xdm-3000 - the way to grow - launch 3 telecom · 1net defines eci’s total focus on facilitating...

Your Path for Growth XDM ® -3000: The Way to Grow Your Partner for Growth Highest capacity MSPP with full Low Order (LO) VC-12 connectivity Converged support of TDM and carrier class Ethernet services Built-in ASON/GMPLS for enhanced protection and resilience Integrated high-capacity MSPP and DXC Topology agnostic – enabling mesh, ring, multi-ring, star, and point-to-point topologies Application Note PRODUCTS

Upload: others

Post on 23-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: XDM-3000 - The Way to Grow - Launch 3 Telecom · 1Net defines ECI’s total focus on facilitating our customers' optimal transition to Next-Generation Networks, through the unique

Your Path for

Growth

XDM®-3000: The Way to Grow

Your Partner for Growth

Highest capacity MSPP with full Low Order (LO) VC-12 connectivity

Converged support of TDM and carrier class Ethernet services

Built-in ASON/GMPLS for enhanced protection and resilience

Integrated high-capacity MSPP and DXC

Topology agnostic – enabling mesh, ring, multi-ring, star, and point-to-point topologies

Application NotePRODUCTS

Page 2: XDM-3000 - The Way to Grow - Launch 3 Telecom · 1Net defines ECI’s total focus on facilitating our customers' optimal transition to Next-Generation Networks, through the unique

TDM Is Going Wild

The technology trend for transport network evolution is an all-IP network over Next Generation

(NG ) Optics (WDM, ROADM, OTN). This development is driven by strict requirements to lower the

Total Cost of Ownership (TCO) while handling the growing portion of data traffic over transport

networks.

However, it seems that technology trends do not always match traffic patterns nor suggest the

most cost-effective solution. In many cases, current networks need immediate ways to add more

capacity to cope with the growing subscriber base and added traffic, most of which is TDM-based.

One example for such growth can be found in 2G mobile networks in emerging markets, where

traffic growth is driven by two main catalysts:

TDM voice traffic

2G mobile operators are facing massive growth of their customer base with the main use being

plain voice traffic. In many cases, fixed line infrastructure is not available and mobile is the only

means of communication. In India and Africa for example, millions of new mobile subscribers are

added every month. This pattern is expected to continue for years, before saturation is achieved,

and service providers are having a hard time keeping up with it.

Data traffic over TDM-based infrastructure

Another catalyst driving the need for more TDM is the growth in data traffic. As data traffic

increases, service providers want to upgrade their networks to Ethernet/IP-based transport

equipment. The main question is - when and how? Installing an immediate overlay data network

from access to core entails a huge CAPEX outlay. Taking into account that the lion's share of

revenues will still be based on voice calls, providers may prefer to wait until data traffic hits a

certain percentage.

It is becoming more and more obvious that using existing infrastructure to offer new data services

is the most cost-effective approach, resulting in the least risk and a lower TCO. These service

providers require the addition of SDH/SONET-based equipment in order to support the growth

in data traffic. ECI supports this approach by introducing an Ethernet MPLS over TDM-based

infrastructure within the entire BroadGate® and XDM MSPP product lines.

As a result of the increased growth in TDM-based traffic (whether for“pure” voice TDM or

Ethernet services carried over TDM), congestion and bottlenecks are starting to proliferate at the

metro-core, where major aggregation points are located, and at central points such as central

offices, where greater LO switching capability is required.

Page 3: XDM-3000 - The Way to Grow - Launch 3 Telecom · 1Net defines ECI’s total focus on facilitating our customers' optimal transition to Next-Generation Networks, through the unique

Relieving Bottlenecks

When addressing these issues, service providers must evaluate their alternatives, looking for

the one solution that can support current needs, but also be future-proof and scale up to future

demands without requiring a forklift upgrade.

Transport networks are aimed to serve end-user applications, which are becoming more and

more IP-based. In general, the application and the end user are agnostic to the type of transport

network carrying the service as long as it fulfills their requirements. However, for critical mission

data applications, there are users that insist that their service is carried over a proven and reliable

MSPP-based transport network.

