www.iitj.ac.in csp material 20dec refrigeration

Upload: warren-rivera

Post on 02-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    1/126

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    2/126

    SOLAR ENERGY

    PHOTOVOLTAIC ORGANIC RANKINE SOLAR THERMAL

    CYCLE

    VAPOUR COMPRESSION

    REFRIGERATION

    VAPOUR ABSORPTION VAPOUR JET

    REFRIGERATION REFRIGERATION

    VAPOUR COMPRESSION THERMOELECTRIC

    REFRIGERATION REFRIGERATION

    12/27/2013 Solar Refrigeration : Current Statusand Future Trends

    2

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    3/126

    SOLAR VAPOUR COMPRESSIONREFRIGERATION SYSTEM

    12/27/2013 Solar Refrigeration : Current Statusand Future Trends

    3

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    4/126

    12/27/2013 Solar Refrigeration : Current Statusand Future Trends

    4

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    5/126

    SOLAR VAPOUR COMPRESSION REFRIGERATION SYSTEM12/27/2013 Solar Refrigeration : Current Statusand Future Trends

    5

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    6/126

    12/27/2013

    Fig. 3 Comparison of mass flow rate for R12 and R134a

    Solar Refrigeration : Current Statusand Future Trends

    6

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    7/126

    12/27/2013

    Fig. 4 Comparison of compressor capacity for R12 and R134a

    Solar Refrigeration : Current Statusand Future Trends

    7

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    8/126

    12/27/2013

    Fig. 5 Comparison of power requirement for R12 and R134a

    Solar Refrigeration : Current Statusand Future Trends

    8

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    9/126

    12/27/2013

    Fig. 6 Comparison of COP for R12 and R134a

    Solar Refrigeration : Current Statusand Future Trends

    9

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    10/126

    Intermittent solar Refrigeration System

    12/27/2013 Solar Refrigeration : Current Statusand Future Trends

    10

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    11/126

    12/27/2013

    Fig. 7 Basic Intermittent Absorption Refrigeration System

    Solar Refrigeration : Current Statusand Future Trends

    11

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    12/126

    A solar refrigerator capable producing of 250kg of ice

    per day reported by Kirpichev and Baum (1954) which isoperated by a vapour compression principle. Steam is

    used as working fluid which produced by a cylindrical

    parabolic concentrators.

    A intermittent solar refrigerator of production capacity 6

    kg per ice per day built by Trombe and Foex (1957),

    working on vapour absorption principle and ammonia-

    water combination used as working fluid. Willam et al (1957) tried different refrigerant-absorbent

    combination like methonol-silicagel, accetone-silicagel,

    ammonia-water etc, for a small food cooler working on

    intermittent cycle.12/27/2013 Solar Refrigeration : Current Statusand Future Trends 12

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    13/126

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    14/126

    Muradov and Shadie (1971)investigated an intermittent

    absorption solar refrigerator with ammonia-calciumchloride. A sub-zero evaporator temperature reported

    which obtained within 1-2 hours from starting of

    refrigeration process.

    A solar refrigerator of 5 ton capacity working on

    absorption principle with NH3-H2O working fluid

    reported, Farber (1973).

    Swartman et al (1973) have reported experimental resultson an intermittent solar refrigerator which built based on

    two vessel system, one for generator cum absorber and

    other condenser and evaporator. NH3-H2O and NH3-

    NaSCN solution used as working fluid.12/27/2013 Solar Refrigeration : Current Statusand Future Trends 14

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    15/126

    A LiBr-H2O intermittent absorbent refrigeration

    system theoretical studied and its performancepredicted as a function of initial and finaltemperature of generator and condenser by Perry(1975).

    A theoretical and experimental study on NH3-H2Osolar refrigerator carried out by Venkatesh et al(1978) and its performance predicted as a function ofgenerator temperature, condenser temperature andinitial solution con concentrations.

    Ali Mansoori and Vinod Patel(1979) studiedtheoretically and computed the performance of vapour absorption cycle as a function of generator,atmospheric and evaporator temperatures.

    12/27/2013 Solar Refrigeration : Current Statusand Future Trends

    15

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    16/126

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    17/126

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    18/126

    12/27/2013 Solar Refrigeration : Current Statusand Future Trends

    18

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    19/126

    12/27/2013 Solar Refrigeration : Current Statusand Future Trends

    19

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    20/126

    12/27/2013 Solar Refrigeration : Current Statusand Future Trends

    20

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    21/126

    EXPERIMENTAL SET-UP

    12/27/2013 Solar Refrigeration : Current Statusand Future Trends

    21

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    22/126

    Fig. EXPERIMENTAL STUDIES ON TWO VESSEL12/27/2013 Solar Refrigeration : Current Statusand Future Trends 22

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    23/126

    12/27/2013

    Table 1. Experimental

    performance of twovessel intermittent

    system

    Solar Refrigeration : Current Statusand Future Trends

    23

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    24/126

    COLLECTOR WITH MIRROR BOOSTERS12/27/2013 Solar Refrigeration : Current Statusand Future Trends 24

