[xls]fuel reduction cost simulator - us forest service · web viewrepair and maintenance,...

206
Chip Trees Small Log Trees Large Log Trees Trees/acre Trees/acre Trees/acre Vol/tree (ft3) Vol/tree (ft3) Vol/tree (ft3)

Upload: haque

Post on 27-Mar-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

Chip Trees Small Log Trees Large Log Trees $/CCF

Trees/acre Vol/tree (ft3) Trees/acre Vol/tree (ft3) Trees/acre Vol/tree (ft3) Calculate

B32
Trees that are chipped at the landing
D32
Trees with less than 80 ft3 total volume
F32
Trees with 80 ft3 or more total volume
I32
FRCS: $/CCF - Dollars per hundred cubic feet of logs.

$/Ton $/Acre

Clear Data

J32
FRCS: Dollars per green ton of logs and chips.

document.xls, Worksheet: States&Regions 05/06/2023

Page 3

List of Regions used in FRCS Notes on States and Regions

Regions Pacific NW Pacific SW Rocky Mtns North Central Northeast SouthNumber of states 3 5 6 11 12 13List of states Alaska Arizona Colorado Illinois Connecticut Alabamain each region Oregon California Idaho Indiana Delaware Arkansas

Washington Hawaii Montana Iowa Maine FloridaNevada South Dakota Kansas Maryland GeorgiaNew Mexico Utah Michigan Massachusetts Kentucky

Wyoming Minnesota New Hampshire LouisianaMissouri New Jersey MississippiNebraska New York North CarolinaNorth Dakota Pennsylvania OklahomaOhio Rhode Island South CarolinaWisconsin Vermont Tennessee

West Virginia TexasVirginia

Lookup Table for State Abbreviations Regional Groupings (FRCS Variants)

Two-letter code State name State number Regional Group List of Regions in the GroupAL Alabama 1 North 2 North Central NortheastAK Alaska 2 South 1 SouthAZ Arizona 3 West 3 Pacific NW Pacific SW Rocky MtnsAR Arkansas 4CA California 5 This variant of FRCS supports only the following Regional Group:CO Colorado 6 NorthCT Connecticut 7DE Delaware 8 Regions supported by this FRCS Variant:FL Florida 9 North Central NortheastGA Georgia 10HI Hawaii 11ID Idaho 12IL Illinois 13IN Indiana 14IA Iowa 15KS Kansas 16KY Kentucky 17LA Louisiana 18ME Maine 19MD Maryland 20MA Massachusetts 21MI Michigan 22MN Minnesota 23MS Mississippi 24MO Missouri 25MT Montana 26NE Nebraska 27NV Nevada 28NH New Hampshire 29NJ New Jersey 30NM New Mexico 31NY New York 32NC North Carolina 33ND North Dakota 34OH Ohio 35OK Oklahoma 36OR Oregon 37PA Pennsylvania 38RI Rhode Island 39SC South Carolina 40SD South Dakota 41TN Tennessee 42TX Texas 43UT Utah 44VT Vermont 45VA Virginia 46WA Washington 47WV West Virginia 48WI Wisconsin 49WY Wyoming 50

1. Wages vary by state.2. Fuel prices vary by region (Pacific NW, Northeast, etc.)3. Harvesting equations and related data vary by FRCS Variant (i.e., regional group: North, South, West).

Regions in the Group

A B C D E F G H I J

1

234567891011121314151617

18

19

2021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869

document.xls, Worksheet: WageIndex 05/06/2023

Page 4

Statewide Annual Wage Index ValuesID: NAICS 113310 Logging Missing due to nondisclosure requirements; interpolation not possibleOwners: Private, all sizes Index value of 100 = Missouri annual wages in 2000Series: Average Annual Pay

Logging WagesState 2000 2001 2002 2003 2004 2005 2006 2007 Notes Fall-Buck Other

1 Alabama South 172.7 180.8 184.4 192.0 197.5 204.8 212.8 218.1 29.00 23.00 = Original FRCS wages from Region 6 FY2000 Logging Cost Guide2 Alaska Pacific NW 298.5 295.6 318.6 311.1 308.3 316.1 325.8 326.6 39.15 31.05 = With 35% benefits3 Arizona Pacific SW 110.5 120.1 127.6 134.9 157.2 155.3 164.7 176.2 247.15 247.15 = Average of Oregon & Washington wage-index values for 20004 Arkansas South 168.9 172.1 179.8 188.4 185.1 198.8 197.6 205.1 15.84 12.56 = Equivalent Missouri 2000 logging wage rates with 35% benefits5 California Pacific SW 216.6 227.9 232.0 244.1 255.2 259.2 273.4 280.66 Colorado Rocky Mtns 138.4 159.7 161.3 151.2 155.7 192.7 205.0 203.4 Connecticut = Currently selected state7 Connecticut Northeast 172.3 197.3 202.8 223.8 252.7 266.0 284.7 303.4 Northeast = Region corresponding to the above state8 Delaware Northeast 143.0 151.4 147.2 156.0 165.3 167.6 170.6 176.3 1 Northeast = Region supported by this variant of FRCS9 Florida South 188.2 194.5 201.2 206.8 217.3 219.5 227.1 233.9 48.06 38.12 = Wage rates with benefits for the currently selected state

10 Georgia South 173.2 186.1 190.6 192.5 204.7 215.0 228.5 232.611 Hawaii Pacific SW 216.6 227.9 232.0 244.1 255.2 259.2 273.4 280.6 212 Idaho Rocky Mtns 213.5 221.7 229.6 230.4 243.0 249.0 257.7 263.613 Illinois North Central 112.6 121.2 148.9 139.0 191.4 180.7 190.4 211.314 Indiana North Central 155.3 161.4 158.7 159.7 166.6 169.2 172.5 174.115 Iowa North Central 177.1 157.0 213.4 172.5 190.7 187.6 182.7 190.916 Kansas North Central 100.0 115.8 114.4 125.1 143.5 150.8 160.3 170.0 317 Kentucky South 107.4 114.7 109.8 110.3 118.3 121.8 124.1 125.718 Louisiana South 168.1 178.2 183.8 197.6 199.0 213.7 221.6 229.819 Maine Northeast 178.1 191.2 192.2 202.2 214.4 223.7 232.4 240.620 Maryland Northeast 144.7 159.4 155.0 154.3 170.5 179.7 187.4 190.721 Massachusetts Northeast 193.3 200.9 219.4 223.0 236.6 247.7 255.7 267.922 Michigan North Central 169.3 180.1 182.0 188.1 198.2 211.5 212.6 221.523 Minnesota North Central 190.2 192.0 198.5 202.2 210.8 213.8 209.5 218.724 Mississippi South 144.2 154.0 157.2 163.9 165.5 179.7 187.9 191.925 Missouri North Central 100.0 115.8 114.4 125.1 143.5 150.8 160.3 170.026 Montana Rocky Mtns 182.2 190.3 201.0 198.3 207.3 217.1 228.7 232.027 Nebraska North Central 104.0 117.2 127.7 138.1 148.6 143.8 183.8 182.428 Nevada Pacific SW 127.6 138.7 140.3 136.5 123.9 130.5 172.7 153.3 429 New Hampshire Northeast 186.1 201.5 205.4 214.0 236.4 236.1 256.2 263.730 New Jersey Northeast 315.0 321.7 328.3 335.0 336.4 358.9 349.7 361.731 New Mexico Pacific SW 132.8 131.4 139.5 144.5 147.6 146.8 146.0 152.432 New York Northeast 180.5 185.7 194.6 195.9 208.9 212.0 216.1 223.933 North Carolina South 169.2 178.1 183.1 185.7 197.9 205.7 210.9 217.934 North Dakota North Central 144.2 154.0 157.2 163.9 165.5 179.7 187.9 191.9 535 Ohio North Central 130.9 143.1 136.2 141.7 153.2 157.8 165.0 168.136 Oklahoma South 192.5 192.5 208.6 207.2 215.4 234.2 214.9 231.837 Oregon Pacific NW 240.0 244.9 255.3 257.2 261.4 271.5 276.6 282.338 Pennsylvania Northeast 143.0 151.4 147.2 156.0 165.3 167.6 170.6 176.339 Rhode Island Northeast 172.3 197.3 202.8 223.8 252.7 266.0 284.7 303.4 640 South Carolina South 183.5 191.3 196.3 196.7 203.8 211.2 220.4 223.041 South Dakota Rocky Mtns 137.3 157.1 176.8 196.6 216.4 236.2 256.0 275.842 Tennessee South 135.1 146.7 148.2 153.4 162.1 172.1 181.7 186.243 Texas South 220.7 227.4 233.4 217.2 217.9 233.7 243.4 237.044 Utah Rocky Mtns 127.6 138.7 140.3 136.5 123.9 130.5 172.7 153.345 Vermont Northeast 152.4 159.3 157.2 166.6 173.7 177.0 178.5 185.046 Virginia South 160.7 171.3 174.3 179.4 190.0 197.9 206.9 212.547 Washington Pacific NW 254.3 257.7 266.6 281.7 269.8 279.3 293.5 295.348 West Virginia Northeast 122.5 130.6 130.3 133.2 136.0 142.9 152.9 152.849 Wisconsin North Central 147.5 153.1 158.8 164.7 170.9 178.9 180.5 188.250 Wyoming Rocky Mtns 162.4 170.5 178.6 186.7 194.8 202.9 211.0 219.1

The data used to prepare this table are for statewide annual wages and salaries in logging, excluding benefits.

Notes (last column of table):1 No data for Delaware; use Pennsylvania2 No data for Hawaii; use California3 No data for Kansas; use Missouri4 No data for Nevada; use Utah5 No data for North Dakota; use Minnesota6 No data for Rhode Island; use Connecticut

State Number

RPA Demand Region

Source: Calculated from Bureau of Labor Statistics Series ID numbers ENUxx000505113310 (Logging), where xx is a state index.

The data were accessed on 17 Feb 2008 from the Quarterly Census of Employment and Wages by State and County at: http://data.bls.gov/PDQ/outside.jsp?survey=en

A B C D E F G H I J K L M N O P Q R S T U

1

23456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869

document.xls, Worksheet: CostUpdates 05/06/2023

Page 5

Cost Updates Worksheet Dennis Dykstra, 18 Feb 2008Costs updated from Dec 2002 to: Dec 2007

Region: Pacific NW Pacific SW Rocky Mtns North Central Northeast SouthProducer Price Index multiplier for equipment-cost updates: 1.18 1.18 1.18 1.18 1.18 1.18 Source: BLS series pcu333120333120, Construction machinery manufacturing, Feb 2008 (http://www.bls.gov/data/). Original data were for December 2002.

2001 Weekly Average Wage, NAICS 1133 Logging: 676 629 441 402 467 482 Source: BLS State and County Data from the Quarterly Census of Employment and Wages, Feb 2008 (http://www.bls.gov/data/). Original data were for June 2000.2006 Weekly Average Wage, NAICS 1133 Logging: 763 754 566 511 553 579 Regional data used: PNW=OR; PSW=CA; Rockies=CO; NC=MN,WI,IL,MO; NE=NY,ME,WV; S=NC,GA,AL,MS

Annual wage-rate inflator: 1.0245 1.0369 1.0512 1.0493 1.0345 1.0373 Note: Wage adjustments shown in shading are not currently used.Updated wage rate (Felling & Bucking): 46.38 46.39 35.30 31.80 33.94 35.65 Instead, see the state-by-state procedure in the WageIndex worksheet.

Updated wage rate (All Others): 36.78 36.79 28.00 25.22 26.92 28.28Regional diesel fuel prices as of update period: 3.327 3.327 3.229 3.228 3.533 3.264 Source: Energy Information Administration Diesel Prices (http://tonto.eia.doe.gov/oog/info/wohdp/diesel.asp)

Diesel_fuel_price (to Data_management!$E$26): 3.533

Region used for fuel prices and equipment costs: Northeast

Note: The original (2000/2002) cost data start in Column VFaller/Bucker All Others

Wage and benefit rates ($/person-SH) 48.06 38.12

Machine description: Chainsaw FBuncher FBuncher FBuncher Harvester Harvester Skidder Skidder Forwarder Forwarder Yarder Yarder Processor Processor Loader Loader Chipper Chipper Bundler Qualifier: DriveToTree SwingBoom SelfLeveling small big small big small big small intermediatsmall big small big small bigUpdated purchase price, $ (to MachineCosts!B6:T6) 824 176,670 365,119 365,119 412,231 530,011 164,892 235,561 282,673 365,119 188,448 388,675 353,341 471,121 223,783 294,451 235,561 353,341 530,011

Note: As of 13 Feb 2008 helicopter logging costs have not been updated -- see the HelicopterYarding worksheet.

A B C D E F G H I J K L M N O P Q R S T1234567891011121314151617181920212223242526

Relevance Weights/Pick ListThe user can set a maximum weight (between zero and one) for each function within each activity.A weight of zero will eliminate that function from the cost calculation.Notes: 1) To protect against unreasonable extrapolation, the user-set weight is not allowed to override a model-defined weight of zero, even for a user-defined function.

2) At least one function within each activity must have a non-zero weight in order to calculate a cost for that activity.3) Model-defined weights are used as defaults for every function where the user does not enter a weight.

CurrentUser-Set Model-Defined

Activity Weight Weight FunctionManual Felling Only (All Trees)

1.00 A) (McNeel, 1994)0 1.00 B) (Peterson, 1987)0 1.00 C) (Keatley, 2000)0 1.00 D) (Andersson, B. and G. Young, 1998. Harvesting coastal second growth for

1.00 E) Lortz et al. 1997. Manual felling time and productivity in southern pine forest

0.00 User-Defined Felling Only (All Trees)Manual Felling, Limbing, and Bucking (All Trees)

0 1.00 A) (Kellogg-Olsen-Hargrave, 1986)0 1.00 B) (Kellogg, L., M. Miller and E. Olsen. 1999. Skyline thinning production and0 1.00 C) (Andersson, B. and G. Young, 98. Harvesting coastal second growth forest

1.00 D) Hardwood FLB (Wang et al. 2004. Productivity and cost of manual felling and1.00 E) Lortz et al. 1997. Manual felling time and productivity in southern pine forest

0.00 User-Defined Felling-Limbing-Bucking (All Trees)Manual Felling Only (Large Trees)

1.00 A) (McNeel, 1994)0 1.00 B) (Peterson, 1987)0 1.00 C) (Keatley, 2000)0 0.89 D) (Andersson, B. and G. Young, 1998. Harvesting coastal second growth for

1.00 E) Lortz et al. 1997. Manual felling time and productivity in southern pine forest

0.00 User-Defined Felling Only (Large Trees)Manual Felling, Limbing, and Bucking (Large Trees)

0 1.00 A) (Kellogg-Olsen-Hargrave, 1986)0 1.00 B) (Kellogg, L., M. Miller and E. Olsen. 1999. Skyline thinning production and0 1.00 C) (Andersson, B. and G. Young, 98. Harvesting coastal second growth forest

1.00 D) Hardwood FLB (Wang et al. 2004. Productivity and cost of manual felling and1.00 E) Lortz et al. 1997. Manual felling time and productivity in southern pine forest

0.00 User-Defined Felling-Limbing-Bucking (Large Trees)Manual Whole-Tree Felling (Small Trees)

1.00 A) (McNeel, 1994)0 1.00 B) (Peterson, 1987)0 1.00 C) (Keatley, 2000)0 0.46 D) (Andersson, B. and G. Young, 1998. Harvesting coastal second growth for

1.00 E) Lortz et al. 1997. Manual felling time and productivity in southern pine forest

0.00 User-Defined Whole-Tree Felling (Small Trees)Manual Whole-Tree Felling (Chip Trees)

1.00 A) (McNeel, 1994)0 1.00 B) (Peterson, 1987)0 1.00 C) (Keatley, 2000)0 0.11 D) (Andersson, B. and G. Young, 1998. Harvesting coastal second growth for

1.00 E) Lortz et al. 1997. Manual felling time and productivity in southern pine forest

0.00 User-Defined Whole-Tree Felling (Chip Trees)Manual Felling, Limbing, and Bucking (All Log Trees)

0 1.00 A) (Kellogg-Olsen-Hargrave, 1986)0 1.00 B) (Kellogg, L., M. Miller and E. Olsen. 1999. Skyline thinning production and0 1.00 C) (Andersson, B. and G. Young, 98. Harvesting coastal second growth forest

1.00 D) Hardwood FLB (Wang et al. 2004. Productivity and cost of manual felling and1.00 E) Lortz et al. 1997. Manual felling time and productivity in southern pine forest

0.00 User-Defined Felling-Limbing-Bucking (All Log Trees)Feller-Bunchers

Drive-to-Tree Machines1.00 A) Melroe Bobcat (Johnson, 1979)1.00 B) Chainsaw Heads (Greene & McNeel, 1991)1.00 C) Intermittent Circular Sawheads (Greene & McNeel, 1991)1.00 D) Continuous-Disk Sawheads (Greene & McNeel 1991)1.00 E) Hydro-Ax 211 (Hartsough, 2001)1.00 F) Bell Model T Chainsaw Head (Greene & McNeel. 1987. Productivity, costs, and1.00 G) Hydro-Ax 411 (Lanford & Stokes. 1996. Comparison of two thinning systems. 1.00 H) Drive-to-Tree Feller-Buncher, 4-wheeled in hardwood plantation (Spinelli et 1.00 I) Drive-to-Tree Feller-Buncher, 3-wheeled in hardwood plantation (Spinelli et a

Swing-Boom Machines0 1.00 A) Drott (Johnson, 1979) not used at present

1.00 B) Timbco 2520 & Cat 227 (Johnson, 1988)1.00 C) JD 693B & Timbco 2518 (Gingras, 1988)

1.00 D) Timbco (Gonsier & Mandzak, 1987)1.00 E) FERIC Generic (Gingras, J.F., 1996. The cost of product sorting during ha1.00 F) (Plamondon, J. 1998. Trials of mechanized tree-length harvesting in east0.00 G) Timbco 420 (Hartsough, B., E. Drews, J. McNeel, T. Durston and B. Stokes1.00 H) Timbco 445C Hydro-Buncher (Wang et al. 2004. Production and cost analysis 1.00 I) Swing-Boom Tracked Feller-Buncher in hardwood plantation (Spinelli et al. 2

0.00 User-Defined Feller-BuncherHarvesters

1.00 A) Hitachi EX150/Keto 500 (Schroder & Johnson, 1997)1.00 B) Komatsu PC95/Hahn HSG140 (Schroder & Johnson, 1997)1.00 C) Timbco T425/Pika 600 (Schroder & Johnson, 1997)

0 1.00 D) Timberjack 2518 (Kellogg & Bettinger, 1994)1.00 E) Rottne (McNeel & Rutherford, 1994)0.50 F) Norcar 600H (Brinker & Tufts, 1990)

0 1.00 G) Hitachi 200LC/Keto 500 (Drews et al, 2000)1.00 H) Rottne SMV EGS w/600 (Meek, P. 2000. Productivity and costs of single-gri1.00 I) Enviro w/ Pan 828 (Meek, P. 2000. Productivity and costs of single-grip ha1.00 J) FERIC Generic (Gingras, J.F. 1996. The cost of product sorting during har

1.00 K) (MacDonald, C. 1988. Evaluation of the Bruun T 610-H-A single grip harvest0 1.00 L) Rottne SMV Rapid EGS w/600 (Matzka, P. 2003. Thinning with prescribed fire0 1.00 M) JD 653C w/Waratah HTH Warrior (Matzka, P. 2003. Thinning with prescribed f0 1.00 N) Cat 320L w/Keto 500 (Matzka, P. 2003. Thinning with prescribed fire and tim

1.00 O) FMG 1870 w/TJ 762B (Eliasson, L., J. Bengtsson, J. Cedergren and H. Lageso1.00 P) Osa 260/752 & Valmet 862/942 (Lageson, H. 1997. Effects of thinning type o1.00 Q) Ponsse Ergo (Bolding, M.C. and B. Lanford. 2002. Productivity of a Ponsse

0.00 R) User-Defined HarvesterChoker and Grapple Skidding, Unbunched

Choker and Grapple Skidding, Unbunched (SCGU)0 1.00 A) CC Chokers (Johnson & Lee, 1988)0 1.00 B) CC Chokers (Gibson & Egging, 1973)0 0.00 C) CC Chokers (Schill(disabled due to odd results from the regression equation0 1.00 D) CC Chokers (Gardner, 1979)0 0.35 E) Cat 518 or Cat D4H, Chokers (Andersson, B. and G. Young 1998. Harvest

1.00 F) Cat 518 Grapple (Johnson, 1988)1.00 G) JD 648 Grapple (Gebhardt, 1977)1.00 H) Pasquali 933 Skidder1.00 I) Massey-Ferguson (LeDoux and Huyler, 1992)

0 1.00 J) Holder A60F (LeDo(disabled due to odd results from the regression equation1.00 K) Forest Ant (LeDoux and Huyler, 1992)

0 1.00 L) Samé Minitaurus ( (disabled due to odd results from the regression equation1.00 M) John Deere 640D cable skidder (group selection)1.00 N) Timberjack 460 choker skidder1.00 O) Cable skidders

0.00 User-Defined Skidding UnbunchedChoker and Grapple Skidding, Bunched

Choker and Grapple Skidding, Bunched (SCGB)1.00 A) Grapple Skidders (Johnson, 1988)0.71 B) Grapple Skidders (Tufts et al, 1988)

