   institutes,   thus   providing   them   with   the   relevant   engineering   expertise.  Albeit   it   was   acknowledged   that   it   was   relevant   to   have   such   an   institute,   especially   in   order   to  represent  area  of  the  community  that  were  considered  underrepresented,  there  was  not  a  general  consensus   on   how   to   proceed   in   these   sense.   Specifically,   a   fear   of   an   excessive   “virtual   institute  proliferation”  was  pointed  out.  Among  the  suggestions  made  to  avoid  this  issue,  there  was  also  the  proposal  to  merge  the  two  new  Virtual  institutes  into  a  single  one.  The  idea  however  was  discarded.  

The   Chairman,   Prof.   Tommaso   Calarco   called   for   an   explorative   vote   to   see   if   a   consensus   was  reached   at   least   on   the   creation   of   the   two   new   virtual   institutes.   However,   while   the   Quantum  Control  structure  displayed  a  large  number  of  positive  votes,  the  same  was  not  true  for  the  Quantum  Engineering  institute.  Many  of  those  who  expressed  themselves  against  it,  stated  that  this  was  due  to  the   fact   that   it   was   still   not   clear   how   this   Virtual   Institute  would   place   itself   with   respect   to   the  Quantum  Control  one.  

Given   this   fact,   it  was  decided   that  a   restricted  physical  meeting  was  needed   to   clear  all   the  open  question.  Consequently,  it  was  decided  that  the  QUTE-­‐EUROPE  steering  committee,  with  the  addition  of   some   representative   from   the   involved   part   of   the   community,  would   be   an   adequate   body   to  decide  over  this  matter.    

Page 33: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     33  

Annex  C    

QUTE-­‐EUROPE  meeting    

Date:  20.10.2014,  from  10:30  to  16:30  Place:  Max  Planck  Institute  for  Quantum  Optics  (Garching,  Munich,  DE)    Participants:  

1. Acin  Antonio,  2. Binosi  Daniele  (video  conference  contribution),  3. Blatt  Rainer  (video  conference  contribution),  4. Bloch  Immanuel,  5. Calarco  Tommaso,  6. Cirac  Ignacio,  7. Esteve  Daniel,  8. Gisin  Nicolas,  9. Glaser  Steffen,  10. Inguscio,  Massimo,  11. Kouwenhoven  Leo,  12. Polzik  Eugene,  13. Versleijen  Anouschka,  14. Walmsley  Ian  (video  conference  contribution)  15. Wrachtrup  Jörg,  16. Zoller  Peter  (video  conference  contribution),    

 Agenda:  

Structuring  the  Field  of  Quantum  Technologies  at  European  Level:  Quantum  Clusters  and  Virtual  Institute  

Involving  National  Funding  Organisations   Updating  the  QT  whitepaper  and  Roadmap.  

 

Minutes:  

This  meeting  was  a  continuation  of  the  virtual  meeting  of  the  17th  of  September.  The  meeting  saw  as  participants  the  QUTE-­‐Europe  steering  committee  with  some  additional  invited  experts  representing  different  parts  of  the  community.  

The  first  part  of  the  discussion  revolved  around  the  future  structure  of  the  Virtual  Institute  in  order  to  broaden  the  scope  and  cover  rapidly  growing  areas  of  the  Quantum  Technologies  field.  During  the  meeting,  the  need  for  a  virtual  institute  for  Quantum  Engineering  and  for  Quantum  Control,  was  re-­‐asserted.   From   this   point   the   discussion   revolved   around   the  possible  way   to   integrate   these  new  institutes  “organic”  with  the  pre-­‐existing  one.  A  structure  similar  to  the  one  already   into  place  was  selected  with  the  old  institutes  acting  as  “vertical  structures”,  whereas  the  new  ones  would  be  of  the  horizontal   type   instead,   having   (due   to   their   cross-­‐disciplinal   nature)  points  of   contact  with   all   the  

Page 34: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     34  

existing   ones.   This   difference   is   reflected   also   in   the   name,   which   has   been   chosen   to   be   Virtual  Facilities.  The  Virtual  Institutes  would  also  undergo  a  large  restructuring.  The  first  issue  that  needed  to   be   addressed   was   the   limited   representation   of   the   Solid   State   community   within   them.   The  assembly  decided  that  it  would  be  wise  to  expand  the  number  of  people  directly  involved  in  each  VIs.  In  particular,  it  was  decided  that,  along  with  the  Director  and  the  Executive  Secretary  each  Institute  should  have  from  2  to  5  additional  members,   in  order  to  better  represent  all   the  different  areas  of  the   community.   Finally,   some   of   the   Director   and   Executive   Secretary  were   also   shifted   from   one  virtual  institute  to  another.  