The operator’s debate as to which transport technology to use revolves around network status,

new service take off, required investments vs. expected revenues, and TCO.

Using the 2G network equipment example again, the starting point is a huge installed base of TDM

equipment from access to core. This includes PDH radio equipment, small and large MSPPs with

SDH/SONET, cross connects, etc. There is no economic justification for replacing this equipment

as long as it can support the required needs in terms of services and capacity. Thus, we expect

to see TDM-based transport networks for many years to come. When and where packet-based

traffic becomes dominant, appropriate solutions will be introduced, such as offloading data traffic

to another network or laying a new network alongside the existing one.

But higher capacity is not the only issue that needs to be addressed. While heavy traffic loads can

be handled with wider transport pipes, there is also a need to maintain LO switching granularity.

TDM-based services such as voice calls use 2 Mbps as their basic rate. In addition, Ethernet

services carried over SDH/SONET would benefit from low granularity because service costs can

be matched accordingly. Therefore, a total solution for handling the increase in TDM traffic must

support high capacity, wide transport pipes, and a large LO switching matrix.

Next Gen TDM-Intensive Network Scenario

Page 4: XDM-3000 - The Way to Grow - Launch 3 Telecom · 1Net defines ECI’s total focus on facilitating our customers' optimal transition to Next-Generation Networks, through the unique

MSPP at Your Service

Using higher-capacity MSPP with carrier class data capabilities to relieve traffic congestion is

the most cost-efficient solution available today, offering the lowest TCO and assuring a rapid

Return on Investment (ROI). Congested sites are upgraded on a per-site basis while the network

structure is preserved. No training is needed, nor a learning curve for the introduction of new

technologies and equipment, and the result is still a single network to maintain and manage. Not

only does it provide the most cost-effective solution for increased TDM traffic, but the support of

MPLS Ethernet and EoSDH also guarantee future-proof support of carrier class Ethernet services.

Regarding CAPEX, the price discrepancy between TDM and packet-based equipment is narrowing.

The cost of the latest SDH/SONET equipment with Ethernet functions has been decreasing rather

quickly over the past few years. Simultaneously, the addition of carrier class features (to meet

carrier-grade reliability requirements, for example) to Ethernet-based equipment has raised its

cost, compared to the corresponding equipment used for LAN networks.

It is important to note that investments in higher-capacity MSPP equipment is by no means due to

compromise. On the contrary, they are right in line with the migration path towards packet-based

networks. This approach does not delay the introduction of new services and, in fact, brings it

faster to the end user. Its main benefit, beyond the abovementioned, is giving the service provider

control over the pace of migration, without the pressures of introducing new services.

The LO Switching Advantage

Often, as the switching capacity of the MSPP becomes higher, so too does the switching granularity.

In other words, high-capacity MSPPs tend to switch traffic at higher levels like VC-4. When dealing

with networks where the basic service rate is 2 Mbps (voice calls, for example), the switching

granularity becomes an issue of concern. If the MSPP is unable to support the required level of

connectivity or the LO switching matrix exceeds its capacity, an additional piece of equipment is

needed to complement the required functionality. Besides the extra cost involved, this solution

consumes both I/O slots and High Order (HO) switching matrix capacity, thus reducing the net

total switching capacity of the solution and eliminating its non-blocking capability.

Full LO connectivity is vital, not only for TDM-based services but also for data services carried over

SDH/SONET. Being able to set a service at 2 Mbps granularity instead of being linked to the HO

switching granularity is greatly advantageous, allowing the service provider to offer differentiated

services with competitive pricing.

A full LO connectivity high-capacity MSPP saves on TCO, simplifies network design and operation,

and supports new revenue-generating services.