0 0.71 C) John Deere 748E (Kosicki, K. 2000. Productivities and costs of two harvesti0 0.71 D) Cat D5H TSK Custom Track (Henderson, B. 2001. Roadside harvesting with 0 1.00 E) JD 748_G-II & TJ 560 (Kosicki, K. 2002. Productivity and cost of summer h0 0.71 F) Tigercat 635 (Boswell, B. 1998. Vancouver Island mechanized thinning tria0 1.00 G) Tigercat 635 (Kosicki, K. 2002. Evaluation of Trans-Gesco TG88C and Tiger

1.00 H) John Deere 640D cable skidder (group selection, bunched) (LeDoux et al. 11.00 I) Timberjack 460 grapple skidder (Wang et al. 2004. Production and cost analy1.00 J) Small choker skidder (Cubbage et al., 1989)1.00 K) Large choker skidder (Cubbage et al., 1989)1.00 L) Small grapple skidder (Cubbage et al., 1989)1.00 M) Large grapple skidder (Cubbage et al., 1989)1.00 N) Grapple skidders (Kluender et al., 1997)

0.00 User-Defined Skidding BunchedForwarding

0 1.00 A) Timberjack 230A 8-ton (Schroder & Johnson, 1997)1.00 B) Rottne 10-ton (McNeel & Rutherford, 1994)1.00 C) FMG 910 (Kellogg & Bettinger, 1994)1.00 D) Valmet 646 12-ton (Drews et al., 2000)1.00 E) TJ 1010 (Sambo, S. 1999. Reduction of trail density in a partial cut with a1.00 F) Fabtek 546B (Bolding, M.C. 2003. Forest fuel reduction and energywood pro

0.00 G) User-Defined ForwarderCable Yarding, Clearcut, Unbunched (CYCCU)

0 0.00 A) Idaho Jammer (Schillings, 1969)0 0.00 B) Idaho Jammer (Hensel & Johnson, 1979)0 0.00 C) LinkBelt 98 Live Skyline (Hensel & Johnson, 1979)

0.00 D) Skagit GT3 Running Skyline (Hensel & Johnson, 1979)1.00 E) Skagit GT3 Running Skyline (Gardner, 1980)

0 0.00 F) LinkBelt 78 Shotgun Live Skyline (Gardner, 1980)0 1.00 G) Washington SLH78 (Andersson, B. and G. Young. 1998. Harvesting coastal

0.00 H) User-Defined Clearcut, UnbunchedCable Yarding, Partial Cut, Unbunched (CYPCU)

0 1.00 A) Clearwater Shotgun Live Skyline (Johnson & Lee, 1988)0 1.00 B) Madill 071 Live Skyline w/Danebo MSP (Kellogg-Olsen-Hargrave, 1986)

1.00 C) Skagit GT3 Running Skyline, Shelterwood (Gardner, 1980)1.00 D) Skagit GT3 Running Skyline, Group Selection (Gardner, 1980)

0 0.00 E) LinkBelt 78 Shotgun Live Skyline, Group Selection (Gardner, 1980)0 1.00 F) Madill 044 w/Bowman Mark Vd (Boswell, B. 2001. Partial cutting with a cabl0 1.00 G) Skylead C40 w/Mini-Maki II (Pavel, M. 1999. Analysis of a skyline partial c0 1.00 H) Koller K501 w/Koller SKA 2.5 manual slackpulling carriage (Yachats site: Kel0 1.00 I) Koller K501 w/Eaglet mechanical slackpulling carriage (Kellogg, L., Miller,

0.71 J) (Huyler, N. and C. LeDoux. 1997. Cycle-time equation for the Koller K300 1.00 K) Appalachian Thinner-LeDoux 1985 (see columns AI-AO for regression equat0.00 L) Bitterroot Yarder-LeDoux 1985 (see columns AI-AO for regression equation)1.00 M) Clearwater Yarder-LeDoux 1985 (see columns AI-AO for regression equatio1.00 N) Ecologger-LeDoux 1985 (see columns AI-AO for regression equation)1.00 O) Skylok 78-LeDoux 1985 (see columns AI-AO for regression equation)0.00 P) User-Defined Partial Cut, Unbunched

Cable Yarding, Bunched CTL Logs (CYCTL)1.00 A) Diamond D210 Standing Skyline w/Eaglet Motorized Carriage (Doyal, 1997)0.00 B) User-Defined CTL Bunched

I. Helicopter Yarding, Manual Log-Length1.00 A) Bell 204 class1.00 B) Boeing Vertol 107 - 61A1.00 C) K-MAX0.00 D) User-Defined

II. Helicopter Yarding, CTL1.00 A) Bell 204 class1.00 B) Boeing Vertol 107 - 61A1.00 C) K-MAX0.00 D) User-Defined

Processing1.00 A) Hahn Stroke Processor (Gonsier & Mandzak, 1987)1.00 B) Stroke Processor (MacDonald, 1990)1.00 C) Roger Stroke Processor (Johnson, 1988)1.00 D) Harricana Stroke Processor (Johnson, 1988)1.00 E) Hitachi EX150/Keto 500 (Schroder & Johnson, 1997)1.00 F) FERIC Generic (Gingras, J.F. 1996. The cost of product sorting during har0.90 G) Valmet 546 Woodstar Processor (Holtzscher, M. and B. Lanford. 1997. Tree di0.00 H) User-Defined Processor

I. Loading Full-Length Logs0.00 A) Front-End Loader (Vaughan, 1989)1.00 B) Knuckleboom Loader, Small Logs (Brown & Kellogg, 1996)0.80 C) Loaders (Hartsough et al, 1998)1.00 D) Loaders (Jackson et al, 1984)0.00 E) User-Defined Load Full-Length Logs

II. Loading CTL Logs1.00 A) Knuckleboom Loader, CTL Logs (Brown & Kellogg, 1996)0.50 B) Loaders (Jackson et al, 1984)0.00 C) User-Defined Load CTL Logs

I. Chip Whole Trees1.00 A) (Johnson, 1989)1.00 B) Morbark 22 (Hartsough, unpublished)1.00 C) Morbark 60/36 (Hartsough et al, 1997)0.00 D) User-Defined Chip Whole Trees

II. Chain Flail DDC Whole Trees (not currently included in any system)1.00 A) adjusted from Chip Whole Trees0.00 II.B) User-Defined Chain Flail DDC WT

III. Chip CTL Logs1.00 A) Morbark 27 (Drews et al, 2001)1.00 B) Morbark 60/36 (Hartsough et al, 1997)0.00 III.C) User-Defined Chip CTL Logs

IV. Chip Piled Loose Residues at Landing1.00 A) Drum chippers (Desrochers, L., D. Puttock and M. Ryans. 1995. Recovery o0.00 B) User-Defined Chip Piled Loose Residues at Landing

V. Chip Bundles of Residue at Landing1.00 A) Assume 50% faster than chipping loose residues0.00 B) User-Defined Chip Bundles of Residue at Landing

I. Bundle Residues within the stand1.00 A) Timberjack Bundler (Cuchet-Roux-Spinelli, 2004)1.00 B) Timberjack Bundler (Rummer, B., D. Len and O. O'Brien. 2004. Forest residu0.00 C) User-Defined Bundler

II. Residue Forwarding1.00 A) Adjusted from Forwarding: Rottne 10-ton (McNeel & Rutherford, 1994)0.00 B) User-Defined Residue Forwarding

1) To protect against unreasonable extrapolation, the user-set weight is not allowed to override a model-defined weight of zero, even for a user-defined function.2) At least one function within each activity must have a non-zero weight in order to calculate a cost for that activity.3) Model-defined weights are used as defaults for every function where the user does not enter a weight.

UsedWeight Dykstra notes 02 Mar 2008 -- items in red are disabled in this FRCS variant

1.00 Eastern hardwoods0.00 Coastal BC second-growth0.00 Idaho, small-diameter0.00 Coastal BC second-growth1.00 Southern pine

0.00

0.00 Oregon coast second growth0.00 Cascades0.00 Coastal BC second-growth1.00 Eastern hardwoods1.00 Southern pine

0.00

1.00 Eastern hardwoods0.00 Coastal BC second-growth0.00 Idaho, small-diameter0.00 Coastal BC second-growth1.00 Southern pine

0.00

0.00 Oregon coast second growth0.00 Cascades0.00 Coastal BC second-growth1.00 Eastern hardwoods1.00 Southern pine

0.00

1.00 Eastern hardwoods0.00 Coastal BC second-growth0.00 Idaho, small-diameter0.00 Coastal BC second-growth1.00 Southern pine

0.00

1.00 Eastern hardwoods0.00 Coastal BC second-growth0.00 Idaho, small-diameter0.00 Coastal BC second-growth1.00 Southern pine

0.00

0.00 Oregon coast second growth0.00 Oregon Cascades0.00 Coastal BC second-growth1.00 Eastern hardwoods1.00 Southern pine

0.00

1.00 Interior OR-WA-ID biomass; probably OK for other regions also1.00 Southern pine1.00 Southern pine1.00 Southern pine1.00 Interior West; probably OK for other regions also1.00 Southern pine1.00 Southern pine1.00 Hardwood plantation (eucalypts, California)1.00 Hardwood plantation (eucalypts, California)

0.00 Disabled in the original FRCS due to poor results1.00 Interior West; probably OK for other regions also1.00 Eastern Canada1.00 Interior lodgepole pine; probably OK for southern pine1.00 Eastern Canada1.00 Eastern Canada0.00 Interior West; probably OK for other regions also1.00 Eastern hardwoods1.00 Hardwood plantation (eucalypts, California)

0.00

1.00 Interior West; probably OK for other regions also1.00 Interior West; probably OK for other regions also1.00 Interior West; probably OK for other regions also0.00 Coastal second growth1.00 Interior West; probably OK for other regions also0.50 Southern pine0.00 Interior West1.00 Eastern Canada1.00 Eastern Canada1.00 Eastern Canada

1.00 Eastern Canada0.00 Interior West0.00 Interior West0.00 Interior West1.00 Scandinavia; probably OK for other regions also1.00 Scandinavia; probably OK for other regions also1.00 Southern Appalachia

0.00

0.00 Interior West0.00 Interior West0.00 Interior West0.00 Interior West0.00 Coastal BC second-growth1.00 Interior West; probably OK for other regions also1.00 Interior West; probably OK for other regions also1.00 Eastern hardwoods (added by Dykstra, 24 Feb 2008)1.00 Eastern hardwoods (added by Dykstra, 24 Feb 2008)0.00 Eastern hardwoods (added by Dykstra, 24 Feb 2008)1.00 Eastern hardwoods (added by Dykstra, 24 Feb 2008)0.00 Eastern hardwoods (added by Dykstra, 24 Feb 2008)1.00 Eastern hardwoods (added by Dykstra, 24 Feb 2008)1.00 Eastern hardwoods (added by Dykstra, 24 Feb 2008)1.00 Southern pine (added by Dykstra, 24 Feb 2008)

0.00

1.00 Interior West; probably OK for other regions also0.71 Southern pine0.00 Canada interior West0.00 Coastal BC0.00 Canada interior West0.00 Coastal BC0.00 Canada interior West1.00 Eastern hardwoods (added by Dykstra, 24 Feb 2008)1.00 Eastern hardwoods (added by Dykstra, 24 Feb 2008)1.00 Southern pine (added by Dykstra, 24 Feb 2008)1.00 Southern pine (added by Dykstra, 24 Feb 2008)1.00 Southern pine (added by Dykstra, 24 Feb 2008)1.00 Southern pine (added by Dykstra, 24 Feb 2008)1.00 Southern pine (added by Dykstra, 24 Feb 2008)

0.00

0.00 Interior West; disabled by Dykstra, 02 Mar 2008--poor results at longer forwarding distances.1.00 Interior West; probably OK for other regions also1.00 Coastal West; probably OK for other regions also1.00 Interior West; probably OK for other regions also1.00 Eastern Canada; probably OK for other regions also1.00 Southern pine; proably OK for other regions also

0.00

0.00 Interior West0.00 Interior West0.00 Interior West0.00 Interior West; probably OK for other regions also1.00 Interior West; probably OK for other regions also0.00 Interior West0.00 Coastal BC0.00

0.00 Interior West0.00 Oregon coast second-growth1.00 Interior West; probably OK for other regions also1.00 Interior West; probably OK for other regions also0.00 Interior West0.00 Coastal BC0.00 Canada interior West0.00 Oregon coast second-growth0.00 Oregon Cascades0.71 Eastern hardwoods1.00 Eastern hardwoods (added by Dykstra, 21 Feb 2008)0.00 Eastern hardwoods (added by Dykstra, 21 Feb 2008)1.00 Eastern hardwoods (added by Dykstra, 21 Feb 2008)1.00 Eastern hardwoods (added by Dykstra, 21 Feb 2008)1.00 Eastern hardwoods (added by Dykstra, 21 Feb 2008)0.00

1.00 Interior West; left enabled because it's the only study of this type0.00

1.001.001.000.00

1.001.001.000.00

1.00 Interior West (lodgepole pine); probably OK for other regions also1.00 Eastern Canada; probably OK for other regions also1.00 Interior West; probably OK for other regions also1.00 Interior West; probably OK for other regions also1.00 Interior West; probably OK for other regions also1.00 Eastern Canada; probably OK for other regions also0.90 Souther pine; probably OK for other regions also0.00

0.00 New Zealand1.00 Interior West0.80 Interior West1.00 Interior West0.00

1.00 Interior West0.50 Interior West0.00

1.00 Interior West1.00 California1.00 Interior West0.00

1.000.00

1.00 Interior West1.00 Interior West0.00

1.00 Eastern Canada; probably OK for other regions also0.00

1.000.00

1.00 France; probably OK for other regions also1.00 Interior West; probably OK for other regions also0.00

1.000.00

Interior West; disabled by Dykstra, 02 Mar 2008--poor results at longer forwarding distances.

Stand State Slope AYD Elev Harvesting System CT/ac ft3/CT lb/ft3 CT

TreatmentArea

CT residue fraction

ST/ac ft3/ST lb/ft3 ST LT/ac ft3/LT lb/ft3 LT

CT hardwood fraction

ST residue fraction

ST hardwood fraction

LT residue fraction

LT hardwood fraction

Include move-in cost?

Move-in miles

Collect & chip residues?

Partial cut?

Include loading costs?

All Costs, $/CCF

All Costs, $/GT

All Costs, $/ac

CT Chips, GT/ac

Residue Chips, GT/ac

ST Logs, ft3/ac

LT Logs, ft3/ac

CT Chips, $/GT

Residue Chips, $/GT

Original CT/ac

Orig residue recovery fraction

New residue recovery fraction

CT stems extracted, GT/ac

CT stems retained, GT/ac

CT residues extracted, GT/ac

CT residues retained, GT/ac

ST stems extracted, GT/ac

ST residues extracted, GT/ac

ST residues retained, GT/ac

LT stems extracted, GT/ac

LT residues extracted, GT/ac

LT residues retained, GT/ac

Total Biomass, GT/ac

Biomass extracted, GT/ac

Biomass retained, GT/ac

Biomass fraction retained

Inputs

Stand variables Cut trees/ac bole volume/tree, bole wt/tree,**ft3 green lbs

for trees to be chipped 112 2.2 small log* 38 22.1 large log 2 99.9

* <= 80 ft3 or <= 20" dbh, whichever you think is preferable**or bole density, green lb/ft3 if easier. Can use default value if not supplied.*** or residue wt as percent of bole wt if easier. This should account for all limbs and the top.**** can use default relationships for these if not supplied

Unit variablesYardDist, ft one way slope distance 1820Slope, % 1Area, acres 1MoveInDist, miles one way 0Elevation 0

Toggles and other discrete variables 1Partial cut or clearcut 2System*****Include move-in cost ***** 0Include costs of collecting and chipping residues***** 1Diesel Fuel Price 3.533*****If you prefer, all cost elements can be included in a summary table so the user doesn't have to select in advance whether or not to include the move-in and residue bits

III. System Cost Summaries Ground-BasedTable from STHarvest Mech WT CTL Manual WTA. $/ac Stump-to-Truck for Primary Prod 1747.47 1189.91 2295.60 Primary Product Move-In Costs* 0.00 0.00 0.00 Onto-Truck for Residues w/o Mov 25.14 100.08 25.14 Residue Move-In Costs* 0.00 0.00 0.00 Total, $/ac 1772.62 1289.99 2320.74 * If these are to be calculated 1772.62 1289.99 2320.74

B. $/BoleCCF Stump-to-Truck for Primary Prod 134.38 109.10 176.53 Primary Product Move-In Costs* 0.00 0.00 0.00 Onto-Truck for Residues w/o Mov 1.93 9.18 1.93 Residue Move-In Costs* 0.00 0.00 0.00 Total, $/BoleCCF 136.31 118.28 178.46 * If these are to be calculated 136.31 118.28 178.46

C. $/GT of all products Stump-to-Truck for Primary Prod 41.18 34.58 54.10 Primary Product Move-In Costs* 0.00 0.00 0.00

Onto-Truck for Residues w/o Mov 0.59 2.91 0.59 Residue Move-In Costs* 0.00 0.00 0.00 Total, $/GT of all products 41.77 37.49 54.69 * If these are to be calculated 41.77 37.49 54.69

Limits Maximum LLT/ac none 10 noneMaximum LLT as % of ALT none 10 noneExceeded 0 0 0TreeVol maximums, ft3:

Chip 80 80 80Small Log 80 80 80Large Log 250 100 500All Log 250 0 500

Avg Vol 250 0 500 Exceeded (0=no, 1=yes) 0 0 0Slope, % maximum 40 40 40 Exceeded (0=no, 1=yes) 0 0 0Yarding distance, ft 0 0 0 maximum none none none Exceeded (0=no, 1=yes) 0 0 0

Within all limits (1=yes, #N/A=no) 1 1 1

0 0 00 0 0

Dykstra note, 23 Feb 2008: The formulas in the immediately preceding row have been corrected by adding the test "if(isna(c73),…),0)", where c=the relevant column.Previously error indicators could be issued when no actual error condition existed.

Wood Density 60 60 60Residue Fraction 0 0.1335877261 0.1424811974

Hardwood Fraction 0.6245923586 0.8681423631 0.4727533479

Bundler Bundler0 Chainsaw

Chipper big1 Chipper small

258.99 Fbuncher DriveToTree258.99 Fbuncher SelfLeveling

Fbuncher SwingBoomForwarder bigForwarder smallHarvester bigHarvester smallLoader bigLoader smallProcessor bigProcessor smallSkidder big

Skidder smallYarder intermediateYarder small

residue wt/tree,FRACT DBH,**** Height,**** Hardwoodgreen lbs in ft fraction Wood Density

0 0.6 60.000.1335877261 0.9 60.000.1424811974 0.5 60.00

*** or residue wt as percent of bole wt if easier. This should account for all limbs and the top.

7 = State selected from dropdown on interface pageClear CutPartial Cut

0Select Value

1

1 Total Primary Residues 48.2534914 14.50631061772.6151 1747.47 25.14

0 136.312017 134.38 1.931 41.7711535 41.18 0.59

*****If you prefer, all cost elements can be included in a summary table so the user doesn't have to select in advance whether or not to include the move-in and residue bits

Cable HelicopterManual Log Manual WT/ Manual WT Manual Log CTL Manual Tree CTL

2345.79 #N/A #N/A #N/A #N/A 2892.81 2912.240.00 #N/A #N/A #N/A #N/A 0.00 0.000.00 0.00 #N/A 0.00 0.00 0.00 0.000.00 0.00 #N/A 0.00 0.00 0.00 0.00

2345.79 #N/A #N/A #N/A #N/A 2892.81 2912.242345.79 Yard dist Yard dist Yard dist Yard dist 2892.81 2912.24

180.39 #N/A #N/A #N/A #N/A 222.45 267.030.00 #N/A #N/A #N/A #N/A 0.00 0.000.00 0.00 #N/A 0.00 0.00 0.00 0.000.00 0.00 #N/A 0.00 0.00 0.00 0.00

180.39 #N/A #N/A #N/A #N/A 222.45 267.03180.39 Yard dist Yard dist Yard dist Yard dist 222.45 267.03

60.13 #N/A #N/A #N/A #N/A 74.15 89.010.00 #N/A #N/A #N/A #N/A 0.00 0.00

Value from Select buttons.

Cost Per Acre.Cost Per Bole CCF.Cost Per GT.

0.00 0.00 #N/A 0.00 0.00 0.00 0.000.00 0.00 #N/A 0.00 0.00 0.00 0.00

60.13 1.00 1.00 1.00 1.00 74.15 89.0160.13 Yard dist Yard dist Yard dist Yard dist 74.15 89.01

none none none none 10 none 10none none none none 10 none 10

0 0 0 0 0 0 0

80 80 80 80 80 80 800 0 80 0 80 0 800 0 500 0 100 0 100

250 250 500 250 0 250 0250 250 500 250 0 250 0

0 0 0 0 0 0 0

40 100 100 100 40 100 400 0 0 0 0 0 00 0 0 0 0 0 0

none 1300 1300 1300 1300 10000 100000 1 1 1 1 0 0

0 01 #N/A #N/A #N/A #N/A 1 1

0 Yard dist Yard dist Yard dist Yard dist 0 00 Yard dist Yard dist Yard dist Yard dist 0 0

Dykstra note, 23 Feb 2008: The formulas in the immediately preceding row have been corrected by adding the test "if(isna(c73),…),0)", where c=the relevant column.