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    25/126

    12/27/2013 Solar Refrigeration : Current Statusand Future Trends

    25

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    26/126

    12/27/2013

    Fig.15 Thermodynamic cycle for single stage intermittent solar

    refrigerator

    Solar Refrigeration : Current Statusand Future Trends

    26

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    27/126

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    28/126

    12/27/2013

    Fig. 19 Effect of tc and tg on COP of single stage system

    Solar Refrigeration : Current Statusand Future Trends

    28

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    29/126

    SOLAR REFRIGERATOR12/27/2013 Solar Refrigeration : Current Statusand Future Trends 29

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    30/126

    SOLAR REFRIGERATOR WITH INSULATION12/27/2013 Solar Refrigeration : Current Statusand Future Trends 30

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    31/126

    Fig. EXPERIMENTAL STUDIES ON SINGLE STAGE

    INTERMITTENT SOLAR REFRIGERATOR12/27/2013 Solar Refrigeration : Current Statusand Future Trends 31

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    32/126

    Fig. EXPERIMENTAL STUDIES ON SINGLE STAGE

    INTERMITTENT SOLAR REFRIGERATOR12/27/2013 Solar Refrigeration : Current Statusand Future Trends 32

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    33/126

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    34/126

    12/27/2013

    Fig. 25 Effect of increase in condenser temperature on single stage

    intermittent solar refrigerator

    Solar Refrigeration : Current Statusand Future Trends 34

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    35/126

    12/27/2013 Solar Refrigeration : Current Statusand Future Trends 35

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    36/126

    12/27/2013 Solar Refrigeration : Current Statusand Future Trends 36

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    37/126

    12/27/2013

    Fig. 30 Effect of tgh and volume ratio on COP of two stage system

    Solar Refrigeration : Current Statusand Future Trends 37

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    38/126

    12/27/2013

    Fig. 31 Effect of tgh and x1 on COP of two stage system

    Solar Refrigeration : Current Statusand Future Trends 38

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    39/126

    TWO-STAGE INTERMITTENT SOLAR

    REFRIGERATOR (FRONT VIEW)12/27/2013 Solar Refrigeration : Current Statusand Future Trends 39

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    40/126

    TWO-STAGE INTERMITTENT SOLAR

    REFRIGERATOR (REAR VIEW)

    12/27/2013 Solar Refrigeration : Current Statusand Future Trends 40

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    41/126

    TWO STAGE INTERMITTENT SOLAR REFRIGERATOR

    GENERATION PROCESS12/27/2013 Solar Refrigeration : Current Statusand Future Trends 41

    TWO STAGE INTERMITTENT SOLAR REFRIGERATOR

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    42/126

    TWO STAGE INTERMITTENT SOLAR REFRIGERATOR

    REFRIGERATION PROCESS

    12/27/2013 Solar Refrigeration : Current Statusand Future Trends 42

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    43/126

    12/27/2013

    Fig. 35 Comparison of predicted and experimental performance

    characteristics of two stage solar refrigerator

    Solar Refrigeration : Current Statusand Future Trends 43

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    44/126

    Triple Fluid Vapour AbsorptionRefrigerator

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    44

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    45/126

    PLATEN-MUNTERS ABSORPTION SYSTEM

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    45

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    46/126

    Platen and Munters[1926] modified the existingrefrigerators that utilized solely the heat in

    practice. Electrolux Inc. took up the responsibility

    of commercial production of it. Later on, further

    modifications were being added and refrigerators

    were then assigned with different names,Triple

    Fluid Vapour Absorption Refrigerator,

    Absorption-Diffusion Refrigerator,Pumpless Continuous Action Absorption

    Refrigerator, etc.

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    46

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    47/126

    Nesselmann[1933] conducted theoretical

    investigations on the gas circuit ofTFVAR

    with an ideal operating conditions. Heignored the propulsion force required for the

    circulation of the gas mixture and diffusion

    effects in evaporator and absorber, butclarified the influence of the circulation rate

    of the gas mixture and Gas Heat Exchanger

    (GHE) efficiency.12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    47

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    48/126

    Miller et al[1946], Nesselmann[1933]andBackstorm[1956] proposed Helium as analternative for Hydrogen because of its lowerspecific heat and hence height differencebetween evaporator and condenser requiredwill be more.

    Young and Makiya[1983] illustrated thatCOPs are higher at higher evaporator loads .Helium yield lower COP at lower loads.

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    48

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    49/126

    Watts and Gulland[1958] experiments

    proposed a noticeable increase in

    refrigerating effect when TFVAR wasoperated at low unit pressure and higher

    evaporator temperature. It involved force,

    natural and restricted gas flows through thecircuit at pressures: 11.4 and 16.7 bar and

    mean evaporator temperature 00C,-100C and

    -200C.12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    49

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    50/126

    Martynovsky et al[1973] suggested anincrease in the COP of TFVAR by cooling theweak gas mixture from absorber temperatureto the ambient temperature prior to its gas heatexchanger entry.