The  new  directorships  suggested  were  the  following:  

Coordinator   A.  Acin                      Virtual  Institute   Computation   Simulation   Communication   Sensing   Theory  

           Director   D.  Esteve   I.  Bloch   N.  Gisin   I.  Walmsley   I.  Cirac  Executive  Secretary  

A.  Wallraff   S.  Kuhr   R.  Thew   K.Banaszek   M.  Wolf  

           Virtual  Facility   Engineering   Control        

  C.  Marcus   S.  Glaser           J.  Morton   F.  Wilhelm          

As  far  as  the  new  VI  members  were  concerned,  it  was  decided  that  they  would  be  nominated  via  an  online   pool.   The   election   of   the   Directors   of   the   Virtual   Facilities,   their   executive   secretaries   and  members,   were   also   postponed   to   a   future   meeting   since   the   matter   required   some   additional  consultation.  

Finally,  given  all  the  structural  changes,  an  update  to  the  QT  White  Paper  and  to  the  Roadmap,  was  considered  necessary,  in  order  to  better  reflect  the  new  structure.  The  Virtual  Institute  were  tasked  to   come   up   with   updated   information   concerning   the   part   of   their   work   connected   with   the  aforementioned   documents,   and   possibly   consults   with   the   new   members   as   soon   as   they   got  elected.  

The  final  Part  was  dedicated  to  the  discussion  of  future  direction  of  the  Community.  On  the  table  it  was   presented   the   need   to   address   the   issue   generated   by   the   google   announcement   of   the  development   of   a   Quantum   computer   (which   still   leaves   a   lot   of   doubt)   and   what   this   announce  means  for  the  future  of  Quantum  technology.  Some  of  the  attendee  stressed  the  need  to  step  up  on  the  technological  side.    

The  attendee  openly  discussed  also  the  opportunity  of  a  flagship  and  the  possible  reception  of  such  proposal  from  the  Quantum  Technology  community.  In  this  sense,  other  options  were  discussed  to,  such  as  the  chances  for  a  QT  project   in  a  possible  ERANET  call,  as  well  as  the  possible  contact  with  the  venture  capital  world.  

Page 35: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     35  

Annex  D  

 

Chalmers  contribution  to  the  FET  online  consultation    

Quantum   computing   research   is   progressing   fast   on   a   global   scale   and   starts   making   a   transition  towards  engineering  and  industry  outside  Europe.  Globally,  the  field  of  Quantum  Technologies  (QT)  is  entering  a  stage  where  large  resources  are  put  into  engineering  of  devices  and  systems  in  a  quest  for   ground-­‐breaking   applications   in   quantum   computing,   simulation,   and   communication.   The  competition   is   becoming   fierce,   and   major   resources   are   invested   in   USA,   Canada   and   Japan   in  powerful  collaborations   to  achieve  breakthroughs   in   fault-­‐tolerant  computing.  The  concept  of  "The  European  Dimension",  i.e.  fairly  loose  EU  collaborations  without  adequate  funding  at  the  R&D  level,  is  no  longer  enough  to  stay  competitive  in  the  QT  field.  Europe  is  already  falling  behind.  

Superconducting  circuits  (specifically  transmon-­‐cQED  with  coherence  times  in  the  100  microseconds  range)   are   now   being   scaled   up   to   systems   with   10-­‐20   qubits   and   beyond.   Europe   is   in   the   very  frontline  when   it   comes   to   fabrication  and  operation  of   small  experimental   systems,  aiming   for  10  qubits  within  1-­‐2  years.  However,  the  next  step,  scaling  up  to  20+  qubits  will  involve  an  engineering  effort   requiring   orders   of   magnitude   larger   resources   than   presently   available.   Moreover,   it   will  require  training  of  a  new  kind  of  engineers,  and  it  must  involve  industrial  fabrication.    

In  Europe  we  must  therefore  urgently  face  the  question  of  how  to  create  a  sustainable  development  of  quantum  information  processing  (QIP)  and  communication,  and  how  to  provide  the  resources  for  scaling  up  QT  platforms,  both  solid-­‐state  and  AMO  ones.  

