x-rays techniques as a powerful tool for characterisation of thin film nanostructures

25
X-rays techniques as a X-rays techniques as a powerful tool for powerful tool for characterisation characterisation of thin film nanostructures of thin film nanostructures El El ż ż bieta Dynowska bieta Dynowska Institute of Physics Polish Academy of Sciences, al. Lotników 32/46, Warsaw, Poland [email protected] Workshop on Semiconductor Processing for Photonic Devices, Sept. 30 – Oct. 2, Warsaw, Poland

Upload: saburo

Post on 15-Jan-2016

52 views

Category:

Documents


0 download

DESCRIPTION

X-rays techniques as a powerful tool for characterisation of thin film nanostructures El ż bieta Dynowska. Institute of Physics Polish Academy of Sciences, al. Lotników 32/46, Warsaw, Poland [email protected]. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

X-rays techniques as a X-rays techniques as a powerful tool for powerful tool for characterisation characterisation

of thin film nanostructuresof thin film nanostructures  

ElElżżbieta Dynowskabieta DynowskaInstitute of Physics Polish Academy of Sciences,

al. Lotników 32/46, Warsaw, Poland

[email protected] 

Workshop on Semiconductor Processing for Photonic Devices, Sept. 30 – Oct. 2, Warsaw, Poland

Page 2: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

  

1. Introduction

2. Basics General information about nanostructures What we want to know about thin layers? How to get this information?

3. Selected X-ray techniques X-ray reflectivity X-ray diffraction

4. Synchrotron radiation – new possibilities

5. Summary

OutlineOutlineOutlineOutline

Page 3: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

x

  

Homoepitaxial layer – the layer and substrate are the same material (the same lattice parameters).

Heteroepitaxial layer – the layer material is different than the substrate one (different lattice parameters).      

Thin layer – the dimension in the z-direction is much smaller than in the x and y, respectively.

single crystal thin layer having the

crystal structure and orientation of

single crystal substrate on which it

was grown.

x

y

z

(A) Epitaxial layerz

y

0

0

Page 4: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

(B) Polycrystalline layers –

orientations of small crystallites are

randomly distributed with respect to

layer surface(C) Amorphous layers - lack of long-distance ordering of atoms

Lattice mismatch –

f = (alayer - asubs )/ asubs

Critical thickness hc – thickness below which the layer grows pseudomorphically the cubic unit cell

of layer material is tetragonally distorted: alz alx = aly = as (the layer is fully

strained). hc decreasing when f increasing.

Layer relaxation - alxy alz al relax = abulk

alayeras

ayax

az

Page 5: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

  

What we want to know about thin layers?What we want to know about thin layers? 

Crystalline state of layer/layers

(epitaxial?; polycrystalline?; amorphous? …)

crystal quality;

strain state;

defect structure;

chemical composition (in the case of ternary compounds layers);

thickness

surface and interface roughness, and so on…

Page 6: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

 How to get this information?How to get this information?

 By means of X-ray techniquesBy means of X-ray techniques

Because X-ray techniques are the Because X-ray techniques are the most important, non-destructive most important, non-destructive

methods of samplemethods of sample characterizationcharacterization

 

Why?Why?

Page 7: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

Selected X-ray techniqueSelected X-ray techniquess

X-ray reflectivity Small-angle regionRefraction index for X-rays n < 1: Roughness investigation

x

   

   

z

n = 1- + i

Layer thickness determination

i i

t

The distance between the adjacent interference maxima can be approximated by:

i / 2t

kIkR

kT

c

i

~10-5 in solid materials (~10-8 in air); - usually much smaller than .