    Shpilevoy[1982] and Almen[1983] have

    reported the usage of the special tubes withinternal capillary incision for evaporator toincrease the mass transfer area.

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    50

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    51/126

    Narayanhedkar and Maiya[1985] worked

    for the increase in optimum power input to

    the TFVAR and also refrigerating effectwith the inert gas charge pressure which

    validates the results of Watts and

    Gulland[1957] and Prasad[1986].

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    51

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    52/126

    Maiya[1988] carried out theoretical andexperimental investigations of Triple Fluid

    Vapour Absorption Refrigerator which

    concluded following results:

    Helium as a better substitute to hydrogen as

    inert gas with corresponding increase in the

    height difference in evaporator and condenser.

    However, hydrogen does marginally better for

    the same height difference.

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    52

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    53/126

    Major Components of Triple Fluid Vapour Absorption

    Refrigerator

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    53

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    54/126

    Evaporator of Triple Fluid Vapour Absorption

    Refrigerator

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    54

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    55/126

    Transfer Tank operated VapourAbsorption Refrigeration System

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    55

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    56/126

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    56

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    57/126

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    58/126

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    58

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    59/126

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    59

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    60/126

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    60

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    61/126

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    61

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    62/126

    TRANSFER TANK OPERATED VARS

    (FRONT VIEW)

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    62

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    63/126

    TRANSFER TANK OPERATED VARS

    (REAR VIEW)12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    63

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    64/126

    EFFECT OF GENERATOR TEMPERATURE ON TRANSFER

    TANK VAPOUR FLOW12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    64

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    65/126

    EFFECT OF GENERATOR TEMPERATURE ON

    CIRCULATION RATIO12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    65

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    66/126

    EFFECT OF GENERATOR TEMPERATURE ON COP12/27/2013 Solar Refrigeration : Current Statusand Future Trends

    66

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    67/126

    SOLAR VAPOUR ABSORPTION

    REFRIGERATION SYSTEMS

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    67

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    68/126

    A water cooling VAR system used R22-DMF as

    working fluid built by Agarwal and Sabti (1982),capacity of 60 kg of water per day from 30C to 15C.

    A theoretical study of NH3-H2O two stage absorption

    system with high generator temperature range 100C to

    170C by Jhonston(1980). He suggested that the

    performance of the system improve than a steady state

    system by using evacuated tubular collectors.

    Keizer (1982) reported a theoretical and experimentalanalysis of single and two stage ammonia-water

    absorption system. He also made a detailed study about

    film and vertical tubular bubble absorber and compared

    the obtained result12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    68

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    69/126

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    70/126

    T20

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    71/126

    Condenser

    R134a liquid

    receiver

    Hot water

    thermostat

    Cooling water

    thermostat

    Cooling load

    simulator(Chilled water)

    Water

    pump

    Water

    pump

    Water

    pump

    Generator

    Solution

    heat exchanger

    Absorber

    Evaporator

    R134a refrigerant line

    R134a-DMF Solution line

    Water line

    Absorber

    storage

    tank Solution

    pump

    Generator

    storage

    tank

    F

    T4

    P4

    P1

    T1

    P2

    T2

    T3P3

    P5T5

    T8 P8

    T9

    P9

    T7 P7

    P6 T6

    Hand shut-off valve

    Capillary tube

    Gate valve

    Ball valve

    Needle valve

    S

    F

    L

    P

    T

    Pressure gauge

    Temperature gauge

    Level gauge

    Filter/Drier

    Flow meter

    Online density

    meter

    S1

    S2

    S3

    S4

    S5

    S6

    T1 0 P1 0

    T11 P11

    P12T12

    P13

    T13

    T14 P14

    T15 T16

    T17

    T18

    T19

    T21

    T22

    HSV1HSV2

    HSV3HSV4

    NV1

    NV2

    NV3

    HSV5

    HSV6HSV7

    HSV8

    Throttle valve

    L3

    L2

    L1

    GV1

    GV2

    GV3

    GV4

    GV5

    GV6

    GV7

    GV8

    GV9

    GV10

    GV11

    GV12

    GV13

    GV14

    BV1

    BV2

    BV3

    BV4

    BV5

    BV6

    BV7

    BV8

    BV9

    BV10

    BV11

    Fig. 41 Schematic diagram of R134a-DMF based vapour absorption

    refrigeration system12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    71

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    72/126

    Generator

    Condenser

    Solution

    heat

    exchanger

    Hot water

    flow meter

    Hot water tank

    Generator

    receiver

    Data acquisition

    system

    MCB switch

    board

    Chilled water

    flow meter

    Liquid refrigerant

    receiver

    Fig.42 Experimental setup

    R134a-DMF vapour absorption refrigeration system

    Expansion

    device

    Liquid

    refrigerant

    flow meter

    Evaporator

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    72

    Liquid

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    73/126

    Fig.43. Experimental setup VARS with plate heat

    exchangers

    Liquid

    Refrigerant

    Flow meter

    Evaporator

    Cooling water tank

    with cooling coils

    Liquid

    refrigerant

    receiver

    Absorber

    Expansion

    devices

    Condensing unit

    for cooling watersystem

    Absorber

    receiver

    Chilled water

    tank

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    73

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    74/126

    Solution

    pump

    Chilled

    waterpump

    Cooling

    water

    pumpHot water

    pump

    Online

    density

    meter

    Fig.44 Solution pump, water pumps and online density meter12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    74