To  this  end  it  is  necessary  to  realise  that  we  are  ultimately  talking  about  focused  efforts  at  the  level  of  a  flagship  -­‐  a  QT  Flagship  -­‐  with  strong  commitment  from  industry  and  national  funding  agencies.  A  limited   proactive   programme   during   2016-­‐17   can   certainly   contribute   to   many   exciting  achievements,  but   cannot  define  a  >  10-­‐year  QT   strategy  and  provide   the   corresponding   funding   -­‐  this  will  take  a  QT  Flagship,  or  a  comparable  effort.  A  QT  Flagship  will  no  doubt  be  needed  in  order  to  be  able  to  engage  and  develop  European  industry  and  to  create  a  unified  approach  involving  national  funding  agencies.  A  QT  Flagship  will  also  be  able   to   include  and   integrate  a  variety  of   fundamental  quantum  research  activites  in  purposeful  way.  

An  important  aspect  of  QT  is  high-­‐performance  computing  (HPC).  It  is  obvious  that  running  quantum  computers  and  simulators  will  involve  classical  frontends  and  processing,  and  in  the  future,  quantum  processors   will   most   likely   in   practice   be   accelerators   embedded   in   classical   HPC   (cHPC)   systems.  Nevertheless,  for  efficiency,  the  classical  integration  needed  should  be  developed  within  (or  directed  by)   a   QT   Flagship,   and   there   is   no   clear   foundation,   within   the   foreseeable   future,   for   QT-­‐cHPC  project  integration.    

New   computing   paradigms   are   required   for   information   processing   including,   for   example,  neuromorphic   computing,   quantum   computing,   chemical   and   molecular   computing,   quantum  computing   by   molecular   spin   clusters   and   bio-­‐inspired   computing,   among   others.   Solid-­‐state  quantum  computing  and  neuromorphic  computing  could  become  embedded  in  digital  environments  

Page 36: WP2 deliverables 22 - Quropequrope.eu/system/files/WP2 - Deliverables 22.pdf · QUTE%EUROPE)Deliverable)D2.2))))Second)year)WP2)progress)report)) 1) QUTE%EUROPE)(600788) DELIVERABLED2.2)

QUTE-­‐EUROPE    Deliverable  D2.2          Second  year  WP2  progress  report     36  

via  digital-­‐analogue  hardware  and  software   interfaces.  The  target  would  be  to  create  useful  hybrid  systems  capable  of  adaptive  learning.    

Actually,   recent  QIP  development  makes   use  of   quantum  neuromorphic   algorithms   (classifiers)   for  machine   learning   involving  optimisation   and  pattern   recognition   in   big   (quantum)  data  bases.   This  underlines  that  a  QT  flagship  needs  to  incorporate  a  broad  field  of  computer  science.  

Finally  there  is  the  issue  of  the  D-­‐Wave  Systems  company:  D-­‐Wave  has  developed  several  systems  of  512   superconducting  qubits  used   for  quantum  annealing   (analog   computing;  optimisation),   a   1000  qubit  system  is  in  the  pipeline,  and  2000  qubits  in  the  near  future.  D-­‐Wave  is  supported  by  venture  capital,   Google,   NASA,   NSA,   Lockheed-­‐Martin,   ....   and   has   sold   2   machines   to   Lockheed-­‐Martin  (placed  at  USC)  and  to  NASA-­‐Ames.  Google  is  developing  software  for  optimisation,  and  testing  the  machine.  The  machines  currently  basically  do  not  outperform  classical  PC-­‐machines  with  optimized  annealing   software,   but   the   superconducting   technology   is   groundbreaking,   and   the   scaling-­‐up   is  "easy",  because  the  qubit  arrays  are  not  coherent.  (See  also  the  comments  by  Daniel  Esteve).  Time  will   show   whether   the   D-­‐Wave   machines   are   worth   the   money.   The   bottom   line   is   that   D-­‐Wave  represents  a  kind  of  entrepreneurship  that  simply  does  not  exist  in  Europe,  but  efforts  at  that  scale,  or  larger,  are  essential  for  QT-­‐Europe  to  prevail.  A  QT-­‐flagship  would  have  to  be  the  European  way  to  go,  because  venture  capital  and  industry  involvement  at  the  needed  scale  do  not  exist   in  Europe  at  the  present   time.   It   should  be  noted  that  D-­‐Wave  has  worked  during  10  years   to   reach   its  present  level.   In   Europe,   it   seems   that   the  EC  and  public   funding  must   lead   the  way   via   a  QT-­‐flagship   that  then  can  develop  the  needed  commitments  and  funding  in  a  relatively  short  time.