x-ray liquid surface: experimental variety of liquid metal/vapor interfaces

25
X-ray Scattering: Liquid Metal/Vapor Interfaces P.S. Pershan SEAS & Dept of Physics, Harvard Univ., Cambridge, MA, US X-ray Liquid Surface: Experimental Variety of Liquid Metal/Vapor Interfaces Open questions on surface freezing of liquid metals Pershan/SNIP

Upload: reeves

Post on 24-Feb-2016

59 views

Category:

Documents


0 download

DESCRIPTION

X-ray Scattering: Liquid Metal/Vapor Interfaces P.S. Pershan SEAS & Dept of Physics, Harvard Univ., Cambridge, MA, US. X-ray Liquid Surface: Experimental Variety of Liquid Metal/Vapor Interfaces Open questions on surface freezing of liquid metals. Our Group . Colleagues (~20 years). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

X-ray Scattering: Liquid Metal/Vapor Interfaces P.S. Pershan

SEAS & Dept of Physics, Harvard Univ., Cambridge, MA, US

• X-ray Liquid Surface: Experimental• Variety of Liquid Metal/Vapor

Interfaces • Open questions on surface freezing of

liquid metals

Pershan/SNIP

Page 2: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Our Group.

• Colleagues (~20 years)

Pershan/SNIP

Balagurusamy, V. S. K.Berman, E. Deutsch, M. DiMasi, E. Fukuto, M. Gebhardt , J. Gog, T. Graber, T. Grigoriev, A.

Huber, P. Kawamoto, E. H. Kuzmenko, I. Lin, B. H. Magnussen, O. M. √√Mechler, S.Meron, M. Ocko, B. M. Pontoni, D.

Regan, M. J. Sellner, S.Shpyrko, O. G. Steimer, C. Stoltz, S.Streitel, R. Tostmann, H. √√Yahel, E

Harvard, Non-Harvard, Beam Line

Page 3: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Liquid Surface Reflectometer

Pershan/SNIP

1982: Hasylab1986: NSLS2002: APS

Q

Page 4: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Fresnel X-ray Reflectivity

Pershan/SNIP

ε ≈1 − ρ∞r0λ2 π Qc

2 ≈ r0λ2 π( )r∞

Qz = 4π λ( )sinα

Qx ≈ 2π λ( )α α −β[ ]

α ≤10° ,λ ~1.5Å→ Qx ≤0.01Å−1

Diffuse scattering:

R Qz( )= Qz − Qz2 −Qc

2( ) Qz + Qz2 −Qc

2( )2

Qz ≥5Qc ⇒ RF(Qz)≈ Qc 2Qz( )4

If Qz <Qc ⇒ R Qz( )≈1

Page 5: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Grazing Incidence Diffraction(GID)

Pershan SINP

Qxy ≈ 4π λ( )sinθDiffuse Scattering at Larger θ ≤20°

Qxy < 3Å−1

2D Bragg Peaks

Qz ≤Qc

Page 6: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Real Liquid Surfaces

Pershan/SNIP

F Qz( )2

Surface Structure

F Qz ,Qxy( )2

Thermal capillary waves CW Qz ,

rQxy ,T( )

R Qz( )=RF Qz( ) F Qz( )2CW Qz,0,T( )Reflectivity

α =β

Diffuse Scattering

ds d 2rQxy~F Qz.

rQxy( )

2CW Qz,

rQxy,T( )α ≠β

orθ ≠ 0

Qxy ≤0.01Å−1

or

Qxy~{0.1 to 3 or 4 Å−1}

Page 7: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Surface Structure Factor

Pershan/LAMXIV

sSurface Roughness (atomic scale)

Molecular Size aa >s ⇒ Lαyεring

Dielectric Liquids s > a⇒ NoLayering

LiquidCrystals1982

R Qz( )=RF Qz( ) F Qz( )2CW Qz,0,T( )

Page 8: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Pershan/SNIP).

8

Free Surfaces of Non-Metallic vs Metallic Liquids(Layered)

Simuation (Lennard-Jones Non-Metallic Liquids)

D'Evelyn & . Rice, J. Chem. Phys., 1983.