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    75/126

    Compressors

    Condenser fans

    Condensers

    Fig.45 Condensing unit for cooling water system12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    75

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    76/126

    R134a

    gas

    cylinder

    Mass

    flowcontroller

    Mass

    flow

    indicator

    0 - 5 V DC

    power

    supplyData

    Acquisition

    System

    24 V DC

    power

    supply

    Glass

    absorber

    Expt. set-up

    equiped with DAS

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    76

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    77/126

    Fig.59 Effect of generator temperature on strong and weak solution

    concentration difference at different evaporator temperatures

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    50 55 60 65 70 75 80 85 90 95

    Generator temperature,oC

    Differenceinstrongandweaksoln.concentratio

    ns,kgkg-1

    Evaporator temp. = -1.7 C

    Evaporator temp. = 4.2 C

    Evaporator temp. = 9.7 C

    Cooling capacity = 3.4 kW

    Condenser temperature = 21 C

    Absorber temperature = 19.7 C

    Experimental

    - - - - - Simulation

    o

    o

    o

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    77

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    78/126

    Fig. 60 Effect of generator temperature on circulation ratio at different

    evaporator temperatures

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    50 55 60 65 70 75 80 85 90 95

    Generator temperature,oC

    Circulationratio

    Evaporator temp. = -1.7 C

    Evaporator temp. = 4.2 C

    Evaporator temp. = 9.7 C

    Cooling capacity = 3.4 kW

    Condenser temperature = 21 C

    Absorber temperature = 19.7 C

    Experimental

    - - - - - Simulation

    o

    o

    o

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    78

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    79/126

    Fig. 61 Effect of generator temperature on coefficient of performance at

    different evaporator temperatures

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    50 55 60 65 70 75 80 85 90 95

    Generator temperature,oC

    CoefficientofPerformance,COP

    Evaporator temp. = -1.7 C

    Evaporator temp. = 4.2 C

    Evaporator temp. = 9.7 C

    Cooling capacity = 3.4 kW

    Condenser temperature = 21 C

    Absorber temperature = 19.7 C

    Experimental

    - - - - - Simulation

    o

    o

    o

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    79

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    80/126

    SOLAR VAPOUR JET

    REFRIGERATION SYSTEM

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    80

    Working Fluids

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    81/126

    Working fluids generally used in Jet refrigeration system areR11, R12, R-113, R-123, R-141b, R134a, R718b, and R717.

    Working fluids could be classified as wet and dry vapor byChang et al. [22]. Wet vapour experiences small droplets at theexit of the primary nozzle, and it undergoes two phasecondition. The small droplets block the hypothetical throat area

    and hits on the ejector walls, causing damage. It can be avoidedby slightly superheating the primary stream working fluid .

    Dry vapour is preferable compared to wet vapour. Comparativestudies on the performance of ejector refrigeration cycle with

    eleven refrigerants including water, halocarbon compounds(CFCs, HCFCs, and HFCs), a cyclic organic compound and anazeotrope were carried out by Da- Wen Sun [23]. Therefrigerants were used for achieving better performance of thesystem.12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    81

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    82/126

    One dimensional analysis contd.,

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    83/126

    Ozzane and Aidoun [6] carried out one dimensional analysis ofcompressible refrigerant flow of ejector based on forward

    marching technique for the solution of conservation equationsthrough computer simulation for R141b. Mixing chamberlength had a great impact over the performance by controllingthe shock wave occurrence and intensity, its length wasadjusted to bring supersonic mixed flow to near sonic

    conditions for maximum exit pressure.

    The performance of the ejector under critical operating modewas studied by Selvaraju and Mani [7] and also they comparedthe performance of the ejector with different environmental

    friendly refrigerants like R134a, R152a, R290, R600a andR717.. Among the refrigerants selected for analysis, R134agives a better performance and higher critical entrainment ratio.They observed that critical entrainment ratio increases withincrease in driving pressure ratio and decrease with increase in

    compression ratio. [8]12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    83

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    84/126

    One dimensional analysis contd.,

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    85/126

    Simulation of one dimensional analysis based on mass,

    momentum and energy balances was carried out Cizungu et al.[36] and validated the same with experimental results from

    literature. . Also they compared the system performance using

    the environmentally friendly working fluids like R123, R134a,

    R 152a and R717. The author suggests that the entrainment ratioand COP of the system depends on ejector geometry and

    compression ratio.