2i

Si rough wafer - simulation

Page 8: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

Example: Example: superlattice

Si/{Fe/Fe2N}x28/GaAs(001)

28 times

repeated

GaAs

Fe

Fe2N

Si cap-layer

Inte

nsi

ty

i (deg)

c0.3

(2) - superlattice period

(2) –

cap-layer

Experiment

Simulation

Results of simulation

10.4 nm

4.52nm

126.6nm

All superlattice

Page 9: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

X-ray diffraction wide-angle region

d’hkl

Bragg’s law:

n = 2d’sin

d’/n = d

= 2d sin

Page 10: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

Geometry of measurement

Detector

Incidentbeam 

Diffractedbeam 

2

/2 coupling

/2 coupling

DetectorIncidentbeam 

Diffractedbeam 

2’

Page 11: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

       

 

Crystalline state of layer/phase analysis

PossibilitiesPossibilities

25 30 35 40 45 50 55 6010

100

1000

10000

100000

202

NiA

s-ty

pe

004

NiA

s-ty

pe

w 00

4sf

222

006

Al2O

3

10

2 N

iAs-

type

101 N

iAs-

type

002

NiA

s-ty

pe

w 00

2sf

111

ZnMnTe/MnTe/Al2O

3

Sample 082703A T

Zn= 225oC

Inte

nsity

(cpu

)

2 theta (deg)

35 40 45 50 55 60 650

2000

4000

6000

8000

10000

12000

MnTe hex. 00.4 k

kk

Al2O

3 substrate

00.6

MnTe hex. 00.2

Imax

= 270000 cps

Inte

nsity

[cps

]

2 theta [deg]

MnTe/Al2O3

FeK radiationCuK1 radiation

ZnMnTe/MnTe/Al2O3

24,0 24,2 24,4 24,6 24,8 25,0 25,2 25,4

100

1000

10000

ZnMnTe/MnTe/Al2O

3

Sample 082703A T

Zn= 225oC

ZnMnTe sfaleryt 111

ZnMnTe wurcyt 002

Inte

nsity

(cps

)

2 theta (deg)

Page 12: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

Crystal quality

„Rocking curve”

Detector

 

32,6 32,8 33,0 33,2 33,4100

1000

10000

100000 ZnSe/GaAs 131101004 rocking curve

FWHM = 112 arcsec

ZnSeLayer

FWHM = 21 arcsec

GaAsSubstrate

Omega (deg)

Inte

nsity

(cps

)

Lattice parameter fluctuations

Mosaic structure

?

21 arcsec

112 arcsec

Page 13: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

Strain state & defect structure

Cubic unit cell of substrate:

Cubic unit cell of layer material

Strain tetragonal deformation of cubic unit cell: Pseudomorphic

case

Partially relaxed

Relaxed

as

alayer

ayax

az

az ax = ay = asub

az ax = ay asub

axay

az

alayer

az = ax = ay = alayer

Page 14: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

The reciprocal lattice maps

S = [100]

Reciprocal lattice:

pseudomorphic

Origin

001

002

003

004

101

100

102

200 300

201

202

P = [001]sample

The sample orientation can be described by two vectors:

P - vector which is the direction normal to the sample surface;

S – any other vector which is not parallel to the P vector and lies in the horizontal plane.

|H|102 = 1/d102

Mosaic structure

relaxedLattice

parameter fluctuations

Page 15: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

xd00l

z

Symmetric case

dhhldz

dx

Asymmetric case

Examples In0.50Al0.50As/InP

004

224 224

004

(a) (b)

2

222

2 a

lkh

d

1 For cubic system: For tetragonal

system:2

2

2

22

2 c

l

a

kh

d

1

Page 16: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

chemical composition

Vegard’s rule:

If AB and CB compounds having the same crystallographic system and space group create the ternary compound A1-xCxB then its lattice parameter a ACB depends linearly on x-value between the lattice parameters values of AB and CB, respectively.

aAB

aCB

abulk

x0 1

aACB

x

In the case of thin layers arelaxed must be taken for chemical composition determination from Vegard’s rule:

)/(21

)/(2

1112

1112

cc

accaa

xyzrelaxed

c12, c11 – elastic constants of layer material

Page 17: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

 

28.4 28.6 28.8 29.0 29.2 29.4 29.6 29.8Omega (°)

100

1K

10K

100K

counts/s

S

1-3.x00

59.6 59.8 60.0 60.2 60.4 60.6 60.8 61.0 61.2 61.42Theta/Omega (°)

1

10

100

1K

10K

counts/s

S

1-6.x00

 