For Metals Particle-Particle Interactions Change Across The Surface

Interactions are Same in Vapor and Liquid

Dielectric Liquids

Vapor: Neutral Atoms

Liquid: Positive Ions in Sea of Negative Fermi Liquid

Different Interactions

Metallic Liquids

This induces Layer Structure of LM Surface!Goal: Measure Intrinsic Surface Structure Factor F Qz( )

Page 9: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Hg

In

GaHg: Magnussen et al. (1995).Ga: Regan et al.(1995)In: Tostmann et al.(1999)

Type I: Elemental LiquidLayer Response of Bulk Susceptibility

Pershan/LAMXIV

F Qz( ) ≈1

ρ∞

dz−∞

+∞

∫ d ρ z( ) dz⎡⎣ ⎤⎦exp iQzz⎡⎣ ⎤⎦

Metallic Liquids (D’Evelyn & Rice ‘83)

R Qz( )=RF Qz( ) Fεff Qz,T( )2

whεrε Fεff Qz,T( )2=F Qz( )

2CW Qz,0,T( )

Page 10: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Type II: Surface Adsorption(Ga-Bi alloy) Bulk Phase Coexistence

Pershan/SNIP

Nattland &Freyland, ’94Chatain & Wynblatt, ‘96P. Huber,’03

g ~ dz Δg c( ) +12

κdcdx⎡⎣⎢

⎤⎦⎥

2⎧⎨⎪⎩⎪

⎫⎬⎪⎭⎪

∫ Surface Tension

Gibbs: < 1900Butler: ’35Egry: ‘05

1)rBi−rich > rGα−rich

2)gBi−rich <gGα−rich

Electron Density

ξ

d

Influence Parameter: κ → Δg c( ) = κd2cdz2x →

d vs T Calphad Initiative(data)Gibbs free energy density: Δg c( )

Page 11: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

TypeIIIa: Surface Phase Transition2 Phase Binary Solution

Pershan/SNIP

BilayerMonolayer

Liquid

Shpyrko et al. Science 313, 77 (2006) vol. 313 (5783)Mechler et al. PRL (sub 2010)

2D Au-Si Crystals+Layer

gPb 458( ) < γ Ga 718( )

gSi 865( ) < γ Au 1189( )

Au-Si Eutectic

Is this Gibbs?

Yang et al. PRB. 62, 13111 (2000)

Gibbs AdsorptionPb-monolayer on Ga

2D Crystal.

GID Scattering

Page 12: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Structure Factor &Thermal EffectsDebye-WallerCapillary Waves

Pershan/SNIP

h =kBT2πγ

Qz2

d 2srQ( )

dQxy2

~ds

rQ( )

dQxy2

F

FrQ( )

2 1

Qxy2−h

Qx = 2π λ( ) cosβ −cosα[ ]

R Qz( )

h Qx( )2

~κBT gQx2 for QΔεβyε >Qx >~cm

−12D

CW Qz ,T( )= d 2rQxy ds d 2

rQxy⎡⎣ ⎤⎦Rεsoλution∫

= ΔQRεsoλution QΔεβyε⎡⎣ ⎤⎦hOR εxπ −Qz

2Σ2⎡⎣ ⎤⎦Debye-Waller

R Qz( )=RF Qz( ) F2CW

Diffuse Scat: In

~0.01Å-1

Page 13: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Debye-Waller Demonstration

Pershan/SNIP

R Q z( )RF Qz( )

= F Qz( )2CW (Qz,T)

Ga vs. T

GaIn

Hg

In

Ga Ga In

R Qz( )RF Qz( )CW (Qz,T)

=F Qz( )2

Page 14: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Distorted Crystal Layer Model

Pershan/SNIP

F Qz( ) = Qzdexp −σ 0

2Qz2 / 2⎡⎣ ⎤⎦

1− exp iQzd⎡⎣ ⎤⎦exp −σ 2Qz2⎡⎣ ⎤⎦

r z( )ρ ∞( )

=d

σ n 2πexp − z + nd( )2 / 2σ n

2( )⎡⎣ ⎤⎦n=0

s n2 = σ 0

2 + nσ 2

DCM (Magnussen ’95)

s 0 ,σ , & dOnly 3 Adjustable Parameters

n=0 1 2 3 ...

~ 1 s

Page 15: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Elemental Liquid Metals Studied

Pershan/SNIP

K Ga In Sn Bi HgDCM DCM DCM +1 +1 ?

☐ ☐

• Why are 1st Layers for Bi and Sn different from K, Ga and In?

Sn

Mol. Dynamic. SimulationsCalderín et al. PRB,80,115403 (2009)

F QZ( )2

No BumpBump

R Qz( )

RF Qz( )CW T( )=F

rQ( )

2

Bi is like Sn! Why is Hg so different?

Page 16: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Eutectic Alloys

Pershan/SNIP

J. W. Gibbs <1900Surface Adsorption: A/B AlloyIf Surface Tension: gA > gB Surface is Rich in “B”.

AxB1-x g(A)/g(B) ΔH*

(mixing)Concentration of Surface Layers

1st 2nd 34d

GaxBi1-x 718/378=1.90 +4 Liquid-Liquid Phase Sep.