    One dimensional analysis contd.,

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    85

    Numerical CFD analysis

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    86/126

    Numerical CFD analysis

    Bartosiewicz et al. [14] carried out performance analysis of

    supersonic ejector using CFD analysis and experimental underdifferent modes, ranging from on-design to off-design

    condition. Six turbulence models namely, k-, RNG-k-, RSM

    and two k- were tested and compared with measurements

    from literature.

    The effect of suction tube which entrains secondary flow on

    entraining performance was studied by comparing the

    axisymmetric and 3- dimensional analysis by Pianthong et al.

    [21]. They concluded that the suction tube does not affect the

    overall performance of the system, because the flow velocity

    at the suction is very low.

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    86

    Numerical CFD analysis contd.,

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    87/126

    y ,

    Numerical analyses were performed with 3D axisymmetric

    geometry, with realizable k- model as a turbulence model[15].He studied the performance of the ejector with differentcombinations of primary nozzles throat diameter and exitdiameter, mixing chamber diameter, length of constant areamixing tube under varied operating conditions. The author [16]continued the work to explore the flow phenomena inside

    ejector.

    The influence of geometrical factors of steam ejector on theperformance was studied using CFD by Szabolcs et al. [17,18].The optimal area ratio fo the corresponding operating

    conditions could be achieved by adjusting the area ratio, by anadjustable spindle arrangement in the conventional ejectorsystem.

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    87

    Numerical CFD analysis contd.,

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    88/126

    Selvaraju and Mani [37] carried out performance analysiswith R134a using 3-Dimensional CFD analysis. Governingequations for mass, momentum, energy and turbulence modelswere solved using CFD technique.

    Riffat and Omer [12] have studied ejector refrigeration system

    using methanol as a working fluid, numerically using CFD andexperimentally. The results of the CFD analysis focused ondetermining the optimum ejector geometry for the givenoperating conditions. Rusly et al. [13] have studied the flow

    behavior of the ejector with 2D -CFD analysis.

    Scott [11] carried out CFD analysis of an ejector working withR245fa for cooling / refrigeration applications.

    y ,

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    88

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    89/126

    Two phase ejector contd.,

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    90/126

    Stefan Elbel [35] studied two-phase ejector used as an

    expansion device to reduce throttling losses The author listed

    the types of ejector based on the thermodynamic state of theworking fluid as shown in Table.

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    90

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    91/126

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    92/126

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    93/126

    P

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    94/126

    Fig. 2 Thermodynamic diagram of vapour jet refrigeration system

    4

    P

    1

    3

    ca b

    h

    2

    65

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    94

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    95/126

    Assembled view of the ejector components

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    95

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    96/126

    EJECTOR COMPONENTS OF VJRS12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    96