Machine Cost Altered Machine Cost Defaults258.99 258.991557102.87 102.872604253.01 253.008888172.63 172.625794

Fbuncher DriveToTree 186.81 186.805607Fbuncher SelfLeveling 244.53 244.533748Fbuncher SwingBoom 239.50 239.49993

260.14 260.136633Forwarder small 203.18 203.181608

354.27 354.269277283.58 283.583591185.83 185.828204151.90 151.896071271.11 271.105667214.80 214.795278195.60 195.600216

139.28 139.276831Yarder intermediate 372.42 372.415828

311.94 311.944807

Inputs

Page 30

Inputs Move-In InputsYardDist, ft one way slope distance 1820 Area, acres 1Slope, % 1 MoveInDist, mile 0PartialCut 1 CalcMoveIn 0CollectOptionalResidues 1Elevation, ft 0Inputs for Cut Trees

Chip Trees Small Log Tr Large Log Tr(<=80 ft3) (>80 ft3)

Suffix for related variables: CT SLT LLTRemovals, trees/acre 112 38.2 2.1TreeVol, ft3 2.2 22.1 99.9User-SpecDBH, inUser-SpecTreeHeight, ftUser-SpecWoodDensity, green lb/ft3 60 60 60User-SpecResidueWt, fraction of bole wt 0 0.13358773 0.1424812User-SpecHardwoodFraction 0.6245923586 0.86814236 0.47275335Other AssumptionsMaxManualTreeVol, ft3 300MaxMechTreeVol, ft3 80MoistureContentFraction, wet basis 0.50LogLength, ft 16LoadWeight, green tons (logs) 25LoadWeight, green tons (chips) 25CTLTrailSpacing, ft 50HardwoodCostPremium, fraction 0.05ResidueRecoveryFraction for WT systems 0.80ResidueRecoveryFraction for CTL 0.50Calculated IntermediatesDBH, in 5.2 10.9 21.9TreeHeight, ft 35 59 92WoodDensity, green lb/ft3 60.0 60.0 60.0HardwoodFraction 0.62 0.87 0.47ButtDiam, in 13.9LogsPerTree 1.00 3.62 5.49LogVol, ft3CTLLogsPerTree 2.24CTLLogVol, ft3 0.98BFperCF 5VolPerAcre, ft3 246 844 210BoleWt, GT/ac 7.4 25.3 6.3ResidueWt, GT/ac 0.0 3.4 0.9ManualMachineSizeMechMachineSizeChipperSize 0.03NonSelfLevelCabDummy 1.00CSlopeFB&Harv (Mellgren 90) 0.00CRemovalsFB&Harv (Mellgren 90) 0.29CSlopeSkidForwLoadSize (Mellgren 90) 1.00Chardwood 1.03 1.04 1.02

¬This value was changed from 150 on 26 Feb 2008 because it seemed too restrictive.

¬This value was changed from 32 in FRCS-West

¬Changed from 0.20 in FRCS-West by Dennis Dykstra, 21 Feb 2008¬If Billion-Ton Processing is selected this becomes a variable calculated in VBA Module4 but reset to this value after processing (Dykstra, 28 Jan 2010)

A4
1=Partial Cut, 0=Clearcut. Other values are not valid and will produce #N/A errors in cost results for any relevant activities. For purposes of this program, a partial cut is any in which reserve trees are to be left in the stand, e.g. thinnings or selective cuts.
C4
1=Yes, 0=No. Other values are not valid and will produce #N/A errors in move-in costs.
A5
1=Yes, 0=No. Other values are not valid and will produce #N/A errors in residues amounts and cost results for activities associated with the optional residues. Optional residues include the following: a) For Whole Tree systems, the limbs and tops that are removed from whole trees at the landing while processing the trees into logs. (It does not include tops and limbs on chipped whole trees because these residues are collected in any case.) b) For the Ground-Based CTL system, a portion of the tops and limbs that the harvester removes from the trees. These can be collected by a bundler and transported by a forwarder to the landing.
A6
Required only for helicopter yarding
C12
Must be <= 80 ft3
D12
Must be <= 80 ft3
E12
Should be > 80ft3
A13
Optional; if no DBH is entered here, a default value will be calculated on row 30.
A14
Only used for harvesting. Optional; if no value is entered here, a default value will be calculated on row 31.
E14
Heights of large log trees are not used by any equations so there's no need for this number
A15
Optional; default is 50. This is the green weight of wood and bark (not limbs or unmerchantable top), per unit of merchantable bole volume. The default is used if the user doesn't enter anything or if they enter zero.
A16
Optional; default is zero. This is the weight of limbs and unmerchantable top as a fraction of merchantable bole weight.
A17
Optional; default is zero; assumed to be the fraction of volume
A27
Fraction of total residues that are recovered when trees are harvested with a whole tree system and residues that arrived at the landing are subsequently chipped or ground.
A28
Fraction of total residues that are recovered when trees are harvested with a CTL system and residues are subsequently collected by a bundler and transported to the landing with a forwarder.

Inputs

Page 31

Tests on Input IndicatorsPartialCut 1CollectOptio 1CalcMoveIn 0

Calculated ValuesSmall Trees All Log TreesAll Trees(<=80 ft3)ST ALT (none)

150.2 40.3 1527.3 26.2 8.5

7.1 11.8 7.541 42

60.0 60.0 60.00.81 0.79 0.7610.1 10.51.67 3.72 1.724.36 7.03 4.972.762.63

1091 1054 130032.7 31.6 39.0

3.4 4.3 4.30.09 0.03

0.09

1.04 1.04 1.04

his value was changed from 150 on 26 Feb 2008 because it seemed too restrictive.

his value was changed from 32 in FRCS-West

Changed from 0.20 in FRCS-West by Dennis Dykstra, 21 Feb 2008If Billion-Ton Processing is selected this becomes a variable calculated in VBA Module4 but reset to this value after processing (Dykstra, 28 Jan 2010)

F8
includes Chip Trees and Small Log Trees
G8
includes Small Log Trees and Large Log Trees
G35
Peter Noordijk Changed this cell to return 0 if ALTRemovals = 0
G36
Peter Noordijk changed to return zero if RemovalsALT = 0

Inputs

Page 32

If Billion-Ton Processing is selected this becomes a variable calculated in VBA Module4 but reset to this value after processing (Dykstra, 28 Jan 2010)

Mech WT CTL Manual WT Manual LogGround-Based M Ground-Based C Ground-Based M Ground-Based

I. System Product SummaryDykstra, 19 Feb 2008: This methodology reports cost of residues recovered and chipped per GT of TOTAL product (not just residues)

A. Amounts recovered/ac I've added summary data in column M which is used by the VBA routine Module1.RunBatch to calculate residue costs per GT of residues.Bole volume, CCF/ac 13.0 10.9 13.0 13.0Bole weight, GT/ac 39.0 32.7 39.0 39.0WT residue recovered as part of primary 0.0 0.0Primary Products, GT/ac 39.0 32.7 39.0 39.0Optional residue recovered, GT/ac 3.4 1.7 3.4Total of Primary Products & Optional Res 42.4 34.4 42.4 39.0

B. Amounts unrecovered and left within the stand/acUncut trees >80cf, CCF/ac 2.1Residues on uncut trees >80cf, GT/ac 0.9

Activity fuels (residues) on the ground, G 1.6 1.7 1.6 4.3

C. Amounts unrecovered and left at the landing/acPiled activity fuels (residues), GT/ac 0.0 0.0

[D. Check calc: total residues, GT/ac] 5.00 4.28 5.00 4.28

II. System Cost Elements

A. For Primary Products (boles & WT residues), $/CCF of material treated by the activityFell&Bunch: trees <=80 cf 21.52Manual Fell, Limb, Buck: all trees 33.51Manual Fell, Limb, Buck: all log treesManual Fell, Limb, Buck: trees >80cf 15.15 12.10Manual Fell: trees <=80 cf 20.98Manual Fell: chip treesHarvest: trees <=80 cf 52.29Skid Bunched: all trees 90.65Skid Unbunched: all trees 133.75 133.75Forward: trees <=80 cf 39.72Yard Unbunched: all treesYard CTL: trees <=80 cfProcess: log trees <=80 cf 15.56 15.56Load: log trees 12.06 12.06 12.06Load CTL: log trees <=80 cf 16.76Chip: chip whole trees 17.68 17.68Chip: chip tree boles 17.68Chip CTL: chip tree boles 18.19Primary Product Move-In Costs, $/CCF 0.00 0.00 0.00 0.00

B. For Optional Residues, $/GT of additional residue recoveredBundle: CTL Residues 40.31Forward: CTL Residues 13.95Chip Loose Residues: from log trees <=80 7.34 7.34

Chip Bundled Residues: from all trees <=80 cf 4.89Onto-Truck for Residues w/o Move-In, $/ 7.34 59.16 7.34

Residue Move-In Costs, $/GT 0.00 0.00 0.00Onto-Truck for Residues w/ Move-In, $/G 7.34 59.16 7.34

C. For All Products, $/acFell&Bunch: trees <=80 cf 235Manual Fell, Limb, Buck: all trees 436Manual Fell, Limb, Buck: all log treesManual Fell, Limb, Buck: trees >80cf 32 25Manual Fell: trees <=80 cf 229Manual Fell: chip treesHarvest: trees <=80 cf 570Skid Bunched: all trees 1179Skid Unbunched: all trees 1739 1739Forward: trees <=80 cf 433Yard Unbunched: all treesYard CTL: trees <=80 cfProcess: log trees <=80 cf 131 131Load: log trees 127 127 127Load CTL: log trees <=80 cf 141Chip: chip whole trees 44 44Chip: chip tree boles 44Chip CTL: chip tree boles 45Stump-to-Truck for Primary Products w/o 1747 1190 2296 2346Primary Product Move-In Costs, $/ac 0 0 0 0Stump-to-Truck for Primary Products w/ M 1747 1190 2296 2346

Bundle: CTL Residues 68Forward: CTL Residues 24Chip Loose Residues: from log trees <=80 25 25Chip Bundled Residues: from all trees <=80 cf 8Onto-Truck for Residues w/o Move-In, $/a 25 100 25Residue Move-In Costs, $/ac 0 0 0Onto-Truck for Residues w/ Move-In, $/ac 25 100 25

III. System Cost Summaries

A. $/ac Stump-to-Truck for Primary Products w 1747 1190 2296 2346 Primary Product Move-In Costs* 0 0 0 0 Onto-Truck for Residues w/o Move-In* 25 100 25 Residue Move-In Costs* 0 0 0 Total, $/ac 1773 1290 2321 2346 * If these are to be calculated

B. $/BoleCCF Stump-to-Truck for Primary Products w 134.38 109.10 176.53 180.39

Primary Product Move-In Costs* 0.00 0.00 0.00 0.00 Onto-Truck for Residues w/o Move-In* 1.93 9.18 1.93 Residue Move-In Costs* 0.00 0.00 0.00 Total, $/BoleCCF 136.31 118.28 178.46 180.39 * If these are to be calculated

C. $/GT of all products Stump-to-Truck for Primary Products w 41.18 34.58 54.10 60.13 Primary Product Move-In Costs* 0.00 0.00 0.00 0.00 Onto-Truck for Residues w/o Move-In* 0.59 2.91 0.59 Residue Move-In Costs* 0.00 0.00 0.00 Total, $/GT of all products 41.77 37.49 54.69 60.13LimitsMaximum LLT/ac none 10 none noneMaximum LLT as % of ALT none 10 none none Exceeded (0=no, 1=yes) 0 0 0 0TreeVol maximums, ft3: CT 80 80 80 80 SLT 80 80 80 LLT 250 100 500 ALT 250 500 250 all trees 250 500 250 Exceeded (0=no, 1=yes) 0 0 0 0Slope, % maximum 40 40 40 40 Exceeded (0=no, 1=yes) 0 0 0 0Yarding distance, ft maximum none none none none Exceeded (0=no, 1=yes) 0 0 0 0

Within all limits (1=yes, #N/A=no) 1 1 1 1

Notes: 1) No macros are used. All calculations are done simultaneously with duplicate sheets (for felling) or duplicate functions (for chipping).2) The systems are ordered from left to right in terms of general preference for fuel reduction operations.

Old values for the TreeVol maximums, changed to those above rows 121 and 122) on 23 Feb 2008 by Dennis DykstraLLT 250 250 250ALT 150 150 150

all trees 150 150 150Dykstra note: I can't image the purpose of imposing limits on ALT and "all trees" so I've effectively removed them by replacing the old limits with larger values.

In numerous tests the old limits resulted in nonsensical outcomes.

B118
avg tree size limit for chipping
C118
avg tree size limit for chipping
D118
avg tree size limit for chipping
E118
avg tree size limit for chipping
B119
avg tree size limit for processing
C119
avg tree size limit for harvesting and forwarding
D119
avg tree size limit for processing
B120
avg tree size limit for manual felling, limbing & bucking
C120
assume only manual felling, limbing & bucking
D120
avg tree size limit for manual felling, limbing & bucking
B121
avg tree size limit for loading
D121
avg tree size limit for loading
E121
avg tree size limit for loading
B122
avg tree size limit for grapple skidding of bunched trees
D122
avg tree size limit for skidding unbunched trees
E122
avg tree size limit for skidding unbunched trees
B125
skidding limit
C125
harvesting and forwarding limit
D125
skidding limit
E125
skidding limit

WT/Log Manual WT Manual Log Manual WT Results for Selected System (added by Dennis Dykstra on 12 Feb 2008)Cable Manual WT/LCable Manual Cable ManuaCable CTL Helicopter Helicopter CTL Ground-Based Mech WT

Dykstra, 19 Feb 2008: This methodology reports cost of residues recovered and chipped per GT of TOTAL product (not just residues)I've added summary data in column M which is used by the VBA routine Module1.RunBatch to calculate residue costs per GT of residues.

13.0 13.0 13.0 10.9 13.0 10.9 13.039.0 39.0 39.0 32.7 39.0 32.7 39.0

0.0 0.0 0.039.0 39.0 39.0 32.7 39.0 32.7 39.0

3.4 3.439.0 42.4 39.0 32.7 39.0 32.7 42.4

2.1 2.1 0.00.9 0.9 0.0

4.3 1.6 4.3 3.4 4.3 3.4 1.6

0.0 0.0

4.28 5.00 4.28 4.28 4.28 4.28 5.0

21.52#N/A 33.51 0.00

#N/A 0.00#N/A 15.15#N/A 0.00

#N/A 0.00#N/A 52.29 0.00

90.650.000.00

#N/A #N/A #N/A 169.63 0.00#N/A 193.37 0.00

#N/A 15.56#N/A #N/A #N/A 19.68 12.06

#N/A 22.44 0.00#N/A #N/A 17.68

#N/A #N/A 17.68 17.68 0.000.00

#N/A #N/A #N/A #N/A 0.00 0.00 0.00

0.000.00

#N/A 7.34

0.00#N/A 7.34

#N/A 0.00#N/A 7.34

234.74#N/A 436 0.00

#N/A 0.00#N/A 31.79#N/A 0.00

#N/A 0.00#N/A 570 0.00

1178.870.000.00

#N/A #N/A #N/A 2206 0.00#N/A 2109 0.00

#N/A 131.39#N/A #N/A #N/A 207 127.11

#N/A 189 0.00#N/A #N/A 43.57

#N/A #N/A 44 44 0.000.00

#N/A #N/A #N/A #N/A 2893 2912 1747.47#N/A #N/A #N/A #N/A 0 0 0.00#N/A #N/A #N/A #N/A 2893 2912 1747.47

0.000.00

#N/A 25.140.00

#N/A 25.14#N/A 0.00#N/A 25.14

#N/A #N/A #N/A #N/A 2893 2912 1747.47#N/A #N/A #N/A #N/A 0 0 0.00

#N/A 25.14#N/A 0.00

#N/A #N/A #N/A #N/A 2893 2912 1772.62

#N/A #N/A #N/A #N/A 222.45 267.03 134.38

#N/A #N/A #N/A #N/A 0.00 0.00 0.00#N/A 1.93#N/A 0.00

#N/A #N/A #N/A #N/A 222.45 267.03 136.31

#N/A #N/A #N/A #N/A 74.15 89.01 41.18#N/A #N/A #N/A #N/A 0.00 0.00 0.00

#N/A 0.59#N/A 0.00

#N/A #N/A #N/A #N/A 74.15 89.01 41.77

none none none 10 none 10none none none 10 none 10

0 0 0 0 0 0

80 80 80 80 80 8080 80 80

500 100 100250 500 250 250250 500 250 250

0 0 0 0 0 0

100 100 100 40 100 400 0 0 0 0 0

1300 1300 1300 1300 10000 100001 1 1 1 0 0

#N/A #N/A #N/A #N/A 1 1

1) No macros are used. All calculations are done simultaneously with duplicate sheets (for felling) or duplicate functions (for chipping).

Old values for the TreeVol maximums, changed to those above rows 121 and 122) on 23 Feb 2008 by Dennis Dykstra250 250 250 250150 150 150 150150 150 150 150

I can't image the purpose of imposing limits on ALT and "all trees" so I've effectively removed them by replacing the old limits with larger values.

F118
avg tree size limit for chipping
G118
avg tree size limit for chipping
H118
avg tree size limit for chipping
I118
avg tree size limit for chipping
J118
avg tree size limit for chipping
K118
avg tree size limit for chipping
G119
avg tree size limit for processing
I119
avg tree size limit for harvesting
K119
avg tree size limit for harvesting
G120
avg tree size limit for manual felling, limbing & bucking
I120
assume no manual felling, limbing & bucking
K120
assume no manual felling, limbing & bucking
F121
avg tree size limit for loading
G121
avg tree size limit for loading
H121
avg tree size limit for loading
J121
avg tree size limit for loading
F122
avg tree size limit for yarding
G122
avg tree size limit for yarding
H122
avg tree size limit for yarding
J122
avg tree size limit for yarding
F125
limit for safe operations
G125
limit for safe operations
H125
limit for safe operations
I125
harvesting limit
J125
limit for safe operations
K125
harvesting limit
F128
limit on avg (not external) yarding distance for cable yarders based on line capacity of winch drums
G128
limit on avg (not external) yarding distance for cable yarders based on line capacity of winch drums
H128
limit on avg (not external) yarding distance for cable yarders based on line capacity of winch drums
I128
limit on avg (not external) yarding distance for cable yarders based on line capacity of winch drums
J128
cautionary limit (not a physical limit) for helicopters
K128
cautionary limit (not a physical limit) for helicopters

Results for Selected System (added by Dennis Dykstra on 12 Feb 2008)Ground-Based Mech WT Ground-Based Mech WT

CCF/acGT/acGT/acGT/acGT/acGT/ac

CCF/acGT/ac

GT/ac

GT/ac

GT/ac

$/CCF Mech Felling, CT & SLT$/CCF Manual Felling, AT$/CCF Manual Felling, ALT$/CCF Manual Felling, LLT$/CCF Manual Felling, SLT$/CCF Manual Felling, CT$/CCF CTL Felling & Processing, ST$/CCF Skid Bunched, AT$/CCF Skid Unbunched, AT$/CCF Forward, ST$/CCF Cable Yard Unbunched, AT$/CCF Cable Yard CTL$/CCF WT Processing, ST$/CCF Load, ALT$/CCF Load, CTL$/CCF Chipping Cost, CT$/CCF Bole Chipping Cost, ALT$/CCF Bole Chipping Cost, CTL$/CCF Primary Product move-in cost

$/GT$/GT$/GT

$/GT$/GT

$/GT$/GT

$/ac$/ac$/ac$/ac$/ac$/ac$/ac$/ac$/ac$/ac$/ac$/ac$/ac$/ac$/ac$/ac$/ac$/ac$/ac$/ac$/ac

$/ac$/ac$/ac$/ac$/ac$/ac$/ac

$/ac$/ac$/ac$/ac$/ac

$/CCF

$/CCF$/CCF$/CCF$/CCF

$/GT$/GT$/GT$/GT$/GT

1,150.0 0.00 0.00

0.00

General InputsSlope 1RemovalsST, trees/ac 150.2TreeVolST, ft3 7.26PartialCut 1.00

Calculated IntermediatesDBHSLT, in 10.92377NonSelfLevelCabDummy 1CSlopeFB&Harv (Mellgren 9 0.0CRemovalsFB&Harv (Mellgr 0.291136

Fell-Bunch Calculated ValuesDistBetweenTrees, ft 17.02978MerchTreeHeight, ft 20.52166

Dykstra: Notes on modifications for FRCS-South and FRCS-North, 24 Feb 20081. Feller-Bunchers not in FRCS-West but added for use in the South and North are in blue.2. Feller-Bunchers from FRCS-West that are considered irrelevant have been removed by setting their relevance values to 0 in the RelevanceWeightInputs worksheet.

3. This worksheet has been completely revised to make it easier to update production rates and costs.4. Many of the Relevance equations on this worksheet were incorrectly coded and have been replaced with new coding.