40 60 80 100 120 140 160 180Qx*10^4 (rlu)

4980

5000

5020

5040

5060

5080

Qz*10^4 (rlu) 1-7m.A00

1.7

3.4

6.6

12.8

24.8

48.2

93.7

181.9

353.3

686.0

1332.1

2586.7

5022.9

9753.5

18939.6

 

5420 5440 5460 5480 5500 5520Qx*10^4 (rlu)

6140

6150

6160

6170

6180

6190

6200

6210

6220

Qz*10^4 (rlu) 1-18m.A00

1.6

2.9

5.3

9.6

17.4

31.5

57.0

103.0

186.3

336.9

609.3

1101.9

1992.8

3604.0

6517.9

Heterostructure: ZnMnxTe/ZnMnyTe/ZnMnzTe/ZnTe/GaAs

004 rocking curveZnTex

yz

004 /2

004

335 relaxed

pseudomorphic

Page 18: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

Ti/TiN/GaN/Al2O3 under annealing

0 200 400 600 80010

2

103

104

105

106

SIM

S s

igna

l [ c

/s ]

Time [ s ]

TiGa

N

GaN/Ti as-deposited

Time [ s ]

0 200 400 600 80010

2

103

104

105

106

TiGa

N

GaN/Ti

900oC, 30s, N

2

SIM

S s

igna

l [ c

/s ]

Towards an ohmic contactsTowards an ohmic contacts

Secondary Ion Mass Spectrometry (SIMS)

XRD

Page 19: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

NbN/GaN/Al2O3

45 50 55 60 65 70

k

k

kkAl2O3

NbN 10.1

GaN 00.2 GaN/NbN

1000oC, 30s, N2

2 (deg)

45 50 55 60 65 700

2000

4000

6000

8000

10000

12000

14000

k

k

GaN/NbN as-deposited

kkAl

2O

3

NbN 10.1

GaN 00.2

Inte

nsi

ty [ c

ps

]

2 (deg)

0 200 400 60010

1

102

103

104

105

106

107

108

GaN/NbNas-deposited

N

Nb

Ga

SIM

S S

ignal [ c/s

]

Time [ s ]

0 200 400 60010

1

102

103

104

105

106

107

108

GaN/NbN

900oC, 30s, N2

N

Nb

Ga

SIM

S S

ignal [ c/s

]

Time [ s ]

XRD

XRD

(SIMS)

(SIMS)

Page 20: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

30 40 50 60 70

0

50

100

150

200

250

300

pN2=5-7x10-3mbar

PRF=1.9W/cm2,

ptot.=1x10-2mbar,

400 Zn3N2

Inte

nsi

ty

2 [ deg ]

30 40 50 60 70

200

400

600

800

1000 pN2

=2.5x10-3mbar

400

Z

n3N

2

PRF=1.9W/cm2,

ptot.=1x10-2mbar,

222

Zn

3N2

440

Zn

3N2

332

Zn

3N2

321

Zn

3N2

Inte

nsi

ty

2 [ deg ]30 40 50 60 70

100

200

300

400

500

600

700

pN2

=2x10-3mbar

PRF=1.9W/cm2,

ptot.=1x10-2mbar,

Zn

400

Z

n3N

2

440

Zn

3N2

321

Zn

3N2

Inte

nsi

ty [

a.u

.]

2 [ deg ]

20% N2 Zn3N2 + Zn 25% N2 polycryst. Zn3N2

50% - 70% N2 monocryst.

30 40 50 60 700

50

100

150

200

250

300 pN2=9x10-3mbar

400 Zn3N2

PRF=1.9W/cm2,

ptot.=1x10-2mbar,

Inte

nsi

ty

2 [ deg ]

GaN, Al2O3, ZnO

N2>80% polycryst. & amorph.

Deposition of Zn3N2 by reactive rf sputtering

Zn3N2

Page 21: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

40 45 50 55 60 95 100

200

400

600

800

1000

Zn3N

2 d=650nm on GaN

oxidation @ 600oC, 15 min. 00.4

GaN

00.4

Zn

O

00.6

Al 2O

3

00.2

Zn

O00.2

GaN

Inte

nsi

ty

2 [ deg ]

polycrystalline ZnO on sapphire and quartz

40 45 50 55 600

2000

4000

6000

8000

ZnO

2 [ deg ]

Inte

nsi

ty (

a. u

.)