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    97/126

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    98/126

    12/27/2013

    Fig. 105 Meshed view of the ejector

    Solar Refrigeration : Current Status

    and Future Trends

    98

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    99/126

    12/27/2013

    Fig. 106 Shaded view of the ejector

    Solar Refrigeration : Current Status

    and Future Trends

    99

    Region of shock waves

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    100/126

    12/27/2013

    Fig. 109 Static pressure contour

    Pe = 4.15 e+05

    PaPc = 7.05 e

    +05 Pa

    Pg = 26.25 e+05 Pa

    Pe = 4.15 e+05

    PaPc = 7.05 e+05 Pa

    Pg = 30.00 e+05 Pa

    Pe = 4.15 e+05 Pa

    Pc = 7.05 e+05 Pa

    Pg = 32.35 e+05 Pa

    Solar Refrigeration : Current Status

    and Future Trends

    100

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    101/126

    12/27/2013

    Fig.110 Velocity vector

    Pe = 4.15 e+05 Pa

    Pc = 7.05 e+05 Pa

    Pg = 26.25 e+05 Pa

    ms-1

    Pe = 4.15 e+05 Pa

    Pc = 7.05 e+05 Pa

    Pg = 30.00 e+05 Pa

    Pe = 4.15 e+05 Pa

    Pc

    = 7.05 e+05 Pa

    Pg = 32.35 e+05 Pa

    ms-1

    ms-1

    Solar Refrigeration : Current Status

    and Future Trends

    101

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    102/126

    12/27/2013

    Fig. 111 Mach number

    Pe = 4.15 e+05 Pa

    Pc = 7.05 e+05 Pa

    Pg = 26.25 e+05 Pa

    Pe = 4.15 e+05 Pa

    Pc = 7.05 e+05 Pa

    Pg = 30.00 e+05 Pa

    Pe = 4.15 e+05 Pa

    Pc = 7.05 e+05

    PaPg = 32.35 e

    +05 Pa

    Solar Refrigeration : Current Status

    and Future Trends

    102

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    103/126

    12/27/2013

    Fig. 112 Distribution of static temperature

    Pe = 4.15 e+05

    PaPc = 7.05 e

    +05 Pa

    Pg = 30.35 e+05 Pa

    Pe = 4.15 e+05 Pa

    Pc = 7.05 e+05 Pa

    Pg = 32.35 e+05 Pa

    Pe = 4.15 e+05 Pa

    Pc

    = 7.05 e+05 Pa

    Pg = 35.81 e+05 Pa

    Solar Refrigeration : Current Status

    and Future Trends

    103

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    104/126

    12/27/2013

    Fig. 113 Variation of enthalpy

    Pe = 4.15 e+05 Pa

    Pc = 7.05 e+05 PaPg = 30.00 e

    +05 PaPe = 4.15 e+05 PaPc = 7.05 e

    +05 Pa

    Pg = 32.35 e+05 Pa

    Pe = 4.15 e+05 Pa

    Pc = 7.05 e+05 Pa

    Pg = 35.81 e+05 Pa

    Solar Refrigeration : Current Status

    and Future Trends

    104

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    105/126

    0.5T 278 0 K

    T

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    106/126

    12/27/2013

    Fig. 121 Effect of generator temperature on COP

    0

    0.1

    0.2

    0.3

    0.4

    335 340 345 350 355 360 365

    Generator temperature, K

    COP

    Te = 278.0 K

    = 280.5 K

    = 283.0 K

    = 285.5 K

    NA -MATc= 300 K

    Te

    Solar Refrigeration : Current Status

    and Future Trends

    106

    0.5

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    107/126

    12/27/2013

    Fig. 125 Effect of condenser temperature on entrainment ratio

    0

    0.1

    0.2

    0.3

    0.4

    300 302 304 306 308 310

    Condenser temperature, K

    Entrainmentratio

    g = 358 K

    = 361K

    Te= 283 K

    NA - MA

    Tg

    Solar Refrigeration : Current Status

    and Future Trends

    107

    0.3

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    108/126

    12/27/2013

    Fig. 127 Effect of condenser temperature on COP

    0

    0.1

    0.2

    300 302 304 306

    Condenser temperature, K

    COP

    = 358 K

    = 361 K

    Te= 280.5 K

    NA - MA

    Tg

    Solar Refrigeration : Current Status

    and Future Trends

    108

    0.6+10%

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    109/126

    12/27/2013

    Fig.128 Comparison of predicted and actual critical entrainment ratio

    Correlation for

    Critical entrainmentratio

    0

    0.2

    0.4

    0 0.2 0.4 0.6

    Predicted critical entrainment ratio

    A

    ctualcriticalentrainm

    entrati -10%

    968945.0202621.037332.027238.0 cdcritical

    RR

    Solar Refrigeration : Current Status

    and Future Trends

    109

    0.6

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    110/126

    12/27/2013

    Fig.129 Comparison of predicted and actual critical COP

    Correlation for

    Critical COP

    933787.0242682.0284386.0375976.0 cdcritical

    RRCOP

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.1 0.2 0.3 0.4 0.5 0.6

    Predicted critical COP

    ActualcriticalCO

    P

    -10%

    +10%

    Solar Refrigeration : Current Status

    and Future Trends

    110

    Payback Analysis

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    111/126

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    112/126

    Solar and electrical energy costs intersect at 6th year of operation which is

    the payback period.

    Cost comparison of solar and electrical

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    113/126

    refrigerator The total cost of a selected refrigerator for 10 years is

    = Rs.8390 + Rs. 62,052

    = Rs.70,442 /-

    For solar based refrigeration system the total initial

    cost is = Rs 39,340 The saving of cost in 10 years is with a difference of

    = 70,442 39,340

    = Rs. 31,102.

    saving per year is = Rs 31102.00

    Courtesy; Ravi Shankar Raman et al / VSRD I nternational Journal of M echanical,

    Auto. & Prod. Engg. Vol. 2 (1), 2012

    Performance and costs of various solarrefrigeration systems

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    114/126

    Main options of various solar refrigeration

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    115/126

    Main options of various solar refrigeration

    systems and their ranks

    The main options and the options are ranked according totheir reported performance and the required investmentsper kW cooling.

    Solar thermal with single-ef fect absorption systemappears to be the best option closely followed by the solarthermal with single-effect adsorption system and by thesolar thermal with double-effect absorption system optionsat the same price level.

    Solar thermo-mechanical orsolar photovoltaic options aresignificantly more expensive.

    Main options of various solar refrigeration

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    116/126

    Main options of various solar refrigeration

    systems and their ranks , contd..

    The vapour compression system and magnetic systems are

    the most attractive options followed by the thermo-

    acoustic andStirling systems .

    Desiccant systems and ejector systems will bemore

    expensive than the first three systems but since these

    systems require specific equipment their exact position is

    difficult to identify.

    Courtesy:D.S. Kima, C.A. Infante Ferreirab, Solar refrigeration options a

    state-of-the-art review,, I n t e r n a t i o n a l Journal o f R e f r i g e r a t i

    on, Vol 3, pp.1 31 5, ( 2 0 0 8 )

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    117/126

    Conclusions

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    117

    References

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    118/126

    [1] Huang, B.J., J.M. Chang, C.P. Wang and V.A. Petrenko,1999, A 1-D analysis ofejector performance, Int. J. Refrigeration, 22, 354364.

    [2] Huang,B.J., Chang.J .M, 1999, Empirical correlation of ejector design, Int. J.Refrigeration , 22, 379388.