Page 5: XDM-3000 - The Way to Grow - Launch 3 Telecom · 1Net defines ECI’s total focus on facilitating our customers' optimal transition to Next-Generation Networks, through the unique

The following is a comparison of the XDM-3000 with other MSPPs for the handling of LO switching

of 100 Gbps and HO switching of 20 Gbps:

Stages XDM-3000 240 Gbps Fully LO/HO

Other MSPPs 320 Gbps (240 HO + 80 LO)

Start – No Traffic 240 Gbps 320 Gbps+ 80 Gbps of LO connectivity No problem with room to grow No problem; however, LO matrix

full with no room to grow+ 20 Gbps of HO connectivity No problem with room to grow No problem with room to grow

+ 20 Gbps of LO connectivity No problem with room to grow

Additional drop shelf and I/O cards required (4 x STM-64 or 16 x STM-16 to provide connectivity and protection between HO MSPP and LO drop shelf)

End - Handling 120 Gbps (100 Gbps switched at LO and 20 Gbps switched at HO)

120 Gbps used

Non-Blocking

160 Gbps used

Blocking

Extra equipment required

XDM-3000 vs. Other MSPPs

Page 6: XDM-3000 - The Way to Grow - Launch 3 Telecom · 1Net defines ECI’s total focus on facilitating our customers' optimal transition to Next-Generation Networks, through the unique

Capacity Handling that Grows on You

The XDM-3000 is targeted to handle the bottlenecks in the metro-core network, enabling

cost effective network growth. As a member of the well-proven XDM-1000 family, it offers

best-of-breed SDH capabilities, yet supports advanced carrier Ethernet-based MPLS services.

As such, it is positioned to handle growing traffic requirements for both pure TDM and

Ethernet-over-TDM without changing the network structure. The entire network is run by the

multidimensional LightSoft® NMS, for total management of all ECI transport products.

The XDM-3000 MSPP can be used as a multi-ADM-16/64 and a DXC with a capacity of 240 Gb. With

24 slots for service cards, the platform offers a generous fan-out, supporting up to:

80 x GE

24 x STM-64

96 x STM-16

384 x STM-1/4

The XDM-3000 has built-in ASON capability for enhanced protection resiliency and is currently the

highest capacity MSPP platform with 100% LO connectivity. It efficiently concentrates both TDM

and data traffic into WDM OTN pipes supporting ODU-0 (1.25 Gbps), ODU-1 (2.5 Gbps) and ODU-2

(10 Gbps). This enables direct upload to WDM multiplexers, saving the need for transponders in

between.

Committed to our promise for partnership as you grow, the XDM-3000 joins ECI’s range of network

expansion solutions, including the WDM offering and the 9000 family of CESR.

Page 7: XDM-3000 - The Way to Grow - Launch 3 Telecom · 1Net defines ECI’s total focus on facilitating our customers' optimal transition to Next-Generation Networks, through the unique

To Sum it All Up

TDM traffic is expected to rise in the near future, due to an increase in voice and data services

carried over SDH/SONET. The most cost-effective scheme to meet this trend with a low TCO is to

use higher-capacity MSPP equipment enhanced with data capabilities. The XDM-3000 is capable

of handling current needs while supporting a smooth migration path to next generation networks

with minimal CAPEX investments and substantial OPEX savings. The XDM-3000 operates in concert

with the entire ECI portfolio under a single comprehensive management system, supporting

higher-capacity TDM and data-enabled networks.

Page 8: XDM-3000 - The Way to Grow - Launch 3 Telecom · 1Net defines ECI’s total focus on facilitating our customers' optimal transition to Next-Generation Networks, through the unique

www.ecitele.com

ECI HeadquartersTel: +972 3926 6555Fax: +972 3928 7100

EMEATel: +44 1256 388000Fax: +44 1256 388143

RoAPACTel: +65 6505 1960Fax: +65 6505 1999

CISTel: +972 3926 8548Fax: +972 3926 6452

AmericasTel: +1 954 772 3070Fax: +1 954 351 4404

India (Mumbai)Tel: +91 22 6715 5555Fax: +91 22 6675 8973

Copyright ©

2009 ECI Telecom

. All rights reserved. Inform

ation in this document is subject to change w

ithout notice. ECI Telecom

assumes no responsibility for any errors that m

ay appear in this document.

1Net defines ECI’s total focus on facilitating our customers' optimal transition

to Next-Generation Networks, through the unique combination of innovative and

multi-functional network equipment, fully integrated solutions and all-around services

XDM

-300

0: T

he W

ay to

Gro

w_0

1_18

-02-

09