100

101

002

Zn3N2(50%N2)/ZnOsput./quartz

oxidation 600oC

45 50 55 600

200

400

600

800

1000

ZnO

Zn3N

2 d=650nm on Al

2O

3

oxidation @ 600oC,

15 min.

2 (deg)

101

102

002

KK

006 Al2O

3

Inte

nsi

ty (

cps)

40 50 60 700

100

200

300

400

500

600

700

800

ZnO

Zn3N

2 d=650nm on quartz

oxidation @ 600oC, 15 min.

110 102

101

101 K

002

100

Inte

nsi

ty

2 [ deg ]

ZnO:N by oxidation of Zn3N2 microstructure

highly textured ZnO on GaN and ZnO

Page 22: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

30 40 50 60 70 80 90

100

1000

10000

Zn

O 1

01

ZnTe:N/ZnTe/GaAs

oxidized 6000C, 20 min.

Ga

As

00

4 (

K)

Zn

O 1

03

+ T

e 1

13

Z

nT

e 0

04

(K

)

Ga

As

00

4 (

K)

Zn

Te

00

4 (

K)

Te

20

1Te

11

0T

e 1

02

Zn

O 0

02

Zn

O 1

00

Z

nT

e 0

02

(K

)

Te

10

1

Zn

Te

00

2 (

K)

Inte

nsi

ty [

a.u

.]

2 [ deg ]0 1 2 3 4 5 6 7

1018

1019

1020

1021

1022

As

Ga

TeO

Zn

Depth [ m ]

Co

nce

ntr

atio

n o

f N

an

d H

in Z

nO

[a

t/cm

3 ]

100

101

102

103

104

105

106

107

108

SIM

S S

ign

al o

f Ga

, As, Z

n, T

e, O

an

d H

[ c/s ]

ZnTe:N/ZnTe/GaAs oxidised 6000C

ZnO by oxidation of ZnTe/GaAs

Te inclusions in ZnO film

XRD(SIMS)

Page 23: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

Synchrotron radiationSynchrotron radiation

)bandwidth%1.0)(areasourcemm()mrad(

sec/PhotonsBrilliance

22

Page 24: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

50 55 60 65 70 75

0

2

4

6

8

10

2 =

0.3

1o

Si1-x

Gex

bottom layer

"-1" "+1"

Ge004

Si (substrate) +Si

0.95Ge

0.05 (SL

0)

004

Inte

nsity

(a.u

.)

2 (deg)

Si substrate (001)

Si, 115 nm, 780 C

Si, 10 nm, 480 C

Si, 24 nm, 450 C Si, 2nm, 250 C

Ge, 1nm, 250 C

7 times

repeated

High resolution electron microscopy (HREM) –

JEOL-4000EX (400 keV)

55 60 65 702Theta/Omega (°)

0.01

0.1

1

10

100

1K

10K

100K

1M

10M

counts/s dorby-dla jarka.Z01

Example: superlattice of self-assembled ultra-small Ge quantum dots

Experimental diffraction pattern Simulated diffraction pattern

Si

004Ge

004 2 = 0.314o

Si0.8Ge0.2

bottom layer

„-1”„-2”

C

Results: HREM XRD

superlattice period C..... 33.5 nm 33 nm,

thickness of Ge............... 1.8 nm 2.0 nm

thickness of SiGex

bottom layer..................... 6.7 nm 6.7 nm

Compositon........................ ---- x 0.2

50nm

Hasylab (Hamburg), W1.1 beamline: X’Pert Epitaxy and Smoothfit software

Page 25: X-rays techniques as a powerful tool for characterisation  of thin film nanostructures

Acknowledgements

I would like to express my gratitude to my colleagues for their kind help:

Eliana Kaminska

Jarek Domagala

Roman Minikayev

Artem Shalimov