    [3] Nakagawa. M , Marasigan. A.R, Matsukawa.T and Kurashina. A, 2011,Experimental investigation on the effect of mixing length on the performance of

    two-phase ejector for CO2 refrigeration cycle with and without heat exchanger, Int.Journal of Refrigeration , 34,1604-1613.

    [5] Seouk Park, I.L, 2009, Enhancement of entraining performance on thermal vaporcompressor for multi-effect desalination plants by swirl effects of motive steam,Numerical Heat Transfer, Part A , 56 : 406-421.

    [6] Ouzzane, M. and Z. Aidoun, 2003, Model development and numerical procedurefor detailed ejector analysis and design, App. Thermal Engineering, 23, 2337-2351

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    118

    References contd.,

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    119/126

    [7] Selvaraju. A and Mani.A, 2004, Analysis of a vapor ejector refrigeration systemwith environment friendly refrigerants, Int. Journal of Thermal Sciences 43, 915921.

    [8] Selvaraju, A. and A. Mani ,2004, Analysis of an ejector with environment friendlyrefrigerants, App. Thermal Engineering, 24, 827838.

    [9] He , S . Li ,Y . Wang, R.Z, 2009, Progress of mathematical modeling of ejector,Renewable and sustainable energy reviews, 13, 17601780.

    [10] Khalil .A, Fatouh .M , Elgendy. E, 2011 , Ejector design and theoretical study of

    R134a ejector refrigeration cycle, Int. J. Refrigeration, 34, 1684-1698.

    [11] Scott. D, Aidoun.Z, Bellache. O, and Ouzzane. M ,2009, CFD simulations of asupersonic ejector for use in refrigeration applications, in Proceedings of theInternational Refrigeration and Air Conditioning Conference at Purdue, paper 927.

    [12] Riffat, S.B. and Omer, R.B.,2001, CFD modeling and experimental investigationof ejector refrigeration system using methanol as refrigerant, International Journalof Energy Res, 25,115-128.

    [13] Rusly, E., Aye, L., Charters, W.W.S. and Ooi, A., 2005,CFD Analysis of Ejector in aCombined Ejector CoolingSystem, Int. J. Refrigeration, 28, pp. 1092-1101

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    119

    References contd.,

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    120/126

    [14] Amel Hemidi, Franois Henry, Sebastien Leclaire, Jean-Marie Seynhaeve andYann Bartosiewicz, 2009, CFD analysis of a supersonic air ejector. Part I:Experimental validation of single-phase and two-phase operation, Applied Thermal

    Engineering 29 , 15231531.

    [15] Sriveerakul.T, Aphornratana,S and Chunnanond, K, 2007 , Performance predictionof steam ejector usingcomputational fluid dynamics: Part 1. Validation of the CFDresults, Int. Journal of Thermal Sciences 46, 812-822.

    [16] Sriveerakul.T, Aphornratana S, Chunnanond. K, 2007, Performance prediction ofsteam ejector using computational fluid dynamics: Part 2. Flow structure of a steamejector influenced by operating pressures and geometries, Int. Journal of ThermalSciences 46, 823- 833.

    [17] Szabolcs Varga et al, 2011, Experimental and numerical analysis of a variable arearatio steam ejector, Int. Journal of Refrigeration, 3 4, 1668 -1675.

    [18] Szabolcs Varga, Armando C. Oliveira and Bogdan Diaconu, 2009, Numerical

    assessment steam ejector efficiencies using CFD, Int. Journal of Refrigeration, 32,1203-1211.

    [19] Eames, I.W., Aphornratana. S and Haider. H, 1995, A theoretical and experimentalstudy of small scale steam jet refrigerator, Int. J. Refrigeration, 18, 378-386.

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    120

    References contd.,

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    121/126

    [20] Meyer A. J, Harms. T.M, Dobson R.T., 2009, Steam jet ejector cooling poweredby waste or solar heat, Renewable Energy 34 297306.

    [21] Pianthong. K, Seehanam. W, Behnia. M, Sriveerakul. T and Aphornratana. S, 2007,Investigation and improvement of ejector refrigeration system using computationalfluid dynamics technique, Energy Conversion and Management, 48 ,25562564.

    [22] Chang, Y.-J., Chen, Y.-M., 2000, Enhancement of a steam-jet refrigerator using anovel application of the petal nozzle, Exp. Therm. Fluid Sciences, 22, 203211.

    [23] Sun, DA-Wen, 1996, Variable geometry ejectors and their applications in ejectorrefrigeration system, Energy, 21, 919-929.

    [24] Bouhanguel. A, Desevaux . P, Gsvignet. E ,2009, Flow visualization insupersonic ejectors using Laser Tomography techniques, Int. Seminar on ejector/jet pump technology and application, Belgium , Paper no. 16.

    [25] Seouk Park, I.L,2010, Numerical investigation of entraining performance and

    operational robustness of thermal vapor compressor having swirled motive steaminflow, Desalination, 257, 206211.