Feller-BunchersBeginning data row: 10

Ending data row: 300Weighted-Average Fell-Bunch Cost, $/CCF: 21.52

(weighted by Vol/PMH and Relevance)Weighted-Average Fell-Bunch Cost, $/PMH: 218.14

Weighting WeightingSystem & Variables Values Vol/PMH $/PMH $/CCF Relevance $/PMH $/CCFDrive-to-Tree MachinesA) Melroe Bobcat (Johnson, 1979)Time per Tree, min 0.49Vol/PMH, ft3 891.1592$/PMH 187$/CCF 20.96Relevance 1.00 891 187 20.96 1.00 186.805607 18680.5607

B) Chainsaw Heads (Greene & McNeel, 1991)Cuts 1.1Time/Tree, min 0.456201Vol/PMH, ft3 954.9889$/PMH 186.8056$/CCF 19.56102Relevance 1.00 955 187 19.56 1.00 186.805607 18680.5607

C) Intermittent Circular Sawheads (Greene & McNeel, 1991)Cuts 1.01Time/Tree, min 0.43319Vol/PMH, ft3 1005.717$/PMH 186.8056$/CCF 18.57437Relevance 1.00 1006 187 18.57 1.00 186.805607 18680.5607

D) Continuous-Disk Sawheads (Greene & McNeel 1991)Cuts 1.01Time/Tree, min 0.077556Vol/PMH, ft3 5617.458$/PMH 186.8056$/CCF 3.325448Relevance 1.00 5617 187 3.33 1.00 186.805607 18680.5607

E) Hydro-Ax 211 (Hartsough, 2001)Trees/Accum 2.733586Time/Accum, min 0.773865Trees/PMH 211.9428Vol/PMH, ft3 2.055588$/PMH 186.8056$/CCF 9087.696Relevance 1.00 2 187 9087.70 1.00 186.805607 18680.5607

F) Bell Model T Chainsaw Head (Greene & McNeel. 1987. Productivity, costs, and levels of butt damage with a Bell Model T feller-buncher. For. Prod. J. 37(11/12):70-74.)Time/Tree, min 0.480643Vol/PMH, ft3 906.4251

$/PMH 186.8056$/CCF 20.60905Relevance 1.00 906 187 20.61 1.00 186.805607 18680.5607

G) Hydro-Ax 411 (Lanford & Stokes. 1996. Comparison of two thinning systems. Part 2. Productivity and costs. For. Prod. J. 46(11-12):47-53)Trees/accumulation 3.5BA/accumulation, ft2 0.966507Time/Tree, min 0.362475Vol/PMH, ft3 1201.923$/PMH 186.8056$/CCF 15.54222Relevance 1.00 1202 187 15.54 1.00 186.805607 18680.5607

Spinelli, R., Hartsough, B.R., Owende, P.M.O., Ward. S.M. 2002. Productivity and cost of mechanized whole-tree harvesting of fast-growing eucalypt stands. IJFE 13(2):49-60.H) Drive-to-Tree Feller-Buncher, 4-wheeled in hardwood plantation (Spinelli et al. 2002)Accumulator limit, ft3 22.6Trees/accumulation 3.112468Pct down or leaning 0Move to fell 0.415Position 0Fell 0.56249Move/swing to dump 0.311Dump 0.06Other 0.0784Time/tree, min 1.42689Trees/PMH 42.0495Vol/PMH, ft3 305.3264$/PMH 186.8056$/CCF 61.18227Relevance 1.00 305 187 61.18 1.00 186.805607 18680.5607

I) Drive-to-Tree Feller-Buncher, 3-wheeled in hardwood plantation (Spinelli et al. 2002)Accumulator limit, ft3 11.6Trees/accumulation 1.59755Pct down or leaning 0Move to fell 0.175Position 0Fell 0.165982Move/swing to dump 0.114Dump 0.045Other 0.045Time/tree, min 0.544982Trees/PMH 110.0954Vol/PMH, ft3 799.4157$/PMH 186.8056$/CCF 23.36777Relevance 1.00 799 187 23.37 1.00 186.805607 18680.5607

Swing-Boom MachinesA) Drott (Johnson, 1979) not used at presentTime/Tree, min 0.661108

Vol/PMH, ft3 658.9954$/PMH 239.50$/CCF 36.34Relevance 1.00 659 239 36.34 0.00 0 0

B) Timbco 2520 & Cat 227 (Johnson, 1988)BoomReach, ft 24TreesInReach 6.24Trees/Cycle 6.24Time/Cycle, min 2.368577Time/Tree, min 0.379606Vol/PMH, ft3 1147.682$/PMH 239.4999$/CCF 20.86814Relevance 1.00 1148 239 20.87 1.00 239.49993 23949.993

C) JD 693B & Timbco 2518 (Gingras, 1988)UnmerchTrees/ha 285Unmerch/Merch 0.768206BoomReach, ft 24TreesInReach 6.239567ObsTreesPerCycle 5.199255TreesPerCycle 5.199255Trees/PMH 198.2141Vol/PMH, ft3 2.197963$/PMH 239.4999$/CCF 10896.45Relevance 1.00 2 239 10896.45 1.00 239.49993 23949.993

D) Timbco (Gonsier & Mandzak, 1987)Time/Tree, min 0.510012Vol/PMH, ft3 854.2285$/PMH 244.5337$/CCF 28.62627Relevance 1.00 854 245 28.63 1.00 244.533748 24453.3748

E) FERIC Generic (Gingras, J.F., 1996. The cost of product sorting during harvesting. FERIC Technical Note TN-245)Vol/PMH, ft3 852.6683$/PMH 239.4999$/CCF 28.08829Relevance 1.00 853 239 28.09 1.00 239.49993 23949.993

F) (Plamondon, J. 1998. Trials of mechanized tree-length harvesting in eastern Canada. FERIC Technical Note TN-273)Vol/PMH, ft3 459.9196$/PMH 239.4999$/CCF 52.0743Relevance 1.00 460 239 52.07 1.00 239.49993 23949.993

G) Timbco 420 (Hartsough, B., E. Drews, J. McNeel, T. Durston and B. Stokes. 1997. Comparison of mechanized systems for thinning ponderosa pine and mixed conifer stands. Forest Products Journal 47(11/12):59-68)Hybrid 0Dead 0DelayFrac 0.0963BoomReach, ft 24

TreesInReach 6.239567MoveFrac 0.125Trees/Accum 1.73Move, min/move 0.51Fell, min/accum 0.72Time/Accum, min 0.78Time/Tree, min 0.50Vol/PMH, ft3 875$/PMH 239.50$/CCF 27.38Relevance 0.00 875 239 27.38 0.00 0 0

H) Timbco 445C Hydro-Buncher (Wang et al. 2004. Production and cost analysis of a feller-buncher and grapple skidder in central Appalachian hardwood forests. For. Prod. J. 54(12)159-167)Vol/PMH, ft3 344$/PMH 239.50$/CCF 69.59Relevance 1.00 344 239 69.59 1.00 239.49993 23949.993Note: DistBetweenTrees is capped at 30 ft because larger values give unreasonable results.

I) Swing-Boom Tracked Feller-Buncher in hardwood plantation (Spinelli et al. 2002)Accumulator limit, ft3 14.8Trees/accumulation 2.038253Pct down or leaning 0Move to fell 0.0708Position 0.178498Fell 0.047155Move/swing to dump 0.114Dump 0.045Other 0.045Time/tree, min 0.500453Trees/PMH 119.8914Vol/PMH, ft3 870.5456$/PMH 239.4999$/CCF 27.51147Relevance 1.00 871 239 27.51 1.00 239.49993 23949.993

User-Defined Feller-BuncherVol/PMH, ft3 0.001$/PMH$/CCF 0.00Relevance 0.00 0 0 0.00 0.00 0 0

WeightingDivisor

891.159213

954.988899

1005.71716

5617.45759

2.05558829

F) Bell Model T Chainsaw Head (Greene & McNeel. 1987. Productivity, costs, and levels of butt damage with a Bell Model T feller-buncher. For. Prod. J. 37(11/12):70-74.)

906.42506

G) Hydro-Ax 411 (Lanford & Stokes. 1996. Comparison of two thinning systems. Part 2. Productivity and costs. For. Prod. J. 46(11-12):47-53)

1201.92344

Spinelli, R., Hartsough, B.R., Owende, P.M.O., Ward. S.M. 2002. Productivity and cost of mechanized whole-tree harvesting of fast-growing eucalypt stands. IJFE 13(2):49-60.

305.326397

799.415667

0

1147.68207

2.19796273

854.22851

E) FERIC Generic (Gingras, J.F., 1996. The cost of product sorting during harvesting. FERIC Technical Note TN-245)

852.668267

F) (Plamondon, J. 1998. Trials of mechanized tree-length harvesting in eastern Canada. FERIC Technical Note TN-273)

459.919628

G) Timbco 420 (Hartsough, B., E. Drews, J. McNeel, T. Durston and B. Stokes. 1997. Comparison of mechanized systems for thinning ponderosa pine and mixed conifer stands. Forest Products Journal 47(11/12):59-68)

0

H) Timbco 445C Hydro-Buncher (Wang et al. 2004. Production and cost analysis of a feller-buncher and grapple skidder in central Appalachian hardwood forests. For. Prod. J. 54(12)159-167)

344.145232

870.545646

0

G) Timbco 420 (Hartsough, B., E. Drews, J. McNeel, T. Durston and B. Stokes. 1997. Comparison of mechanized systems for thinning ponderosa pine and mixed conifer stands. Forest Products Journal 47(11/12):59-68)

General InputsSlope 1Removals, trees/ac 152.3TreeVol, ft3 8.54PartialCut 1.00

Calculated IntermediatesDBH, in 7.519566LogsPerTree 1.719432

Felling Calculated ValuesWalkDist, ft 16.91196MerchTreeHeight, ft 20.52166

Dykstra: Notes on modifications for FRCS-South and FRCS-North, 24 Feb 20081. Manual felling studies added for use in the South and North and not already in FRCS-West are in blue.

2. Manual felling studies from FRCS-West that are considered irrelevant have been removed by setting their relevance values to 0 in the RelevanceWeightInputs worksheet.3. This worksheet has been completely revised to make it easier to update yarding systems, production rates, and costs.

Manual Felling Only (All Trees)Beginning data row: 10

Ending data row: 200Weighted-Average Felling Cost, $/CCF: 18.44(weighted by Vol/PMH and Relevance)

Weighted-Average Felling Cost, $/PMH: 106.77

Weighting WeightingSystem & Variables Values Vol/PMH $/PMH $/CCF Relevance $/PMH $/CCFA) (McNeel, 1994)SelectionTime/Tree, mi 1.23ClearcutTime/Tree, mi 1.01Time/Tree, min 1.23Vol/PMH, ft3 417$/PMH 102.87$/CCF 24.68Relevance 1.00 417 103 24.68 1.00 102.872604 10287.2604

B) (Peterson, 1987)Time/Tree, min 0.42Vol/PMH, ft3 1219$/PMH 102.87$/CCF 8.44Relevance 1.00 1219 103 8.44 0.00 0 0

C) (Keatley, 2000)Time/Tree, min 2.64Vol/PMH, ft3 194$/PMH 102.87$/CCF 53.00Relevance 1.00 194 103 53.00 0.00 0 0

D) (Andersson, B. and G. Young, 1998. Harvesting coastal second growth forests: summary of harvesting system perforTime/Tree, min 1.14Vol/PMH, ft3 451$/PMH 102.87$/CCF 22.82Relevance 1.00 451 103 22.82 0.00 0 0

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63.Time/Tree, min 0.691291Vol/PMH, ft3 741.0898$/PMH 102.87$/CCF 13.88Relevance 1.00 741 103 13.88 1.00 102.872604 10287.2604Note: The "Limb and Top" component from the study is not included in the Time/Tree equation.

User-Defined Felling Only (All Trees)Vol/PMH, ft3 1$/PMH 103$/CCF 10287.26Relevance 0.00 1 103 10287.26 0.00 0 0

Manual Felling, Limbing, and Bucking (All Trees)Beginning data row: 10

Ending data row: 200Weighted-Average FLB Cost, $/CCF: 33.51

(weighted by Vol/PMH and Relevance)Weighted-Average FLB Cost, $/PMH: 106.77

Weighting WeightingDivisor System & Variables Values Vol/PMH $/PMH $/CCF Relevance $/PMH

A) (Kellogg-Olsen-Hargrave, 1986)EastsideAdjustment 1.00ClearcutAdjustment 0.90Time/Tree, min 2.64Vol/PMH, ft3 194$/PMH 102.87$/CCF 53.08

416.821683 Relevance 1.00 194 103 53.08 0.00 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))

B) (Kellogg, L., M. Miller and E. Olsen. 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. Research Contribution 21. Forest Research Laboratory, Oregon State University, Corvallis.)Limbs 31.5Logs 1.72Wedge 0.02

0 Corridor 0.21NotBetweenOpenings 1Openings 0HeavyThin 0DelayFrac 0.25Time/Tree, min 2.84Vol/PMH, ft3 180

0 $/PMH 102.87$/CCF 57.07

D) (Andersson, B. and G. Young, 1998. Harvesting coastal second growth forests: summary of harvesting system perfor Relevance 1.00 180 103 57.07 0.00 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<1,0,IF(treevol<2,-1+treevol/1,IF(treevol<70,1,IF(treevol<140,2-treevol/70,0))))

C) (Andersson, B. and G. Young, 98. Harvesting coastal second growth forests: summary of harvesting system performance. FERIC Technical Report TR-120)DelayFrac 0.197

0 Time/Tree, min 2.04Vol/PMH, ft3 251

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63. $/PMH 102.87$/CCF 41.04Relevance 1.00 251 103 41.04 0.00 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<5,0,IF(treevol<15,-0.5+treevol/10,IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))))

741.089835 D) Hardwood FLB (Wang et al. 2004. Productivity and cost of manual felling and cable skidding in central Appalachian hardwood forests. For. Prod. J. 54(12):45-51.)Vol/PMH, ft3 177.5347$/PMH 102.87$/CCF 57.95Relevance 1.00 178 103 57.95 1.00 102.872604

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63.Time/Tree, min 1.1146Vol/PMH, ft3 459.6346

$/PMH 102.87$/CCF 22.38Relevance 1.00 460 103 22.38 1.00 102.872604

User-Defined Felling-Limbing-Bucking (All Trees)Vol/PMH, ft3 1$/PMH 103$/CCF 10287.26

0 Relevance 0.00 1 103 10287.26 0.00 0

Note: This version includes the "Limb and Top" component from the study in the Time/Tree equation.

Weighting Weighting$/CCF Divisor

0 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))

B) (Kellogg, L., M. Miller and E. Olsen. 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. Research Contribution 21. Forest Research Laboratory, Oregon State University, Corvallis.)

0 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<1,0,IF(treevol<2,-1+treevol/1,IF(treevol<70,1,IF(treevol<140,2-treevol/70,0))))

C) (Andersson, B. and G. Young, 98. Harvesting coastal second growth forests: summary of harvesting system performance. FERIC Technical Report TR-120)

0 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<5,0,IF(treevol<15,-0.5+treevol/10,IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))))

D) Hardwood FLB (Wang et al. 2004. Productivity and cost of manual felling and cable skidding in central Appalachian hardwood forests. For. Prod. J. 54(12):45-51.)

10287.2604 177.534698

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63.

10287.2604 459.634602

0 0

the "Limb and Top" component from the study in the Time/Tree equation.

B) (Kellogg, L., M. Miller and E. Olsen. 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. Research Contribution 21. Forest Research Laboratory, Oregon State University, Corvallis.)

General InputsSlope 1Removals, trees/ac 2.1TreeVol, ft3 99.90PartialCut 1.00

Calculated IntermediatesDBH, in 21.89781LogsPerTree 5.485414

Felling Calculated ValuesWalkDist, ft 144.0238MerchTreeHeight, ft 33.40014

Dykstra: Notes on modifications for FRCS-South and FRCS-North, 24 Feb 20081. Manual felling studies added for use in the South and North and not already in FRCS-West are in blue.

2. Manual felling studies from FRCS-West that are considered irrelevant have been removed by setting their relevance values to 0 in the RelevanceWeightInputs worksheet.3. This worksheet has been completely revised to make it easier to update yarding systems, production rates, and costs.

Manual Felling Only (Large Trees)Beginning data row: 10

Ending data row: 200Weighted-Average Felling Cost, $/CCF: 2.01(weighted by Vol/PMH and Relevance)

Weighted-Average Felling Cost, $/PMH: 106.77

Weighting WeightingSystem & Variables Values Vol/PMH $/PMH $/CCF Relevance $/PMH $/CCFA) (McNeel, 1994)SelectionTime/Tree, mi 3.05ClearcutTime/Tree, mi 3.91Time/Tree, min 3.05Vol/PMH, ft3 1965$/PMH 102.87$/CCF 5.24Relevance 1.00 1965 103 5.24 1.00 102.872604 10287.2604

B) (Peterson, 1987)Time/Tree, min 1.22Vol/PMH, ft3 4899$/PMH 102.87$/CCF 2.10Relevance 1.00 4899 103 2.10 0.00 0 0

C) (Keatley, 2000)Time/Tree, min 4.26Vol/PMH, ft3 1406$/PMH 102.87$/CCF 7.31Relevance 1.00 1406 103 7.31 0.00 0 0

D) (Andersson, B. and G. Young, 1998. Harvesting coastal second growth forests: summary of harvesting system perforTime/Tree, min 2.58Vol/PMH, ft3 2324$/PMH 102.87$/CCF 4.43Relevance 0.89 2324 103 4.43 0.00 0 0

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63.Time/Tree, min 0.691291Vol/PMH, ft3 8670.736$/PMH 102.87$/CCF 1.19Relevance 1.00 8671 103 1.19 1.00 102.872604 10287.2604Note: The "Limb and Top" component from the study is not included in the Time/Tree equation.

User-Defined Felling Only (Large Trees)Vol/PMH, ft3 0.001$/PMH 103$/CCF ###Relevance 0.00 0 103 ### 0.00 0 0

Manual Felling, Limbing, and Bucking (Large Trees)Beginning data row: 10

Ending data row: 200Weighted-Average FLB Cost, $/CCF: 15.15

(weighted by Vol/PMH and Relevance)Weighted-Average FLB Cost, $/PMH: 106.77

Weighting WeightingDivisor System & Variables Values Vol/PMH $/PMH $/CCF Relevance $/PMH

A) (Kellogg-Olsen-Hargrave, 1986)EastsideAdjustment 1.00ClearcutAdjustment 0.90Time/Tree, min 14.04Vol/PMH, ft3 427$/PMH 102.87$/CCF 24.09

1964.57816 Relevance 1.00 427 103 24.09 0.00 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))

B) (Kellogg, L., M. Miller and E. Olsen. 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. Research Contribution 21. Forest Research Laboratory, Oregon State University, Corvallis.)Limbs 31.5Logs 5.49Wedge 0.02

0 Corridor 0.21NotBetweenOpenings 1Openings 0HeavyThin 0DelayFrac 0.25Time/Tree, min 7.32Vol/PMH, ft3 819

0 $/PMH 102.87$/CCF 12.56

D) (Andersson, B. and G. Young, 1998. Harvesting coastal second growth forests: summary of harvesting system perfor Relevance 1.00 819 103 12.56 0.00 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<1,0,IF(treevol<2,-1+treevol/1,IF(treevol<70,1,IF(treevol<140,2-treevol/70,0))))

C) (Andersson, B. and G. Young, 98. Harvesting coastal second growth forests: summary of harvesting system performance. FERIC Technical Report TR-120)DelayFrac 0.197

0 Time/Tree, min 5.53Vol/PMH, ft3 1084

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63. $/PMH 102.87$/CCF 9.49Relevance 1.00 1084 103 9.49 0.00 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<5,0,IF(treevol<15,-0.5+treevol/10,IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))))

8670.73568 D) Hardwood FLB (Wang et al. 2004. Productivity and cost of manual felling and cable skidding in central Appalachian hardwood forests. For. Prod. J. 54(12):45-51.)Vol/PMH, ft3 177.5347$/PMH 102.87$/CCF 57.95Relevance 1.00 178 103 57.95 1.00 102.872604

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63.Time/Tree, min 4.867002Vol/PMH, ft3 1232

$/PMH 102.87$/CCF 8.35Relevance 1.00 1232 103 8.35 1.00 102.872604

User-Defined Felling-Limbing-Bucking (Large Trees)Vol/PMH, ft3 0.001$/PMH 103$/CCF ###

0 Relevance 0.00 0 103 ### 0.00 0

Weighting Weighting$/CCF Divisor

0 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))

B) (Kellogg, L., M. Miller and E. Olsen. 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. Research Contribution 21. Forest Research Laboratory, Oregon State University, Corvallis.)

0 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<1,0,IF(treevol<2,-1+treevol/1,IF(treevol<70,1,IF(treevol<140,2-treevol/70,0))))

C) (Andersson, B. and G. Young, 98. Harvesting coastal second growth forests: summary of harvesting system performance. FERIC Technical Report TR-120)

0 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<5,0,IF(treevol<15,-0.5+treevol/10,IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))))

D) Hardwood FLB (Wang et al. 2004. Productivity and cost of manual felling and cable skidding in central Appalachian hardwood forests. For. Prod. J. 54(12):45-51.)

10287.2604 177.534698

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63.

10287.2604 1231.55901

0 0

B) (Kellogg, L., M. Miller and E. Olsen. 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. Research Contribution 21. Forest Research Laboratory, Oregon State University, Corvallis.)