Ga83.5In16.5 718/556=1.29 +5 97%In

In78Bi22 556/378=1.47 -1 35%Bi

Sn57Bi43 560/378=1.48 +1 96%Bi 25%Bi 53%Bi

Au71Sn29 1100/560=1.96 -10 96%Sn <1%Sn 24%Sn

Au72Ge28 1100/621=1.77 -21 No Gibbs Adsorption

Au82Si18 1100/865=1.27 -30 4-layers, 2DXtal (AuSi2)

Pd81Ge19 1500/621=2.4-44

~40 Å wetting layer (No Measureable Gibbs Adsorption)

Page 17: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Pershan/SNIP 17

Gibbs Surface Adsorption(BiSn)

gBi=378, gSn=560, Alloy: Bi and Sn

g(Bi)≈ 398g(Sn)≈ 567 dyne/cm

Energy Dispersion: Bi:L3 f(E)

Adsorption

Scat. Ampl.

Page 18: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Surface Freezing Au82Si18Eutectic

Pershan/SNIP

Si Au

T/γ~0.8Gallium T/γ~0.56

2D-Crystal Rigidity

Rigidity Reduces

Debye-Waller

Bragg PeaksLT: Bilayer XtalHT: MonolayerLL: Liquid

Mechler (LAMXIV)

Page 19: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Thickness of the surface crystals

LT: destructive interference → bilayer crystalline phase, d≈ 3.31 Å

HT: atomic monolayer crystalline phase

LT HT

Pershan/SNIP

Intensity distribution of Bragg reflections along qzTruncation rod:

Page 20: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

thermal height-height fluctuations

Structure factor: electron density profile

Surface crystals exhibit bending rigidity,

Quenching of short wavelength capillary waves

No effect on long wavelength capillary waves

Effect of surface crystals on capillary wave spectrum

Reflectivity of liquid surface:

For LT surface phase ( ):

Diffuse scattering under grazing incidence

bending rigiditysurface tension

h qxy( )2

~1 gθxy2 1+ K g( )

2 θxy2( )⎡⎣ ⎤⎦

−1

Pershan/SNIP

Page 21: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Self consistent density profile

Constraints for density profiles: LT: Bilayer and DCM HT: Monolayer and DCM LL: Monolayer and DCM, qmax

Bending rigidity essential for a more physical picture of surface structure

}+ allow qe to vary

R/RF

LT: HT: for HT, LT and LL

Density profiles

LT

HT

LL

Pershan/SNIP

Page 22: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

AuGe Eutectic(Should be Similar to Au-Si)

g(Au)/γ(Si or Ge) ΔH

Au72Ge28 1100/621=1.77 -21

Au82Si18 1100/865=1.27 -30Au-Si Au-Ge

• Au-Ge is Different from Au-Si

• No Surface Freezing

• Why?

Au-Si

Surface Frozen Ge≤6.5 atm%

2D GID Scans

Pasturel et al. Structure- Liquid Au-Si - molecular dynamics. PRB (2010)

Upmanyu et al. (in preparation): NESub surface Si enrichment!Si (Surface) (Au-Si) (bonding)

Pershan/SNIP

Page 23: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Surface Freezing of Au82Si18 and Glass Forming!

Glass Former

Au-Si

Not A Glass Former

Au-Ge

Glass Former

Glass Former

Pd-Si Pd-Ge

Pershan/SNIP

Page 24: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Surface freezing in liquid Au-Cu-Si-Ag-Pd

2D crystalline monolayer on the liquid surface !

R/Rf @1.4 Å-1

GID

Cooling

Heating

Heating

LT (694K)

LL (704K)

GIDTrunc. Rod @ 1.65 Å-1

Lattice: single hexagonal layer (a= 4.4Å)Superstructure ?

Pershan/SNIP

Page 25: X-ray Liquid Surface: Experimental Variety of Liquid  Metal/Vapor Interfaces

Summary•Elemental metals Surface induced layering.•Simplest Distorted Crystal Model (Ga,In, K)

Debye-Waller Effects of Thermal Capillary Waves Near surface deviations from DCM (Sn, Bi). •Other Metal/Vapor Interfaces

2 Phase Binary Alloys (Ga-Bi, Ga-Pb, Ga-Tl)Gibbs Adsorption, Wetting, 2D Crystals

•Unexplained behavior of Au82Si18

Eutectic 2D Surface phase transitions for Au-Si•New Results I: Au-Cu-Si-Ag-Pd: •New Results II: Liquid Ge: No Layering

Pershan/SNIP