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    121

    References contd.,

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    122/126

    [26] MyoungKuk Ji , Tony Utomob, JuSik Woo , YongHun Lee , HyoMin Jeong andHanShik Chung , 2010 , CFD investigation on the flow structure inside thermovapor compressor , Energy 35 ,26942702.

    [27] Kim. H.D , Lee.J.H , Setoguchi,T, Matsuo .S, 2006, Computational Analysis of aVariable Ejector Flow , J. of Thermal Science , Vol. 15, No.2.

    [28] Navid Sharifi , Masoud Boroomand and Majid Sharifi , 2013, Numericalassessment of steam nucleation on thermodynamic performance of steam ejectors,Applied Thermal Engineering 52 ,449-459.

    [29] Cizungu. K , Groll . M and Ling Z.G. , 2005, Modeling and optimization of two-phase ejectors for cooling systems, Applied Thermal Engg. 25 ,19791994.

    [30] Senthil Kumar ,Kumaraswamy and Mani. A, 2007, Analysis of mixingcharacteristics of flow in a two phase jet pump used in flash desalination system,Desalination 204, 437447.

    [31] Kanjanapon Chunnanond and Satha Aphornratana, 2004, Ejectors : Applications

    in refrigeration technology, Renewable and Sustainable Energy Reviews, 8, 129155.

    [32] Riffat. S. B, Jiang. L and Gan. G , 2005, Recent development in ejector technology-a review, International Journal of Ambient Energy, Volume 26,Number 1.

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    122

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    123/126

    References contd.,

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    124/126

    [39] Park I.S, 2009, Robust numerical analysis based design of the thermal vaporcompressor shape parameters for multi-effect desalination plants, Desalination

    242 ,245255.

    [40] Putilov, M.I ,1967, Calculation of optimal distance of nozzle from the mixingchamber in ejectors, Thermal Engineering, 14, 94-101.

    [41] Senthil Kumar .R, Kumaraswamy. S , Mani. A, 2007, Experimental investigationson a two-phase jet pump used in desalination system, Desalination , 437447.

    [42] Bo Zhang, Xutong Song, Jinsheng Lv, Jixue Zuo ,2012 , Study on the key ejectorstructures of the waste heat-driven ejector air conditioning system with R236fa asworking fluid", Energy and Buildings ,49 , 209215.

    [43] Praitoon Chaiwongsa and Somchai Wongwises, 2007, Effect of throat diameters of theejector on the performance of the refrigeration cycle using a two-phase ejector as an

    expansion device, Int. Journal of Refrigeration , 30, 601-608.

    [44] Charles A. Garris , Jr., Woo Jong Hong, Catherine Mavriplis and Jeremy Shipman,1998, ANew Thermally Driven Refrigeration System with Environmental Benefits, 33 rd IntersocietyEngineering Conference on Energy Conversion Colorado Springs, CO, August 2-6.

    12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    124

    Reference contd[45]Perry, E.H., The theoretical performance of the LiBr-H2O intermittent absorption

    f i ti l S l l 321 1975

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    125/126

    refrigeration cycle. Solar energy, vol. p.321, 1975.

    [46]Venkatesh, A. and Gupta, M.C., Analysis ammonia- water intermittent solar refrigerator operating with flat plate collector, International symposium and workshop

    on solar energy, June 1978, Cairo, Egypt.[47]Ramesh Chandra, Mahesh Chandra, Mehrota, R.K., Saini, J.S. and Gupta, C.P., and

    Fabrication of solar ice making machine, The international solar energy societycongress, New Delhi, India, January 1978.

    [48]Giri, N.K. and Barve, K.M., Solar ammonia-water absorption system for cold storageapplication, New Delhi, India, January 1978.

    [49]Ali Mansoori, G. and Vinod Patel, Thermodynamic basis for the choice of workingfluids for solar absorption cooling systems, Solar Energy, vol. 22, p. 483, 1979.

    [50]Flechon, J. and Machizaud, F., Solar refrigeration study of dry absorption, Solarenergy, vol. 27, p.583, 1981.

    [51]Agarwal, R.S. and Sobti, L.R.K., DMF-R22 intermittent solar powered water chillingsystem, NSEC 1982, Dec. 17-19, I.I.T., New Delhi, 1982.

    [52]Johnston, A.M., Ammonia-water absorption cycles with relatively high generator

    temperatures, Solar energy, vol. 25, p. 243, 1980.[53]Keizer, C., Absorption refrigeration machines, theoretical and experimental

    assessment of the performance of Aqua-ammonia absorption machines operated atmarginal conditions. Eg. when provided by solar on waste heat development of newtype of absorber. Ph.D thesis, Laboratory of Refrigeration and indoor climatetechnology, Dept. of Mech. Engg., Delft university of technology, Netherlands, April1982.12/27/2013 Solar Refrigeration : Current Status

    and Future Trends

    125

  • 8/10/2019 Www.iitj.Ac.in CSP Material 20dec Refrigeration

    126/126

    THANK YOU