Whole-tree felling of small treesFell-limb-buck large trees

General Inputs-STSlope 1Removals, trees/ac 152.3TreeVolST, ft3 7.26PartialCut 1.00

Calculated Intermediates-STDBH, in 7.115489LogsPerTree 1.666779

General Inputs-LTSlope 1Removals, trees/ac 152.3TreeVol, ft3 99.90PartialCut 1.00

Calculated Intermediates-LTDBH, in 21.89781LogsPerTree 5.485414

Felling Calculated Values-All TreesWalkDist, ft 16.91196MerchTreeHeight, ft 33.40014

Dykstra: Notes on modifications for FRCS-South and FRCS-North, 24 Feb 20081. Manual felling studies added for use in the South and North and not already in FRCS-West are in blue.

2. Manual felling studies from FRCS-West that are considered irrelevant have been removed by setting their relevance values to 0 in the RelevanceWeightInputs worksheet.3. This worksheet has been completely revised to make it easier to update yarding systems, production rates, and costs.

Manual Whole-Tree Felling (Small Trees)Beginning data row: 10

Ending data row: 200Weighted-Average Felling Cost, $/CCF: 20.98(weighted by Vol/PMH and Relevance)

Weighted-Average Felling Cost, $/PMH: 106.77

Weighting WeightingSystem & Variables Values Vol/PMH $/PMH $/CCF Relevance $/PMH $/CCFA) (McNeel, 1994)SelectionTime/Tree, mi 1.20ClearcutTime/Tree, mi 0.98Time/Tree, min 1.20Vol/PMH, ft3 363$/PMH 102.87$/CCF 28.31Relevance 1.00 363 103 28.31 1.00 102.872604 10287.2604

B) (Peterson, 1987)Time/Tree, min 0.42Vol/PMH, ft3 1049$/PMH 102.87$/CCF 9.81Relevance 1.00 1049 103 9.81 0.00 0 0

C) (Keatley, 2000)Time/Tree, min 2.63Vol/PMH, ft3 166$/PMH 102.87$/CCF 62.04Relevance 1.00 166 103 62.04 0.00 0 0

D) (Andersson, B. and G. Young, 1998. Harvesting coastal second growth forests: summary of harvesting system perforTime/Tree, min 1.10Vol/PMH, ft3 395$/PMH 102.87$/CCF 26.07Relevance 0.46 395 103 26.07 0.00 0 0

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63.Time/Tree, min 0.665917Vol/PMH, ft3 654.2361$/PMH 102.87$/CCF 15.72Relevance 1.00 654 103 15.72 1.00 102.872604 10287.2604Note: The "Limb and Top" component from the study is not included in the Time/Tree equation.

User-Defined Whole-Tree Felling (Small Trees)Vol/PMH, ft3 0.001$/PMH 103$/CCF ###Relevance 0.00 0 103 ### 0.00 0 0

Manual Felling, Limbing, and Bucking (Large Trees)Beginning data row: 10

Ending data row: 200Weighted-Average FLB Cost, $/CCF: 12.10

(weighted by Vol/PMH and Relevance)Weighted-Average FLB Cost, $/PMH: 106.77

Weighting WeightingDivisor System & Variables Values Vol/PMH $/PMH $/CCF Relevance $/PMH

A) (Kellogg-Olsen-Hargrave, 1986)EastsideAdjustment 1.00ClearcutAdjustment 0.90Time/Tree, min 11.66Vol/PMH, ft3 514$/PMH 102.87$/CCF 20.01

363.386459 Relevance 1.00 514 103 20.01 0.00 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))

B) (Kellogg, L., M. Miller and E. Olsen. 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. Research Contribution 21. Forest Research Laboratory, Oregon State University, Corvallis.)Limbs 31.5Logs 5.49Wedge 0.02

0 Corridor 0.21NotBetweenOpenings 1Openings 0HeavyThin 0DelayFrac 0.25Time/Tree, min 7.32Vol/PMH, ft3 819

0 $/PMH 102.87$/CCF 12.56

D) (Andersson, B. and G. Young, 1998. Harvesting coastal second growth forests: summary of harvesting system perfor Relevance 1.00 819 103 12.56 0.00 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<1,0,IF(treevol<2,-1+treevol/1,IF(treevol<70,1,IF(treevol<140,2-treevol/70,0))))

C) (Andersson, B. and G. Young, 98. Harvesting coastal second growth forests: summary of harvesting system performance. FERIC Technical Report TR-120)DelayFrac 0.197

0 Time/Tree, min 5.53Vol/PMH, ft3 1084

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63. $/PMH 102.87$/CCF 9.49Relevance 1.00 1084 103 9.49 0.00 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<5,0,IF(treevol<15,-0.5+treevol/10,IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))))

654.236126 D) Hardwood FLB (Wang et al. 2004. Productivity and cost of manual felling and cable skidding in central Appalachian hardwood forests. For. Prod. J. 54(12):45-51.)Vol/PMH, ft3 532.7691$/PMH 102.87$/CCF 19.31Relevance 1.00 533 103 19.31 1.00 102.872604

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63.Time/Tree, min 4.867002Vol/PMH, ft3 1232

$/PMH 102.87$/CCF 8.35Relevance 1.00 1232 103 8.35 1.00 102.872604

User-Defined Felling-Limbing-Bucking (Large Trees)Vol/PMH, ft3 0.001$/PMH 103$/CCF ###

0 Relevance 0.00 0 103 ### 0.00 0

Weighting Weighting$/CCF Divisor

0 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))

B) (Kellogg, L., M. Miller and E. Olsen. 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. Research Contribution 21. Forest Research Laboratory, Oregon State University, Corvallis.)

0 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<1,0,IF(treevol<2,-1+treevol/1,IF(treevol<70,1,IF(treevol<140,2-treevol/70,0))))

C) (Andersson, B. and G. Young, 98. Harvesting coastal second growth forests: summary of harvesting system performance. FERIC Technical Report TR-120)

0 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<5,0,IF(treevol<15,-0.5+treevol/10,IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))))

D) Hardwood FLB (Wang et al. 2004. Productivity and cost of manual felling and cable skidding in central Appalachian hardwood forests. For. Prod. J. 54(12):45-51.)

10287.2604 532.769053

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63.

10287.2604 1231.55901

0 0

B) (Kellogg, L., M. Miller and E. Olsen. 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. Research Contribution 21. Forest Research Laboratory, Oregon State University, Corvallis.)

Whole-tree felling of chip treesFell-limb-buck other trees

General Inputs-CTSlope 1Removals, trees/ac 152.3TreeVol, ft3 2.20PartialCut 1.00

Calculated Intermediates-CTDBH, in 5.215273LogsPerTree 1

Felling Calculated Values-ALTWalkDist, ft 16.91196MerchTreeHeight, ft 33.40014

General Inputs-ALTSlope 1Removals, trees/ac 152.3TreeVol, ft3 26.15PartialCut 1.00

Calculated Intermediates-ALTDBH, in 11.7515LogsPerTree 3.718847

Felling Calculated Values-ALTWalkDist, ft 16.91196MerchTreeHeight, ft 33.40014

Dykstra: Notes on modifications for FRCS-South and FRCS-North, 24 Feb 20081. Manual felling studies added for use in the South and North and not already in FRCS-West are in blue.

2. Manual felling studies from FRCS-West that are considered irrelevant have been removed by setting their relevance values to 0 in the RelevanceWeightInputs worksheet.3. This worksheet has been completely revised to make it easier to update yarding systems, production rates, and costs.

Manual Whole-Tree Felling (Chip Trees)Beginning data row: 10

Ending data row: 200Weighted-Average Felling Cost, $/CCF: 66.09(weighted by Vol/PMH and Relevance)

Weighted-Average Felling Cost, $/PMH: 106.77

Weighting WeightingSystem & Variables Values Vol/PMH $/PMH $/CCF Relevance $/PMH $/CCFA) (McNeel, 1994)SelectionTime/Tree, mi 1.06ClearcutTime/Tree, mi 0.82Time/Tree, min 1.06Vol/PMH, ft3 125$/PMH 102.87$/CCF 82.38Relevance 1.00 125 103 82.38 1.00 102.872604 10287.2604

B) (Peterson, 1987)Time/Tree, min 0.39Vol/PMH, ft3 336$/PMH 102.87$/CCF 30.60Relevance 1.00 336 103 30.60 0.00 0 0

C) (Keatley, 2000)Time/Tree, min 2.57Vol/PMH, ft3 51$/PMH 102.87$/CCF 200.19Relevance 1.00 51 103 200.19 0.00 0 0

D) (Andersson, B. and G. Young, 1998. Harvesting coastal second growth forests: summary of harvesting system perforTime/Tree, min 1.10Vol/PMH, ft3 0$/PMH 102.87$/CCF #DIV/0!Relevance 0.11 0 103 #DIV/0! 0.00 0 0

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63.Time/Tree, min 0.665917Vol/PMH, ft3 198.2228$/PMH 102.87$/CCF 51.90Relevance 1.00 198 103 51.90 1.00 102.872604 10287.2604Note: The "Limb and Top" component from the study is not included in the Time/Tree equation.

User-Defined Whole-Tree Felling (Chip Trees)Vol/PMH, ft3 0.001$/PMH 103$/CCF ###Relevance 0.00 0 103 ### 0.00 0 0

Manual Felling, Limbing, and Bucking (All Log Trees)Beginning data row: 10

Ending data row: 200Weighted-Average FLB Cost, $/CCF: 19.25

(weighted by Vol/PMH and Relevance)Weighted-Average FLB Cost, $/PMH: 106.77

Weighting WeightingDivisor System & Variables Values Vol/PMH $/PMH $/CCF Relevance $/PMH

A) (Kellogg-Olsen-Hargrave, 1986)EastsideAdjustment 1.00ClearcutAdjustment 0.90Time/Tree, min 4.38Vol/PMH, ft3 358$/PMH 102.87$/CCF 28.73

124.880796 Relevance 1.00 358 103 28.73 0.00 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))

B) (Kellogg, L., M. Miller and E. Olsen. 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. Research Contribution 21. Forest Research Laboratory, Oregon State University, Corvallis.)Limbs 31.5Logs 3.72Wedge 0.02

0 Corridor 0.21NotBetweenOpenings 1Openings 0HeavyThin 0DelayFrac 0.25Time/Tree, min 4.79Vol/PMH, ft3 328

0 $/PMH 102.87$/CCF 31.38

D) (Andersson, B. and G. Young, 1998. Harvesting coastal second growth forests: summary of harvesting system perfor Relevance 1.00 328 103 31.38 0.00 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<1,0,IF(treevol<2,-1+treevol/1,IF(treevol<70,1,IF(treevol<140,2-treevol/70,0))))

C) (Andersson, B. and G. Young, 98. Harvesting coastal second growth forests: summary of harvesting system performance. FERIC Technical Report TR-120)DelayFrac 0.197

0 Time/Tree, min 2.90Vol/PMH, ft3 541

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63. $/PMH 102.87$/CCF 19.01Relevance 1.00 541 103 19.01 0.00 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<5,0,IF(treevol<15,-0.5+treevol/10,IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))))

198.222833 D) Hardwood FLB (Wang et al. 2004. Productivity and cost of manual felling and cable skidding in central Appalachian hardwood forests. For. Prod. J. 54(12):45-51.)Vol/PMH, ft3 348.4706$/PMH 102.87$/CCF 29.52Relevance 1.00 348 103 29.52 1.00 102.872604

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63.Time/Tree, min 2.06304Vol/PMH, ft3 761

$/PMH 102.87$/CCF 13.52Relevance 1.00 761 103 13.52 1.00 102.872604

User-Defined Felling-Limbing-Bucking (All Log Trees)Vol/PMH, ft3 0.001$/PMH 103$/CCF ###

0 Relevance 0.00 0 103 ### 0.00 0

Weighting Weighting$/CCF Divisor

0 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))

B) (Kellogg, L., M. Miller and E. Olsen. 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. Research Contribution 21. Forest Research Laboratory, Oregon State University, Corvallis.)

0 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<1,0,IF(treevol<2,-1+treevol/1,IF(treevol<70,1,IF(treevol<140,2-treevol/70,0))))

C) (Andersson, B. and G. Young, 98. Harvesting coastal second growth forests: summary of harvesting system performance. FERIC Technical Report TR-120)

0 0Weight relaxed at upper end to allow extrapolation to larger trees. Original was IF(treevol<5,0,IF(treevol<15,-0.5+treevol/10,IF(treevol<90,1,IF(treevol<180,2-treevol/90,0))))

D) Hardwood FLB (Wang et al. 2004. Productivity and cost of manual felling and cable skidding in central Appalachian hardwood forests. For. Prod. J. 54(12):45-51.)

10287.2604 348.47062

E) Lortz et al. 1997. Manual felling time and productivity in southern pine forests. For. Prod. J. 47(10):59-63.

10287.2604 760.647391

0 0

B) (Kellogg, L., M. Miller and E. Olsen. 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. Research Contribution 21. Forest Research Laboratory, Oregon State University, Corvallis.)

General InputsSlope, % 1YardDist, ft 1820TreeVol, ft3 8.54TreeVolST, ft3 7.26PartialCut 1WoodDensity, lb/ft3 60WoodDensityST, lb/ft3 60LogLength, ft 16

Calculated IntermediatesLogVol, ft3 4.96587CTLLogVol, ft3 2.633595VolPerAcre, ft3 1300.41YarderCTLLogVol, ft3 4.0VolPerAcreST, ft3 1090.62LogsPerTree 1.72MachineSize 0.028462BFperCF 5

Cable Yarding InputsLatDist, ft 35TurnArea, ft2 800

Yarding Calculated ValuesAreaLimitedTurnVol, ft3 23.88264YarderHourlyCost, $/PMH 313.6659YarderCapacity, ft3 101.42YarderCapacityST, ft3 101.42

Corridor and Landing Change CostsClearcut corridor & landing changes Jammer Running LiveTailblock spacing, ft 50 70 70Area/line shift, ac 4.18 2.19 2.19Line shift time, ph 0.50 0.25 0.50Line shift cost, $/CCF 2.87 2.75 5.50Area/landing, ac 268.76 268.76Landing shift time, ph 2.00 2.00Landing shift cost, $/CCF 0.18 0.18Total changeover cost, $/CCF 2.87 2.93 5.68

Partial cut corridor changes Running/Shotgun Live/StandingCorridor spacing, ft 150 150Area/corridor change, ac 12.53 12.53Corridor change time, PMH 1.00 1.50Corridor change cost, $/CCF 1.92 2.89

Dykstra: Notes on modifications for FRCS-South and FRCS-North, 21 Feb 20081. Yarding systems added for the South and North variants are shown in blue.2. Many of the yarding systems from the West variant have been removed by setting their relevance values to 0 in the RelevanceWeightInputs worksheet.

3. This worksheet has been completely revised to make it easier to update yarding systems, production rates, and costs.

Cable Yarding, Clearcut, Unbunched (CYCCU)Beginning data row: 8

Ending data row: 300Weighted-Average Yarding Cost, $/CCF: 502.83

(weighted by Vol/PMH and Relevance)Weighting Weighting

System & Variables Values Vol/PMH $/CCF Relevance Product DivisorA) Idaho Jammer (Schillings, 1969)Logs 1TurnVol, ft3 5TurnTime, min 5.52Vol/PMH, ft3 54$/PMH 312Yarding $/CCF 577.70Change/Shift $/CCF 2.87$/CCF 580.57Relevance 0.00 54 580.57 0.00 0 0

B) Idaho Jammer (Hensel & Johnson, 1979)Logs 1TurnVol, ft3 5TurnTime, min 3.90Vol/PMH, ft3 76$/PMH 312Yarding $/CCF 407.81Change/Shift $/CCF 2.87$/CCF 410.68Relevance 0.00 76 410.68 0.00 0 0

C) LinkBelt 98 Live Skyline (Hensel & Johnson, 1979)YarderCapacity, ft3 101TurnVol, ft3 24Logs 4.81TurnTime, min 31.80Vol/PMH, ft3 45$/PMH 314Yarding $/CCF 696.14Change/Shift $/CCF 5.68$/CCF 701.82Relevance 0.00 45 701.82 0.00 0 0

D) Skagit GT3 Running Skyline (Hensel & Johnson, 1979)YarderCapacity, ft3 101TurnVol, ft3 24Logs 4.81TurnTime, min 25.62Vol/PMH, ft3 56$/PMH 314Yarding $/CCF 560.76Change/Shift $/CCF 2.93$/CCF 563.69Relevance 0.00 56 563.69 0.00 0 0

E) Skagit GT3 Running Skyline (Gardner, 1980)YarderCapacity, ft3 101LatDistCC, ft 5TurnVol, ft3 24Logs 4.81TurnTime, min 22.84Vol/PMH, ft3 63$/PMH 314Yarding $/CCF 499.90Change/Shift $/CCF 2.93$/CCF 502.83Relevance 1.00 63 502.83 1.00 31550.34 62.74523

F) LinkBelt 78 Shotgun Live Skyline (Gardner, 1980)YarderCapacity, ft3 101LatDistCC, ft 5TurnVol, ft3 24Logs 4.81TurnTime, min 17.45Vol/PMH, ft3 82$/PMH 314Yarding $/CCF 381.93Change/Shift $/CCF 5.68$/CCF 387.61Relevance 0.00 82 387.61 0.00 0 0

G) Washington SLH78 (Andersson, B. and G. Young. 1998. Harvesting coastal second growth forests: summary of harvesting system performance. FERIC Technical Report TR-120)Observed TurnVol, cf ( 25YarderCapacity, ft3 101TurnVol, ft3 24Logs 4.81DelayFrac 0.042TurnTime, min 9.89Vol/PMH, ft3 145$/PMH 314Yarding $/CCF 216.43Change/Shift $/CCF 2.93$/CCF 219.36Relevance 1.00 145 219.36 0.00 0 0

H) User-Defined Clearcut, UnbunchedYarderCapacity, ft3 101TurnVol, ft3 24Logs 4.81TurnTime, min 0.00Vol/PMH, ft3 #DIV/0!$/PMH 314Yarding $/CCF #DIV/0!Change/Shift $/CCF 0.00$/CCF #DIV/0!Relevance 0.00 #DIV/0! #DIV/0! 0.00 0 0

Cable Yarding, Partial Cut, Unbunched (CYPCU)Beginning data row: 8

Ending data row: 300Weighted-Average Yarding Cost, $/CCF: 180.66

(weighted by Vol/PMH and Relevance)Weighting Weighting

System & Variables Values Vol/PMH $/CCF Relevance Product DivisorA) Clearwater Shotgun Live Skyline (Johnson & Lee, 1988)YarderCapacity, ft3 101TurnVol, ft3 24Logs 4.81TurnEndArea, ft2 2.99DeckHeight, ft 5TurnTime, min 10.04Vol/PMH, ft3 143$/PMH 314Yarding $/CCF 219.76Change/Shift $/CCF 1.92$/CCF 221.68Relevance 1.00 143 221.68 0.00 0 0

B) Madill 071 Live Skyline w/Danebo MSP (Kellogg-Olsen-Hargrave, 1986)YarderCapacity, ft3 101TurnVol, ft3 24Logs 4.81TurnTime, min 7.81Vol/PMH, ft3 184$/PMH 314Yarding $/CCF 170.93Change/Shift $/CCF 2.89$/CCF 173.82Relevance 1.00 184 173.82 0.00 0 0

C) Skagit GT3 Running Skyline, Shelterwood (Gardner, 1980)YarderCapacity, ft3 101TurnVol, ft3 24Logs 4.81TurnTime, min 10.99Vol/PMH, ft3 130$/PMH 314Yarding $/CCF 240.63Change/Shift $/CCF 1.92$/CCF 242.55Relevance 1.00 130 242.55 1.00 31617.43 130.3518

D) Skagit GT3 Running Skyline, Group Selection (Gardner, 1980)YarderCapacity, ft3 101TurnVol, ft3 24Logs 4.81TurnTime, min 8.28Vol/PMH, ft3 173$/PMH 314Yarding $/CCF 181.15

Change/Shift $/CCF 1.92$/CCF 183.07Relevance 1.00 173 183.07 1.00 31699.8 173.1563

E) LinkBelt 78 Shotgun Live Skyline, Group Selection (Gardner, 1980)YarderCapacity, ft3 101TurnVol, ft3 24Logs 4.81TurnTime, min 36.36Vol/PMH, ft3 39$/PMH 314Yarding $/CCF 795.99Change/Shift $/CCF 2.89$/CCF 798.88Relevance 0.00 39 798.88 0.00 0 0

F) Madill 044 w/Bowman Mark Vd (Boswell, B. 2001. Partial cutting with a cable yarding system in coastal British Columbia. FERIC Advantage 2(44))YarderCapacity, ft3 101TurnVol, ft3 24TurnTime, min 14.22Vol/PMH, ft3 101$/PMH 314Yarding $/CCF 311.18Change/Shift $/CCF 2.89$/CCF 314.07Relevance 1.00 101 314.07 0.00 0 0

G) Washington SLH78 (Andersson, B. and G. Young. 1998. Harvesting coastal second growth forests: summary of harvesting system performance. FERIC Technical Report TR-120)G) Skylead C40 w/Mini-Maki II (Pavel, M. 1999. Analysis of a skyline partial cutting operation in the interior cedar-hemlock biogeoclimatic zone. FERIC Technical Report TR-125)YarderCapacity, ft3 101TurnVol, ft3 24TurnTime, min 5.708Vol/PMH, ft3 251$/PMH 314Yarding $/CCF 124.94Change/Shift $/CCF 2.89$/CCF 127.83Relevance 1.00 251 127.83 0.00 0 0

H) Koller K501 w/Koller SKA 2.5 manual slackpulling carriage (Yachats site: Kellogg, L., G. Milota and M. Miller. 1996. A comparison of skyline harvesting costs for alternative commercial thinning prescriptions. J. For. Engr. 7(3):7-23)YarderCapacity, ft3 101TurnVol, ft3 24Logs 4.81Preset 1Damage 0Span 0TurnTime, min 7.50Vol/PMH, ft3 191$/PMH 314Yarding $/CCF 164.07Change/Shift $/CCF 2.89$/CCF 166.96Relevance 1.00 191 166.96 0.00 0 0

I) Koller K501 w/Eaglet mechanical slackpulling carriage (Kellogg, L., Miller, M. and E. Olsen. 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. OSU For. Res. Lab. Research Contribution 21)YarderCapacity, ft3 101TurnVol, ft3 24Logs 4.81Tops 0FiberPieces 0Preset 1CarriageHt, ft 40Openings 0LightThinBetweenOpen 0TurnTime, min 6.74Vol/PMH, ft3 213$/PMH 314Yarding $/CCF 147.60Change/Shift $/CCF 2.89$/CCF 150.49Relevance 1.00 213 150.49 0.00 0 0

J) (Huyler, N. and C. LeDoux. 1997. Cycle-time equation for the Koller K300 cable yarder operating on steep slopes in the Northeast. USDA FS Research Paper NE-705)YarderCapacity, ft3 101TurnVol, ft3 24TurnTime, min 13.88Vol/PMH, ft3 103$/PMH 314Yarding $/CCF 303.78Change/Shift $/CCF 2.89$/CCF 306.67Relevance 0.71 103 306.67 0.71 22408.91 73.07181

LeDoux, C. 1985. Stump-to-Mill Timber Production Cost Equations for Cable Logging in Eastern Hardwoods. RP-NE-566.K) Appalachian Thinner-LeDoux 1985 (see columns AI-AO for regression equation)Vol/PMH, ft3 (regressio 71.49$/PMH 314Yarding $/CCF 438.76Corridor Change $/CC 2.89$/CCF 441.65Relevance 1.00 71 441.65 1.00 31572.94 71.48863

L) Bitterroot Yarder-LeDoux 1985 (see columns AI-AO for regression equation)Vol/PMH, ft3 (regressio 45.46$/PMH 314Yarding $/CCF 689.92Corridor Change $/CC 2.89$/CCF 692.80Relevance 0.00 45 692.80 0.00 0 0

M) Clearwater Yarder-LeDoux 1985 (see columns AI-AO for regression equation)Vol/PMH, ft3 (regressio 279.36$/PMH 314Yarding $/CCF 112.28Corridor Change $/CC 1.92$/CCF 114.21Relevance 1.00 279 114.21 1.00 31904.17 279.3579

N) Ecologger-LeDoux 1985 (see columns AI-AO for regression equation)Vol/PMH, ft3 (regressio 125.85$/PMH 314Yarding $/CCF 249.23Corridor Change $/CC 1.92$/CCF 251.16Relevance 1.00 126 251.16 1.00 31608.77 125.8521

O) Skylok 78-LeDoux 1985 (see columns AI-AO for regression equation)Vol/PMH, ft3 (regressio 324.64$/PMH 314Yarding $/CCF 96.62Corridor Change $/CC 1.92$/CCF 98.54Relevance 1.00 325 98.54 1.00 31991.31 324.6394

P) User-Defined Partial Cut, UnbunchedYarderCapacity, ft3 101TurnVol, ft3 24Logs 4.81TurnTime, min 0.00Vol/PMH, ft3 #DIV/0!$/PMH 314Yarding $/CCF #DIV/0!Change/Shift $/CCF 0.00$/CCF #DIV/0!Relevance 0.00 #DIV/0! #DIV/0! 0.00 0 0

Cable Yarding, Bunched CTL Logs (CYCTL)Beginning data row: 8

Ending data row: 300Weighted-Average Yarding Cost, $/CCF: 501.47

(weighted by Vol/PMH and Relevance)Weighting Weighting

System & Variables Values Vol/PMH $/CCF Relevance Product DivisorGeneral Inputs for CTL bunchingCTLBunchArea, ft2 5026.548YarderCTLLogVol, ft3 4.0BunchLimitedTurnVol, f 188.8

A) Diamond D210 Standing Skyline w/Eaglet Motorized Carriage (Doyal, 1997)YarderCapacity, ft3 101TurnVol, ft3 19.75 Was: =MIN(AA14,MAX(AA$11,TreeVolST))Logs 5.00Chokers 5 Was 3Hotset 0Chokersetters 4TurnTime, min 18.84Vol/PMH, ft3 63$/PMH 314Yarding $/CCF 498.58Change/Shift $/CCF 2.89$/CCF 501.47Relevance 1.00 63 501.47 1.00 31548.19 62.91173

B) User-Defined CTL BunchedYarderCapacity, ft3 101TurnVol, ft3 101Logs 25.67TurnTime, min 0.00Vol/PMH, ft3 #DIV/0!$/PMH 314Yarding $/CCF #DIV/0!Change/Shift $/CCF 0.00$/CCF #DIV/0!Relevance 0.00 #DIV/0! #DIV/0! 0.00 0 0

F) Madill 044 w/Bowman Mark Vd (Boswell, B. 2001. Partial cutting with a cable yarding system in coastal British Columbia. FERIC Advantage 2(44))

G) Skylead C40 w/Mini-Maki II (Pavel, M. 1999. Analysis of a skyline partial cutting operation in the interior cedar-hemlock biogeoclimatic zone. FERIC Technical Report TR-125)

H) Koller K501 w/Koller SKA 2.5 manual slackpulling carriage (Yachats site: Kellogg, L., G. Milota and M. Miller. 1996. A comparison of skyline harvesting costs for alternative commercial thinning prescriptions. J. For. Engr. 7(3):7-23)

I) Koller K501 w/Eaglet mechanical slackpulling carriage (Kellogg, L., Miller, M. and E. Olsen. 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. OSU For. Res. Lab. Research Contribution 21)

J) (Huyler, N. and C. LeDoux. 1997. Cycle-time equation for the Koller K300 cable yarder operating on steep slopes in the Northeast. USDA FS Research Paper NE-705)

LeDoux, C. 1985. Stump-to-Mill Timber Production Cost Equations for Cable Logging in Eastern Hardwoods. RP-NE-566.

H) Koller K501 w/Koller SKA 2.5 manual slackpulling carriage (Yachats site: Kellogg, L., G. Milota and M. Miller. 1996. A comparison of skyline harvesting costs for alternative commercial thinning prescriptions. J. For. Engr. 7(3):7-23)

I) Koller K501 w/Eaglet mechanical slackpulling carriage (Kellogg, L., Miller, M. and E. Olsen. 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. OSU For. Res. Lab. Research Contribution 21)

Appalachian Thinner Dykstra, 21 Feb 2008 Divide $/ft3 into $/PMH for ft/PMHDep. Var. Est.Param Indep. Vars. Units Orig. $/PMH Limitations

$/ft3 = -0.089289 -- 44.09 Dbh range:81.991053 1/(Vol/ac) 1/(ft3/ac)

0.000269 AYD ft-496.820821 1/((Vol/ac)(Dbh)) 1/((ft3/ac)(in))

1.535553 1/Dbh 1/in

Bitterroot Yarder Dykstra, 21 Feb 2008 Divide $/ft3 into $/PMH for ft/PMHDep. Var. Est.Param Indep. Vars. Units Orig. $/PMH Limitations

$/ft3 = 0.161995 -- 23.61 Dbh range:0.000783 DBH^2 in^2 Max AYD:0.000172 AYD ft

Clearwater Yarder Dykstra, 21 Feb 2008 Divide $/ft3 into $/PMH for ft/PMHDep. Var. Est.Param Indep. Vars. Units Orig. $/PMH Limitations

$/ft3 0.12577 -- 70.45 Dbh range:-0.00328 DBH in0.000048 AYD ft

623.08404 1/((Vol/ac)(Dbh)) 1/((ft3/ac)(in))

Ecologger Dykstra, 21 Feb 2008 Divide $/ft3 into $/PMH for ft/PMHDep. Var. Est.Param Indep. Vars. Units Orig. $/PMH Limitations

$/ft3 = 0.707187 -- 55.77 Dbh range:-0.050285 DBH in0.001089 DBH^2 in^2

33.101018 1/(Vol/ac) 1/(ft3/ac)0.000168 AYD ft

-2.095831 1/Dbh 1/in

Skylok 78 Dykstra, 21 Feb 2008 Divide $/ft3 into $/PMH for ft/PMHDep. Var. Est.Param Indep. Vars. Units Orig. $/PMH Limitations

$/ft3 0.090775 -- 121.65 Dbh range:0.000071 AYD ft

739.473795 1/((Vol/ac)(Dbh)) 1/((ft3/ac)(in))0.594844 1/DBH 1/in

Divide $/ft3 into $/PMH for ft/PMH

7-24 in

Divide $/ft3 into $/PMH for ft/PMH

5-9 in500 ft

Divide $/ft3 into $/PMH for ft/PMH

7-16 in

Divide $/ft3 into $/PMH for ft/PMH

7-24 in

Divide $/ft3 into $/PMH for ft/PMH

7-24 in

General InputsSlope, % 1YardDist, ft 1820Removals, trees/ac 152.30TreeVol, ft3 8.54WoodDensity, lb/ft3 60LogLength, ft 16PartialCut 1

Calculated IntermediatesCSlopeSkidForwLoadSize (M0.999873LogsPerTree 1.719432LogVol, ft3 4.96587MachineSize 0.0BFperCF 5ButtDiam, in 10.52

Skidding Calculated ValuesTurnVol, ft3 57.88366LogsPerTurnS 11.6563TreesPerTurnS 6.78AvgSkdHourlyCost, $/PMH 140.88SmallSkdHCost, $/PMH 139.28BigSkdHCost, $/PMH 195.60

General Inputs for Choker Skidding, UnbunchedMaxLogs 10ChokerLogs 10.0ChokerTurnVol, ft3 49.7

General Inputs for Grapple Skidding, UnbunchedIntMoveDistS, ft 17.0

General Inputs for Bunched SkiddingBunchSize, trees/bunch 2.0

Dykstra: Notes on modifications for FRCS-South and FRCS-North, 24 Feb 20081. Skidding systems added for use in the South and North and not in FRCS-West are in blue.2. Skidding systems from FRCS-West that are considered irrelevant have been removed by setting their relevance values to 0 in the RelevanceWeightInputs worksheet.

3. This worksheet has been completely revised to make it easier to update yarding systems, production rates, and costs.

Choker and Grapple Skidding, Unbunched (SCGU)Beginning data row: 8

Ending data row: 300Weighted-Average Skidding Cost, $/CCF: 133.75

(weighted by Vol/PMH and Relevance)Weighting Weighting

System & Variables Values Vol/PMH $/CCF Relevance Product DivisorA) CC Chokers (Johnson & Lee, 1988)WinchDist. ft 25TurnTime, min 20.16Vol/PMH, ft3 148$/PMH 141$/CCF 95.34Relevance 1.00 148 95.34 0.00 0 0

B) CC Chokers (Gibson & Egging, 1973)TurnTime, min 25.64Vol/PMH, ft3 116$/PMH 141$/CCF 121.24Relevance 1.00 116 121.24 0.00 0 0

C) CC Chokers (Schillings, 1969)TurnTime, min 66.56Vol/PMH, ft3 45$/PMH 141$/CCF 314.70Relevance 0.00 45 314.70 0.00 0 0This system has been disabled in RelevanceWeightInputs because of odd results.

D) CC Chokers (Gardner, 1979)TurnTime, min 40.53Vol/PMH, ft3 74$/PMH 141$/CCF 191.65Relevance 1.00 74 191.65 0.00 0 0

E) Cat 518 or Cat D4H, Chokers (Andersson, B. and G. Young 1998. Harvesting coastal seTurnTime, min 17.006Vol/PMH, ft3 175$/PMH 196$/CCF 111.64Relevance 0.35 175 111.64 0.00 0 0

F) Cat 518 Grapple (Johnson, 1988)TurnTime, min 23.97Vol/PMH, ft3 145$/PMH 196$/CCF 135.01Relevance 1.00 145 135.01 1.00 19560.02 144.8808

G) JD 648 Grapple (Gebhardt, 1977)GroundRating 1.1

TypeOfCut 1.5TurnTime, min 12.56Vol/PMH, ft3 277$/PMH 141$/CCF 50.95Relevance 1.00 277 50.95 1.00 14087.99 276.5242

LeDoux and Huyler. 1992. Cycle-time equations for five small tractors operating in low-volH) Pasquali 933 SkidderTurnTime, min 40.97Vol/PMH, ft3 73$/PMH 139$/CCF 191.51Relevance 1.00 73 191.51 1.00 13927.68 72.72396

I) Massey-Ferguson (LeDoux and Huyler, 1992)TurnTime, min 53.57Vol/PMH, ft3 56$/PMH 139$/CCF 250.43Relevance 1.00 56 250.43 1.00 13927.68 55.61553

J) Holder A60F (LeDoux and Huyler, 1992)TurnTime, min 28.28Vol/PMH, ft3 105$/PMH 139$/CCF 132.20Relevance 1.00 105 132.20 0.00 0 0This system has been disabled in RelevanceWeightInputs because of odd results.

K) Forest Ant (LeDoux and Huyler, 1992)TurnTime, min 41.66Vol/PMH, ft3 72$/PMH 139$/CCF 194.75Relevance 1.00 72 194.75 1.00 13927.68 71.51713

L) Samé Minitaurus (LeDoux and Huyler, 1992)TurnTime, min 35.42Vol/PMH, ft3 84$/PMH 139$/CCF 165.59Relevance 1.00 84 165.59 0.00 0 0This system has been disabled in RelevanceWeightInputs because of odd results.

LeDoux et al. 1993. Production rates and costs of group-selection harvests with ground-basM) John Deere 640D cable skidder (group selection)1 if group = 0.5 ac 01 if group = 1.0 ac 11 if group = 1.5 ac 01 if logs are bunched 0Winch cycles/turn 1.3TurnTime, min 27.22

Vol/PMH, ft3 109$/PMH 139$/CCF 127.26Relevance 1.00 109 127.26 1.00 13927.68 109.4447

Wang et al. 2004. Productivity and cost of manual felling and cable skidding in central AppalN) Timberjack 460 choker skidderTurnTime, min 18.81Vol/PMH, ft3 158$/PMH 139$/CCF 87.90Relevance 1.00 158 87.90 1.00 13927.68 158.4428

Kluender et al. 1997. Productivity of rubber-tired skidders in southern pine forests. For. Prod.O) Cable skiddersSkidder horsepower 120TurnTime, min 137.3313Vol/PMH, ft3 22$/PMH 141$/CCF 649.34Relevance 1.00 22 649.34 1.00 14087.99 21.69586

User-Defined Skidding UnbunchedVol/PMH, ft3 0.001$/PMH 141

$/CCF ###Relevance 0.00 0 ### 0.00 0 0

Choker and Grapple Skidding, Bunched (SCGB)Beginning data row: 8

Ending data row: 300Weighted-Average Skidding Cost, $/CCF: 90.65

(weighted by Vol/PMH and Relevance)Weighting Weighting

System & Variables Values Vol/PMH $/CCF Relevance Product DivisorA) Grapple Skidders (Johnson, 1988)DeckHeight, ft 3TravEmpty, min 3.19Load, min 0.87TravLoaded, min 3.21Deck, min 0.82TurnTime, min 8.09Vol/PMH, ft3 429$/PMH 141$/CCF 32.83Relevance 1.00 429 32.83 1.00 14087.99 429.164

B) Grapple Skidders (Tufts et al, 1988)EastsideAdjustment 1.0Trees/bunch 6.78BunchVol, ft3 58TurnWt, lb 3473Bunches/grapple load 1.00Skidder Hp 120TravEmpty, min 3.17Grapple, min 0.66TravLoaded, min 3.39Ungrapple, min 0.12Cycletime, min 7.33Vol/PMH, ft3 474$/PMH 196$/CCF 41.28Relevance 0.71 474 41.28 0.71 13842.54 335.3387

C) John Deere 748E (Kosicki, K. 2000. Productivities and costs of two harvesting trials in a western Alberta riparian zone. FERIC Advantage 1(19))LoadingStops 2.1TurnTime, min 10.99Vol/PMH, ft3 316$/PMH 196$/CCF 61.90Relevance 0.71 316 61.90 0.00 0 0

D) Cat D5H TSK Custom Track (Henderson, B. 2001. Roadside harvesting with low ground-presssure skidders in northwestern British Columbia. FERIC Advantage 2(54))TurnTime, min 22.66Vol/PMH, ft3 153$/PMH 196$/CCF 127.60Relevance 0.71 153 127.60 0.00 0 0

E) JD 748_G-II & TJ 560 (Kosicki, K. 2002. Productivity and cost of summer harvesting in a central Alberta mixedwood stand. FERIC Advantage 3(6))Bunches/turn 1.00

¬Was 1.2 for Interior West

Q10
Deleted exponential slope term, which gave unreasonable results -2.1179+0.0362*Slope+0.711*LN(YardDist)-0.61*EXP(Slope)
Q11
limited to no less than zero since has negative coeff for number of pieces per load

TurnTime, min 11.79Vol/PMH, ft3 295$/PMH 139$/CCF 47.26Relevance 1.00 295 47.26 0.00 0 0

F) Tigercat 635 (Boswell, B. 1998. Vancouver Island mechanized thinning trials. FERIC Technical Note TN-271)TurnTime, min 18.51Vol/PMH, ft3 188$/PMH 139$/CCF 74.23Relevance 0.71 188 74.23 0.00 0 0

G) Tigercat 635 (Kosicki, K. 2002. Evaluation of Trans-Gesco TG88C and Tigercat 635 grapple skidders working in central Alberta. FERIC Advantage 3(37))Trees/Turn 6.78TurnTime, min 15.73Vol/PMH, ft3 221$/PMH 139$/CCF 63.08Relevance 1.00 221 63.08 0.00 0 0

H) John Deere 640D cable skidder (group selection, bunched) (LeDoux et al. 1993)1 if group = 0.5 ac 01 if group = 1.0 ac 11 if group = 1.5 ac 01 if logs are bunched 1Winch cycles/turn 1.3TurnTime, min 21.29Vol/PMH, ft3 140$/PMH 139$/CCF 99.51Relevance 1.00 140 99.51 1.00 13927.68 139.967

I) Timberjack 460 grapple skidder (Wang et al. 2004. Production and cost analysis of a feller-buncher and grapple skidder in central Appalachian hardwood forests. For. Prod. J. 54(12):159-167.TurnTime, min 238.94Vol/PMH, ft3 15$/PMH 139$/CCF 958.19Relevance 1.00 15 958.19 1.00 13927.68 14.53536

Cubbage et al. 1989. Tree size and species, stand volume, and tract size: effects on southern harvesting costs. SJAF 13(3):145-152.Note: This study does not include any effect of skidding distance on production rate.J) Small choker skidder (Cubbage et al., 1989)ft3/cord 80Tract size, cords 250Vol/PMH, ft3 49$/PMH 139$/CCF 283.75Relevance 1.00 49 283.75 1.00 13927.68 49.08398

K) Large choker skidder (Cubbage et al., 1989)ft3/cord 80Tract size, cords 250

Vol/PMH, ft3 54$/PMH 196$/CCF 360.85Relevance 1.00 54 360.85 1.00 19560.02 54.20563

L) Small grapple skidder (Cubbage et al., 1989)ft3/cord 80Tract size, cords 250Vol/PMH, ft3 101$/PMH 139$/CCF 137.75Relevance 1.00 101 137.75 1.00 13927.68 101.1099

M) Large grapple skidder (Cubbage et al., 1989)ft3/cord 80Tract size, cords 250Vol/PMH, ft3 122$/PMH 196$/CCF 160.84Relevance 1.00 122 160.84 1.00 19560.02 121.6128

Kluender et al. 1997. Productivity of rubber-tired skidders in southern pine forests. For. Prod. J. 47(11/12):53-58.N) Grapple skidders (Kluender et al., 1997)BA fraction removed 0.35TurnTime, min 10.79279Vol/PMH, ft3 322$/PMH 141$/CCF 43.78Relevance 1.00 322 43.78 1.00 14087.99 321.7908

User-Defined Skidding BunchedVol/PMH, ft3 0.001$/PMH 141

$/CCF ###Relevance 0.00 0 ### 0.00 0 0

C) John Deere 748E (Kosicki, K. 2000. Productivities and costs of two harvesting trials in a western Alberta riparian zone. FERIC Advantage 1(19))

D) Cat D5H TSK Custom Track (Henderson, B. 2001. Roadside harvesting with low ground-presssure skidders in northwestern British Columbia. FERIC Advantage 2(54))

E) JD 748_G-II & TJ 560 (Kosicki, K. 2002. Productivity and cost of summer harvesting in a central Alberta mixedwood stand. FERIC Advantage 3(6))

G) Tigercat 635 (Kosicki, K. 2002. Evaluation of Trans-Gesco TG88C and Tigercat 635 grapple skidders working in central Alberta. FERIC Advantage 3(37))

I) Timberjack 460 grapple skidder (Wang et al. 2004. Production and cost analysis of a feller-buncher and grapple skidder in central Appalachian hardwood forests. For. Prod. J. 54(12):159-167.

Cubbage et al. 1989. Tree size and species, stand volume, and tract size: effects on southern harvesting costs. SJAF 13(3):145-152.

General InputsRemovalsST, trees/ac 150.2TreeVolST, ft3 7.261119CTLTrailSpacing, ft 50.00PartialCut 1.00

Calculated IntermediatesDBHST, in 7.115489ButtDiamST, in 10.11549TreeHeightST, ft 41.0VolPerAcreST, ft3 1090.62CTLLogsPerTree 2.757113CTLLogVol, ft3 2.633595CTLMachineSize 0.090764NonSelfLevelCabDummy 1CSlopeFB&Harv (Mellgren 9 0.00374CRemovalsFB&Harv (Mellgr 0.291136

Harvester Calculated ValuesHarvesterHourlyCost, $/PM 289.9993MerchTreeHeight, ft 20.52166

Dykstra: Notes on modifications for FRCS-South and FRCS-North, 24 Feb 20081. Harvesters not in FRCS-West but added for use in the South and North are in blue.2. Harvesters from FRCS-West that are considered irrelevant have been removed by setting their relevance values to 0 in the RelevanceWeightInputs worksheet.

3. This worksheet has been completely revised to make it easier to update production rates and costs.

HarvestersBeginning data row: 10

Ending data row: 300Weighted-Average Harvester Cost, $/CCF: 52.29

(weighted by Vol/PMH and Relevance)Weighted-Average Harvester Cost, $/PMH: 300.99

Weighting WeightingSystem & Variables Values Vol/PMH $/PMH $/CCF Relevance $/PMH $/CCFA) Hitachi EX150/Keto 500 (Schroder & Johnson, 1997)Time/Tree, min 2.322272Vol/PMH, ft3 187.6039$/PMH 289.9993$/CCF 154.5807Relevance 1.00 188 290 154.58 1.00 289.999305 28999.9305

B) Komatsu PC95/Hahn HSG140 (Schroder & Johnson, 1997)BoomReach, ft 24TreesInReach 2.068871Trees/Cycle 2.068871Vol/Cycle, ft3 15.02231Time/Cycle, min 1.226076Time/Tree, min 0.592631Vol/PMH, ft3 735.1412$/PMH 289.9993$/CCF 39.44811Relevance 1.00 735 290 39.45 1.00 289.999305 28999.9305

C) Timbco T425/Pika 600 (Schroder & Johnson, 1997)BoomReach, ft 24TreesInReach 2.068871Trees/Cycle 2.068871Logs/Cycle 5.704109Vol/Cycle, ft3 15.02231Time/Cycle, min 1.201062Time/Tree, min 0.58054Vol/PMH, ft3 750.4519$/PMH 289.9993$/CCF 38.64329Relevance 1.00 750 290 38.64 1.00 289.999305 28999.9305

D) Timberjack 2518 (Kellogg & Bettinger, 1994)Vol/PMH, ft3 563.7312$/PMH 289.9993$/CCF 51.44284Relevance 1.00 564 290 51.44 0.00 0 0

E) Rottne (McNeel & Rutherford, 1994)BoomReach, ft 24DistPerMove, ft 12TreesInReach 2.068871Trees/Move 2.068871Cut, min 0.062639

Process, min 0.291106PositionHead, min 0.189SlashDisposal, min 0.1091Move, min/tree 0.157121Time/Tree, min 0.811991Vol/PMH, ft3 536.5418$/PMH 289.9993$/CCF 54.04971Relevance 1.00 537 290 54.05 1.00 289.999305 28999.9305

F) Norcar 600H (Brinker & Tufts, 1990)Stand1Vol/PMH, ft3 632.6673Stand2Vol/PMH, ft3 510.856AvgVol/PMH, ft3 571.7617$/PMH 289.9993$/CCF 50.72031Relevance 0.50 572 290 50.72 0.50 144.999653 14499.9653

G) Hitachi 200LC/Keto 500 (Drews et al, 2000)DownDummy 0.2DeadDummy 0.2YarderDummy 0ProdDelayFraction 0.126BoomReach, ft 24DistPerMove, ft 12TreesInReach 2.068871Trees/Move 2.068871Brush, min 0.0089Move, min/tree 0.089531Swing, min 0.161593Fell, min 0.04709Process, min 0.291106Time/Tree, min 0.676114Vol/PMH, ft3 644.369$/PMH 289.9993$/CCF 45.00516Relevance 1.00 644 290 45.01 0.00 0 0

H) Rottne SMV EGS w/600 (Meek, P. 2000. Productivity and costs of single-grip harvesters in commercial thinning: summary report. FERIC Advantage 1(41))Machine 1Experience 2Vol/PMH, ft3 478.98$/PMH 289.9993$/CCF 60.54518Relevance 1.00 479 290 60.55 1.00 289.999305 28999.9305

I) Enviro w/ Pan 828 (Meek, P. 2000. Productivity and costs of single-grip harvesters in commercial thinning: summary report. FERIC Advantage 1(41))Machine 2Experience 2Vol/PMH, ft3 362.6218$/PMH 289.9993$/CCF 79.97295Relevance 1.00 363 290 79.97 1.00 289.999305 28999.9305

I54
DennisDykstra: McNeel's processing equation, -5.163+0.3508*0.305*TreeHeight, is too sensitive to length so use the equation from Drews et al 2000.

J) FERIC Generic (Gingras, J.F. 1996. The cost of product sorting during harvesting. FERIC Technical Note TN-245)Vol/PMH, ft3 402.3615$/PMH 289.9993$/CCF 72.07432Relevance 1.00 402 290 72.07 1.00 289.999305 28999.9305

K) (MacDonald, C. 1988. Evaluation of the Bruun T 610-H-A single grip harvester. B.S. Thesis, University of New Brunswick)Vol/PMH, ft3 505.5988$/PMH 289.9993$/CCF 57.3576Relevance 1.00 506 290 57.36 1.00 289.999305 28999.9305

L) Rottne SMV Rapid EGS w/600 (Matzka, P. 2003. Thinning with prescribed fire and timber harvesting mechanization for fuels reduction and forest restoration. PhD thesis. Oregon State University)StandingDeadDummy 0DownTreeDummy 0DougFirDummy 0.1DistPerMove, ft 5.800266Time/Tree, min 0.466663Vol/PMH, ft3 933.5803$/PMH 289.9993$/CCF 31.06314Relevance 1.00 934 290 31.06 0.00 0 0

M) JD 653C w/Waratah HTH Warrior (Matzka, P. 2003. Thinning with prescribed fire and timber harvesting mechanization for fuels reduction and forest restoration. PhD thesis. Oregon State University)StandingDeadDummy 0DownTreeDummy 0DougFirDummy 0DistPerMove, ft 5.800266Time/Tree, min 0.663626Vol/PMH, ft3 656.4947$/PMH 289.9993$/CCF 44.1739Relevance 1.00 656 290 44.17 0.00 0 0

N) Cat 320L w/Keto 500 (Matzka, P. 2003. Thinning with prescribed fire and timber harvesting mechanization for fuels reduction and forest restoration. PhD thesis. Oregon State University)StandingDeadDummy 0DownTreeDummy 0DougFirDummy 0.1DistPerMove, ft 5.800266Time/Tree, min 0.754264Vol/PMH, ft3 577.6054$/PMH 289.9993$/CCF 50.20717Relevance 1.00 578 290 50.21 0.00 0 0

O) FMG 1870 w/TJ 762B (Eliasson, L., J. Bengtsson, J. Cedergren and H. Lageson. 1999. Comparison of single grip harvester productivity in clear and shelterwood cutting. J. For. Engr. 10(1):43-48)Time/Tree, min 0.491737Vol/PMH, ft3 885.9758$/PMH 289.9993$/CCF 32.73219Relevance 1.00 886 290 32.73 1.00 289.999305 28999.9305

P) Osa 260/752 & Valmet 862/942 (Lageson, H. 1997. Effects of thinning type on the harvester productivity and on the residual stand. J. For. Engr. 8(2):7-14)Time/Tree, min 0.733362Vol/PMH, ft3 594.0684$/PMH 289.9993$/CCF 48.81581Relevance 1.00 594 290 48.82 1.00 289.999305 28999.9305

Q) Ponsse Ergo (Bolding, M.C. and B. Lanford. 2002. Productivity of a Ponsse Ergo harvester working on steep terrain. In: Council on Forest Engineering Proceedings, Auburn, Alabama)Time/Tree, min 0.487421Vol/PMH, ft3 893.8206$/PMH 289.9993$/CCF 32.44491Relevance 1.00 894 290 32.44 1.00 289.999305 28999.9305

R) User-Defined HarvesterVol/PMH, ft3 0$/PMH 290$/CCF #DIV/0!Relevance 0.00 0 290 #DIV/0! 0.00 0 0

WeightingDivisor

187.603859

735.14116

750.451858

0

536.541812

285.880841

0

H) Rottne SMV EGS w/600 (Meek, P. 2000. Productivity and costs of single-grip harvesters in commercial thinning: summary report. FERIC Advantage 1(41))

478.980033

I) Enviro w/ Pan 828 (Meek, P. 2000. Productivity and costs of single-grip harvesters in commercial thinning: summary report. FERIC Advantage 1(41))

362.621764

J) FERIC Generic (Gingras, J.F. 1996. The cost of product sorting during harvesting. FERIC Technical Note TN-245)

402.36146

K) (MacDonald, C. 1988. Evaluation of the Bruun T 610-H-A single grip harvester. B.S. Thesis, University of New Brunswick)

505.598755

L) Rottne SMV Rapid EGS w/600 (Matzka, P. 2003. Thinning with prescribed fire and timber harvesting mechanization for fuels reduction and forest restoration. PhD thesis. Oregon State University)

0

M) JD 653C w/Waratah HTH Warrior (Matzka, P. 2003. Thinning with prescribed fire and timber harvesting mechanization for fuels reduction and forest restoration. PhD thesis. Oregon State University)

0

N) Cat 320L w/Keto 500 (Matzka, P. 2003. Thinning with prescribed fire and timber harvesting mechanization for fuels reduction and forest restoration. PhD thesis. Oregon State University)

0

O) FMG 1870 w/TJ 762B (Eliasson, L., J. Bengtsson, J. Cedergren and H. Lageson. 1999. Comparison of single grip harvester productivity in clear and shelterwood cutting. J. For. Engr. 10(1):43-48)

885.975819

P) Osa 260/752 & Valmet 862/942 (Lageson, H. 1997. Effects of thinning type on the harvester productivity and on the residual stand. J. For. Engr. 8(2):7-14)

594.068394

Q) Ponsse Ergo (Bolding, M.C. and B. Lanford. 2002. Productivity of a Ponsse Ergo harvester working on steep terrain. In: Council on Forest Engineering Proceedings, Auburn, Alabama)

893.820644

0

General InputsSlope, % 1YardDist, ft 1820RemovalsST, trees/ac 150.2TreeVolST, ft3 7.261119DBHST, in 7.115489WoodDensityST, lb/ft3 60LogLength, ft 16CTLTrailSpacing, ft 50

Calculated IntermediatesCTLLogVol, ft3 2.633595VolPerAcreST, ft3 1090.62CTLMachineSize 0.1CSlopeSkidForwLoadSize (M0.999873

Forwarding Calculated ValuesDistPerMoveF, ft 30ForwarderHourlyCost, $/P 208.3511

Forwarding Input ValuesBoomReachF, ft 20LoadFraction 0.95

Dykstra: Notes on modifications for FRCS-South and FRCS-North, 24 Feb 20081. Forwarders not in FRCS-West but added for use in the South and North are in blue.2. Forwarders from FRCS-West that are considered irrelevant have been removed by setting their relevance values to 0 in the RelevanceWeightInputs worksheet.

3. This worksheet has been completely revised to make it easier to update production rates and costs.

ForwardingBeginning data row: 10

Ending data row: 300Weighted-Average Processing Cost, $/CCF: 39.72

(weighted by Vol/PMH and Relevance)Weighted-Average Processing Cost, $/PMH: 216.25

Weighting WeightingSystem & Variables Values Vol/PMH $/PMH $/CCF Relevance $/PMH $/CCFA) Timberjack 230A 8-ton (Schroder & Johnson, 1997)MaxLoadWeight, tons 8LoadVolA, ft3 253DistIntermA, ft 202DistOutA, ft 1921DistInA, ft 1719MovesA 7Paint 1TravelOut, min 10.07Load, min 11.38TravelInterm, min 10.99TravelLoaded, min 13.02Unload, min 6.84TurnTime, min 52.30Vol/PMH, ft3 291$/PMH 208$/CCF 71.70Relevance 1.00 291 208 71.70 0.00 0 0Disabled (in RelevanceWeightInputs) by Dykstra on 02 Mar 2008--gives poor results for long forwarding distances.

B) Rottne 10-ton (McNeel & Rutherford, 1994)MaxLoadWeight, tons 11LoadVolB, ft3 348DistIntermB, ft 278DistOutB, ft 1959DistInB, ft 1681MovesB 9LandingMoves 0.5LandingMoveDistPerMov 100TravelOut, min 8.41Load, min 9.25SortWoods, min 2.05TravelInterm, min 3.14TravelLoaded, min 6.65Unload, min 5.39SortLanding, min 2.10MoveLanding, min 0.18TurnTime, min 37.17Vol/PMH, ft3 562$/PMH 208$/CCF 37.06Relevance 1.00 562 208 37.06 1.00 208.351073 20835.1073

C) FMG 910 (Kellogg & Bettinger, 1994)

MaxLoadWeight, tons 9.9LoadVolC, ft3 313DistIntermC, ft 250DistOutC, ft 1945DistInC, ft 1695MixedDummy 0.8PulpDummy 0.1Vol/PMH, ft3 345$/PMH 208$/CCF 60.48Relevance 1.00 345 208 60.48 1.00 208.351073 20835.1073

D) Valmet 646 12-ton (Drews et al., 2000)MaxLoadWeight, tons 13.2LoadVolD, ft3 418DistIntermD, ft 334DistOutD, ft 1987DistInD, ft 1653RoadDist, ft 50MultipleCorridorDumm 0.08ColdDummy 0.83SawlogFraction 0.02TravelEmptyOnRoad, m 0.24TravelOut+TravelLoade 16.01Load, min 13.86TravelInterm, min 3.10TravelLoadedOnRoad, 0.47Unload, min 7.32TurnTime, min 41.01Vol/PMH, ft3 612$/PMH 208$/CCF 34.07Relevance 1.00 612 208 34.07 1.00 208.351073 20835.1073

E) TJ 1010 (Sambo, S. 1999. Reduction of trail density in a partial cut with a cut-to-length system. FERIC Technical Note TN 293)MaxLoadWeight, tons 13.2LoadVol, ft3 418Pieces/Load 159TurnTime, min 38.47Vol/PMH, ft3 543$/PMH 208$/CCF 38.35Relevance 1.00 543 208 38.35 1.00 208.351073 20835.1073

F) Fabtek 546B (Bolding, M.C. 2003. Forest fuel reduction and energywood production using a CTL/small chipper harvesting system, M.S. Thesis, Auburn Univ)MaxLoadWeight, tons 15LoadVol, ft3 475DistInterm, ft 379DistOut, ft 2010DistIn, ft 1630LoadingStops 13TravelEmpty, min 5.63TravelWhileLoading, m 3.30

Load, min 14.58TravelLoaded, min 4.56Unload, min 9.50Wait, min 0.00TurnTime, min 37.57Vol/PMH, ft3 667$/PMH 208$/CCF 31.21Relevance 1.00 667 208 31.21 1.00 208.351073 20835.1073

G) User-Defined ForwarderVol/PMH, ft3 0$/PMH 208$/CCF #DIV/0!Relevance 0.00 0 208 #DIV/0! 0.00 0 0

I109
Assume a third of reported time since cold decking rather than hot chipping
I110
Assume zero rather than 0.0005*loadweight (lb) since cold decking rather than hot chipping

WeightingDivisor

0Disabled (in RelevanceWeightInputs) by Dykstra on 02 Mar 2008--gives poor results for long forwarding distances.

562.264416

344.520437

611.525802

E) TJ 1010 (Sambo, S. 1999. Reduction of trail density in a partial cut with a cut-to-length system. FERIC Technical Note TN 293)

543.260409

F) Fabtek 546B (Bolding, M.C. 2003. Forest fuel reduction and energywood production using a CTL/small chipper harvesting system, M.S. Thesis, Auburn Univ)

667.4955

0

General InputsTreeVolSLT, ft3 22.1

Calculated IntermediatesDBHSLT, in 10.92377ButtDiamSLT, in 13.92377LogsPerTreeSLT 3.6MechMachineSize 0.090764

Processing Calculated ValuesProcessorHourlyCost, $/PM 219.9062

Dykstra: Notes on modifications for FRCS-South and FRCS-North, 24 Feb 20081. Processors not in FRCS-West but added for use in the South and North are in blue.2. Processors from FRCS-West that are considered irrelevant have been removed by setting their relevance values to 0 in the RelevanceWeightInputs worksheet.

3. This worksheet has been completely revised to make it easier to update production rates and costs.

ProcessingBeginning data row: 10

Ending data row: 300Weighted-Average Processing Cost, $/CCF: 15.56

(weighted by Vol/PMH and Relevance)Weighted-Average Processing Cost, $/PMH: 228.24

Weighting WeightingSystem & Variables Values Vol/PMH $/PMH $/CCF Relevance $/PMH $/CCFA) Hahn Stroke Processor (Gonsier & Mandzak, 1987)Time/Tree, min 0.972259Vol/PMH, ft3 1363.834$/PMH 219.9062$/CCF 16.12412Relevance 1.00 1364 220 16.12 1.00 219.906233 21990.6233

B) Stroke Processor (MacDonald, 1990)Time/Tree, min 0.354895Vol/PMH, ft3 3736.32$/PMH 219.9062$/CCF 5.885637Relevance 1.00 3736 220 5.89 1.00 219.906233 21990.6233

C) Roger Stroke Processor (Johnson, 1988)Time/Tree, min 2.428738Vol/PMH, ft3 545.9625$/PMH 219.91$/CCF 40.27863Relevance 1.00 546 220 40.28 1.00 219.906233 21990.6233

D) Harricana Stroke Processor (Johnson, 1988)Time/Tree, min 2.215905Vol/PMH, ft3 598.4012$/PMH 219.9062$/CCF 36.74896Relevance 1.00 598 220 36.75 1.00 219.906233 21990.6233

E) Hitachi EX150/Keto 500 (Schroder & Johnson, 1997)Time/Tree, min 0.86Vol/PMH, ft3 1545$/PMH 220$/CCF 14.23Relevance 1.00 1545 220 14.23 1.00 219.906233 21990.6233

F) FERIC Generic (Gingras, J.F. 1996. The cost of product sorting during harvesting. FERIC Technical Note TN-245)Vol/PMH, ft3 1155$/PMH 220$/CCF 19.04Relevance 1.00 1155 220 19.04 1.00 219.906233 21990.6233

G) Valmet 546 Woodstar Processor (Holtzscher, M. and B. Lanford. 1997. Tree diameter effects on costs and productivity of cut-to-length systems. For. Prod. J. 47(3):25-30)Time/Tree, min 1.02Vol/PMH, ft3 1304

$/PMH 220$/CCF 16.86Relevance 0.90 1304 220 16.86 0.90 196.816078 19681.6078

H) User-Defined ProcessorVol/PMH, ft3 0$/PMH 220$/CCF #DIV/0!Relevance 0.00 0 220 #DIV/0! 0.00 0 0

WeightingDivisor

1363.83412

3736.32023

545.962539

598.401187

1545.19728

F) FERIC Generic (Gingras, J.F. 1996. The cost of product sorting during harvesting. FERIC Technical Note TN-245)

1155.11108

G) Valmet 546 Woodstar Processor (Holtzscher, M. and B. Lanford. 1997. Tree diameter effects on costs and productivity of cut-to-length systems. For. Prod. J. 47(3):25-30)

1167.13374

0

Inputs Dykstra note, 29 Feb 2008: No changes have been made to this worksheet.Slope, % 1 It is not being used in the Billion-Ton update, and I consider it a low priority.YardDist, ft 1820CTLTrailSpacing, ft 50MoistureContentFraction, wet bas 0.5

Calculated IntermediatesResidueST, GT/ac 3.38CSlopeSkidForwLoadSize (Mellg 1.00

Bundling Inputs&AssumptionsRecoveredFractionOfResidues 0.5BundleWeight, GT 0.9

Bundling Calculated ValuesBundlerHourlyCost, $/PMH 258.99RecoveredResidue, GT/ac 1.69

Bundle Forwarding InputsBoomReachF, ft 20LoadFractionForBundles 0.75

Forwarding Calculated ValuesDistPerMoveF, ft 30SmallForwarderHourlyCost, $/P 203.18

I. Bundle Residues within the stand II. Residue Forwarding

A) Timberjack Bundler (Cuchet-Roux-Spinelli, 2004) A) Adjusted from Forwarding: Rottne 10-ton (McNeel & Rutherford, 1994)MoveDist, ft/GT 515 MaxLoadWei 11Bundler-Limited Time, min/GT 4.09 LoadWeigh 8Move, min/GT 2.35 DistInterm, 2124Load, min/GT 7.31 DistOut, ft 2882Wait, min/GT 0.88 DistIn, ft 758Total, min/GT 10.54 BundlesPe 9GT/PMH 5.69 DistPerMove 232$/PMH 258.99 Moves 9$/GT 45.49 LandingMo 0Relevance 1.00 LandingMov 100

TravelOut, 12.21B) Timberjack Bundler (Rummer, B., D. Len and O. O'BriLoad, min 4.62MoveDist, ft/bundle 463 SortWoods, 0.00SwingsPerBundle 3.9 TravelInter 11.34TimePerBundle, min TravelLoad 3.13 Arrange slash 0.06 Unload, mi 2.69 Feed 2.09 SortLandin 0.00 Wait 0.96 MoveLandin 0.00 Travel 3.94 TurnTime, 33.99 Rotate Bundler 0.34 GT/PMH 15 Cut Bundle 0.15 $/PMH 203.18

D41
Assume half the time observed for logs
D45
Assume half the time observed for logs

Total 7.55 $/GT 13.95GT/PMH 7.16 Relevance 1.00$/PMH 258.99$/GT 36.19Relevance 1.00

C) User-Defined Bundler B) User-Defined Residue ForwardingGT/PMH 0.00001 GT/PMH 0.00001$/PMH 258.99 $/PMH 203.18$/GT ### $/GT ###Relevance 0.00 Relevance 0.00

Bundle and Forward Residue Summary

I. Bundle Residues within the stand WeightedMachine: A B C AverageGT/PMH 6 7 0$/PMH 259 259 259$/GT $ 45.49 $ 36.19 ### $ 40.31 Relevance 1.00 1.00 0.00

II. Residue Forwarding WeightedMachine: A B AverageGT/PMH 15 0$/PMH 203 203$/GT $ 13.95 ### $ 13.95 Relevance 1.00 0.00

Dykstra note, 29 Feb 2008: No changes have been made to this worksheet.It is not being used in the Billion-Ton update, and I consider it a low priority.

A) Adjusted from Forwarding: Rottne 10-ton (McNeel & Rutherford, 1994)

Chipping

Page 136

Inputs Dykstra note, 24 Feb 2008: I have not updated this worksheet from the FRCS-West version.TreeVolCT, ft3 2.20 Chipping is a relatively low-cost item that doesn't vary so much, so this is a low priority.WoodDensityCT, green 60LoadWeight, green to 25MoistureContentFracti 0.5

Chipping InputsExchangeVans, min/l 5.3

Calculated Intermediates

CTLLogVolCT, ft3 0.98ChipperSize 0.03

Chipping Calculated ValuesLoadWeight, drytons 12.5TreeWeight, dry lb 66CTLLogWeight, green 59CTLLogWeight, dry lb 30ChipperHourlyCost, 174.84SmallLoaderHourlyCo 151.90I. Chip Whole Trees II. Chain Flail DDC Whole Trees III. Chip CTL Logs

A) (Johnson, 1989) A) adjusted from Chip Whole Trees A) Morbark 27 (Drews et al, 2001)Chipper HP 248 FlailProdAdju 0.90 ProdDelayFractionGT/PMH 24.39 Flail HrlyCost 1.10 Time/GT, minVol/PMH, ft3 813 $/PMH 192 Time/Van, min$/PMH 175 $/CCF 21.61 Vol/PMH, ft3$/CCF 21.51 Vol/PMH, ft3 890 $/PMHRelevance 1.00 Relevance 1.00 $/CCF

RelevanceB) Morbark 22 (Hartsough, unpublished)Vol/PMH, ft3 784 B) Morbark 60/36 (Hartsough et al, 1997)$/PMH 175 ProdDelayFraction$/CCF 22.30 Logs/SwingRelevance 1.00 ChipTime/Swing, min

Slash,min/LoadC) Morbark 60/36 (Hartsough et al, 1997) Time/Van, minProdDelayFraction 0.038 Vol/PMH, ft3Logs/Swing 6.32 $/PMHChipTime/Swing, min 0.45 $/CCFSlash,min/Load 0.93 RelevanceTime/Van, min 34.20Vol/PMH, ft3 1462$/PMH 175$/CCF 11.96Relevance 1.00

D) User-Defined Chip Whole Trees II.B) User-Defined Chain Flail DDC W III.C) User-Defined Chip CTL LogsVol/PMH, ft3 0.001 Vol/PMH, ft3 0.001 Vol/PMH, ft3

Chipping

Page 137

$/PMH 175 $/PMH 175 $/PMH$/CCF ### $/CCF ### $/CCFRelevance 0.00 Relevance 0.00 Relevance

Chipping Summary

I. Chip Whole Trees WeightedMachine: A B C D AverageVol/PMH, ft3 813 784 1462 0$/PMH 175 175 175 175$/CCF $ 21.51 $ 22.30 $ 11.96 ### $ 17.68 Relevance 1.00 1.00 1.00 0.00

II. Chain Flail DDC WT WeightedMachine: A B AverageVol/PMH, ft3 890 0$/PMH 192 175$/CCF $ 21.61 ### $ 22.29 Relevance 1.00 0.00

III. Chip CTL Logs WeightedMachine: A B C AverageVol/PMH, ft3 937 1045 0$/PMH 175 175 175$/CCF $ 18.66 $ 16.73 ### $ 18.19 Relevance 1.00 1.00 0.00

IV. Chip Piled Loose Residues at Landing WeightedMachine: A B AverageGT/PMH 45 0$/PMH 327 327$/GT $ 7.34 ### $ 7.34 Relevance 1.00 0.00

V. Chip Bundles of Residue at Landing WeightedMachine: A B AverageGT/PMH 67 0$/PMH 327 327$/GT $ 4.89 ### $ 4.89 Relevance 1.00 0.00

Chipping

Page 138

Dykstra note, 24 Feb 2008: I have not updated this worksheet from the FRCS-West version.Chipping is a relatively low-cost item that doesn't vary so much, so this is a low priority.

IV. Chip Piled Loose Residues at Landing

A) Morbark 27 (Drews et al, 2001) A) Drum chippers (Desrochers, L., D. Puttock and M. Ryans. 1995. Recovery of roadside residues using drum chippers. FERIC Technical Report TR-111)0.111 BDT/PMH (Erj 13.5

1.92 BDT/PMH (Nic 3153.37 avg BDT/PMH 22.25

937 GT/PMH 44.5175 $/PMH 327

18.66 $/GT 7.341.00 Relevance 1.00

B) Morbark 60/36 (Hartsough et al, 1997) B) User-Defined Chip Piled Loose Residues at Landing0.038 GT/PMH 0.00112.65 $/PMH 327

0.60 $/GT ###0.93 Relevance 0.00

47.841045

17516.73 V. Chip Bundles of Residue at Landing

1.00A) Assume 50% faster than chipping loose residuesGT/PMH 66.75$/PMH 327$/GT 4.89Relevance 1.00

III.C) User-Defined Chip CTL Logs B) User-Defined Chip Bundles of Residue at Landing0.001 GT/PMH 0.0001

Chipping

Page 139

175 $/PMH 327### $/GT ###

0.00 Relevance 0.00

Chipping

Page 140

A) Drum chippers (Desrochers, L., D. Puttock and M. Ryans. 1995. Recovery of roadside residues using drum chippers. FERIC Technical Report TR-111)

General Inputs Values that may differ for Yarding of CTL LogsArea, ac 1YardDist, ft 1820WoodDensity, lb/ft3 60 WoodDensityST, lb/ft3 60.0Elevation, ft 0

Calculated IntermediatesVolPerAcre, ft3 1300.41 VolPerAcreST, ft3 1090.62LogVol, ft3 5.0 LogVolST, ft3 4.4

Helicopter InputsHookAreaDiam, ft 75ExtraServiceFlightDist, ft one-way 5000HeliCruiseSpeed, mi/hr 120

Helicopter Calculated ValuesHookArea, ac 0.102WtInHookArea, lb 7923 WtSTInHookArea, lb 6645VolInHookArea, ft3 132.1 VolSTInHookArea, ft3 110.7LogWt, lb 298 LogWtST, lb 261

Most information below taken from LogCost 5.1A) Bell 204 B) Boeing VC) K-MAX D) User-DefinedE) Average

Flight Time and Related Assumptions FlightTime, hrs/day 6.00 6.76 8.50 ServiceCycles/day 7 7 7 YardingSpeed, mi/hr 39 58 60

Cost Assumptions Fixed, $/day 3700 7580 6750 Variable, $/FlightHr 340 1052 840 Support, $/day 460 2155 1000 Labor, $/person-day 263 263 263 Woods&Landing Laborers 6 10 9 Profit&Risk Fraction 0.1 0.1 0.1 Loader, $/day 770 770 770 Loaders 1 2 2

Helicopter Cost Calculations Variable, $/day 2040 7112 7140 Fixed, $/FlightHr 617 1121 794 Fixed+Var, $/FlightHr 957 2173 1634 1588 Labor, $/day 1578 2630 2367 Total, $/day 8556 21424 18983Loader Cost Calculations Loader, $/day Total, $/day 1136 2273 2273 1000

I. Helicopter Yarding, Manual Log-Length II. Helicopter Yarding, CTLA) Bell 204 B) Boeing VC) K-MAX D) User-DefinedA) Bell 204

A12
per LogCost 5.1, 75ft corresponds to crown closure of 35-45%
A14
LogCost 5.1; only used for move-in cost calculations
A24
from LogCost 5.1
A29
LogCost 5.1
F42
Used for move-in cost calculations

Payload Calculations ObservedAvgAtElev, lb 4,500 8,160 4,801 4,500 LogWt/MaxPayload 0.05 0.03 0.05 0.05 MaxPayloads/HookArea 1.4 0.8 1.3 1.2 LoadAdjustFactor 0.95 0.73 0.95 0.94 AfterAdjustment, lb 4,258 5,961 4,539 4,247 AfterOne-Log-MinCheck, lb 4,258 5,961 4,539 4,247 After10-Log-MaxCheck, lb 2,980 2,980 2,980 2,614Cycle Time Calcs Load&Unload, min 1.63 1.18 1.15 1.63 TravEmpty&Loaded, min 1.06 0.71 0.69 1.06 TotalCycleTime, min 2.69 1.89 1.84 2.69ServiceFlightTime, min/day 20.4 13.7 13.3 20.4TurnsPerDay 126 207 270 126TonsPerDay 188 308 402 165CCF/day 62.7 102.8 134.1 0.001 55.0$/day 8556 21424 18983 10000 8556$/CCF 136.50 208.42 141.55 10000000.00 155.60Relevance 1.00 1.00 1.00 0.00 1.00

Helicopter Yarding Summary

I. Manual Log-LengthMachine: A B C D AverageVol/day, CCF 63 103 134 0$/day 8556 21424 18983 10000$/CCF 136.50 208.42 141.55 10000000.00 $ 169.63 Relevance 1.00 1.00 1.00 0.00

II. CTLMachine: A B C D AverageVol/PMH, ft3 55 90 118 0$/day 8556 21424 18983 10000$/CCF 155.60 237.58 161.35 10000000.00 $ 193.37 Relevance 1.00 1.00 1.00 0.00

Helicopter Loading Summary

I. Manual Log-LengthMachine: A B C D AverageVol/day, CCF 63 103 134 0$/day 1136 2273 2273 1000$/CCF 18.13 22.11 16.95 1000000.00 $ 19.68 Relevance 1.00 1.00 1.00 0.00

II. CTLMachine: A B C D AverageVol/day, CCF 55 90 118 0$/day 1136 2273 2273 1000$/CCF 20.67 25.20 19.32 1000000.00 $ 22.44

A52
LogCost 5.1
A55
based on Hartsough, B.R., J.A. Miles and M.B Lambert, 1986. Simulating changes to helicopter logging operations.
A60
LocCost 5.1
A91
Same as for helicopter
A98
Same as for helicopter

Relevance 1.00 1.00 1.00 0.00

Dykstra notes, 22 Feb 2008:No changes have been made to this worksheet.Helicopter yarding is unlikely to be widely used for fuel-reduction treatments.Therefore, updating this worksheet is a low priority.

E) Average

II. Helicopter Yarding, CTLB) Boeing VC) K-MAX D) User-Defined

8,160 4,8000.03 0.04

0.7 1.10.61 0.94

4,992 4,5274,992 4,5272,614 2,614

1.18 1.150.71 0.691.89 1.8413.7 13.3207 270271 353

90.2 117.6 0.00121424 18983 10000

237.58 161.35 10000000.001.00 1.00 0.00

Loading

Page 146

General Inputs Dykstra note, 24 Feb 2008: This worksheet has not yet been updated from the FRCS-West version.LoadWeight, green to 25 Loading does not vary so much regionally so I consider this a low priority.WoodDensityALT, gree 60.0WoodDensitySLT, gree 60Calculated IntermediatesCTLLogVol, ft3 2.63LogVolALT, ft3 7.03DBHALT, in 11.75DBHSLT, in 10.92MachineSize 0.09

Loading InputsExchangeTrucks, min/ 5

Loading Calculated ValuesLoadVolALT, ccf 8.33LoadVolSLT, ccf 8.33LoaderHourlyCost, $ 154.85

I. Loading Full-Length Logs II. Loading CTL Logs

A) Front-End Loader (Vaughan, 1989) A) Knuckleboom Loader, CTL Logs (Brown & Kellogg, 1996)Time/Load, min 26.09 CCF/Pmin 0.15Vol/PMH, ft3 1916 Time/Load, 60.54$/PMH 155 Vol/PMH, f 826$/CCF 8.08 $/PMH 155Relevance 0.00 $/CCF 18.75

Relevance 1.00B) Knuckleboom Loader, Small Logs (Brown & Kellogg, 1996)CCF/Pmin 0.23 B) Loaders (Jackson et al, 1984)Time/Load, min 40.67 Vol/PMH, f 1240Vol/PMH, ft3 1229 $/PMH 155$/PMH 155 $/CCF 12.49$/CCF 12.60 Relevance 0.50Relevance 1.00

C) Loaders (Hartsough et al, 1998)Time/CCF, min 4.59Time/Load, min 38.26Vol/PMH, ft3 1307$/PMH 155$/CCF 11.85Relevance 0.80

D) Loaders (Jackson et al, 1984)Vol/PMH, ft3 1463$/PMH 155$/CCF 10.59Relevance 1.00

Loading

Page 147

E) User-Defined Load Full-Length Logs C) User-Defined Load CTL LogsVol/PMH, ft3 0.001 Vol/PMH, f 0.001$/PMH 155 $/PMH 155$/CCF ### $/CCF ###Relevance 0.00 Relevance 0.00

Loading Summary

I. Loading Full-Length Logs WeightedMachine: A B C D E AverageVol/PMH, ft3 1916 1229 1307 1463 0$/PMH 155 155 155 155 155$/CCF $ 8.08 $ 12.60 $ 11.85 $ 10.59 ### $ 12.06 Relevance 0.00 1.00 0.80 1.00 0.00

II. Loading CTL Logs WeightedMachine: A B C AverageVol/PMH, ft3 826 1240 0$/PMH 155 155 155$/CCF $ 18.75 $ 12.49 ### $ 16.76 Relevance 1.00 0.50 0.00

Loading

Page 148

Dykstra note, 24 Feb 2008: This worksheet has not yet been updated from the FRCS-West version.Loading does not vary so much regionally so I consider this a low priority.

MachineCosts

Page 149

See CostUpdates worksheet also Faller or B All OthersWage and benefit rates ($/person-SH)= 48.06 38.12

Machine description: Chainsaw FBuncher FBuncher1. Input Data: DriveToTreSwingBooPurchase price as of Dec 02 (P, $) = 824 176,670 365,119Machine Horsepower rating (hp) = 150 200Machine life (n, years) = 1 3 5Salvage value, percent of purchase price (sv%) 20% 20% 15%Utilization rate, ph/sh (ut%) = 50% 65% 60%Repair and maintenance, percent of depreciation (rm%) = 700% 100% 75%Interest rate, percent of avg yearly investment (in%) = 8% 8% 8%Insurance and tax rate, percent of avg yearly investment (it%) = 7% 7% 7%Fuel consumption rate (fcr, gal/hp-ph) = 0.026 0.026Fuel cost per gallon (fcg, $/gal) = 3.533 3.533Lube and oil, percent of fuel cost (lo%) = 37% 37%Crew size (persons) = 1 1 Crew wage and benefits (WB, $/SH) = 48.06 38.12 38.12Scheduled machine hours (SMH, sh/year) = 1600 1600 1600

2. Calculations:Salvage value (S, $) = (P*sv%) = 165 35334 54768Annual depreciation (AD, $/year) = [(P-S)/n] = 660 47112 62070Average yearly investment (AYI, $) = [(((P-S)*(n+1))/2n)+S] = 824 129558 240978Productive Machine Hours (PMH, ph/year) = (SMH*ut%) = 800 1040 960

3. Ownership costs:Interest cost (IN, $/year) = (in%*AYI) = 66 10365 19278Insurance and tax cost (IT, $/year) = (it%*AYI) = 58 9069 16868Yearly ownership cost (F$, $/year) = (AD+IN+IT) = 783 66546 98217Ownership cost per SMH ($/sh) = (F$/SMH) = 0.49 41.59 61.39Ownership cost per PMH ($/ph) = (F$/PMH) = 0.98 63.99 102.31

4. Operating costs:Fuel cost (F, $/ph) = (hp*fcr*fcg) = 0.00 13.78 18.37Lube cost (L, $/ph) = (F*lo%) = 0.00 5.10 6.80Repair and maintenance cost (RM, $/ph) = (AD*rm%/PMH) = 5.77 45.30 48.49Operator labor and benefit cost per PMH (WB/ut%, $/ph) = 96.12 58.64 63.53Operating cost per PMH (V$/PMH) = [F+L+RM+(WB/ut%)] = 101.89 122.82 137.19Operating cost per SMH (V$/SMH) = (V$/PMH*ut%) = 50.95 79.83 82.31

5. Total CostsTotal cost per SMH ($/SMH = (F$/SMH+V$/SMH) 51.44 121.42 143.70Total cost per PMH ($/PMH = (F$/PMH+V$/PMH) 102.87 186.81 239.50

User over-ride, $/PMH

Value used to calculate results, $/PMH 102.87 186.81 239.50

FBuncherAvg Owning Cost, $/PMH (for move-in cost calcs) 89.54

A2
DennisDykstra: Updated values from the WageIndex worksheet.
A6
DDykstra: Equipment prices are updated using the PPI multiplier for equipment-cost updates as shown in the CostUpdates worksheet.

MachineCosts

Page 150

FBuncher Harvester Harvester Skidder Skidder Forwarder Forwarder Yarder YarderSelfLevelin small big small big small big small intermediat

365,119 412,231 530,011 164,892 235,561 282,673 365,119 188,448 388,675240 120 200 120 200 110 200 100 200

5 4 4 5 4 4 4 10 1015% 20% 20% 20% 20% 25% 20% 10% 10%60% 65% 65% 65% 65% 65% 65% 75% 75%75% 110% 110% 90% 90% 100% 100% 100% 100%

8% 8% 8% 8% 8% 8% 8% 8% 8%7% 7% 7% 7% 7% 7% 7% 7% 7%

0.026 0.029 0.029 0.028 0.028 0.025 0.025 0.04 0.043.533 3.533 3.533 3.533 3.533 3.533 3.533 3.533 3.53337% 37% 37% 37% 37% 37% 37% 10% 10%

1 1 1 1 1 1 1 5 5 38.12 38.12 38.12 38.12 38.12 38.12 38.12 190.59 190.591600 1600 1600 1600 1600 1600 1600 1600 1600

54768 82446 106002 32978 47112 70668 73024 18845 3886762070 82446 106002 26383 47112 53001 73024 16960 34981

240978 288562 371008 112127 164892 203171 255583 112127 231262960 1040 1040 1040 1040 1040 1040 1200 1200

19278 23085 29681 8970 13191 16254 20447 8970 1850116868 20199 25971 7849 11542 14222 17891 7849 1618898217 125730 161653 43202 71846 83477 111361 33779 6967061.39 78.58 101.03 27.00 44.90 52.17 69.60 21.11 43.54

102.31 120.89 155.44 41.54 69.08 80.27 107.08 28.15 58.06

22.05 12.29 20.49 11.87 19.78 9.72 17.67 14.13 28.268.16 4.55 7.58 4.39 7.32 3.59 6.54 1.41 2.83

48.49 87.20 112.12 22.83 40.77 50.96 70.22 14.13 29.1563.53 58.64 58.64 58.64 58.64 58.64 58.64 254.12 254.12

142.22 162.69 198.83 97.74 126.52 122.92 153.06 283.80 314.3685.33 105.75 129.24 63.53 82.24 79.90 99.49 212.85 235.77

146.72 184.33 230.28 90.53 127.14 132.07 169.09 233.96 279.31244.53 283.58 354.27 139.28 195.60 203.18 260.14 311.94 372.42

244.53 283.58 354.27 139.28 195.60 203.18 260.14 311.94 372.42

Harvester Skidder Forwarder Yarder138.17 55.31 93.67 43.10

MachineCosts

Page 151

Processor Processor Loader Loader Chipper Chipper Bundler HelicoptersLoaders for Helicopter Yardingsmall big small big small big

353,341 471,121 223,783 294,451 235,561 353,341 530,011120 200 120 200 350 700 180

5 5 5 5 5 5 520% 20% 30% 30% 20% 20% 20%65% 65% 65% 65% 75% 75% 75%

100% 100% 90% 90% 100% 100% 100%8% 8% 8% 8% 8% 8% 8%7% 7% 7% 7% 7% 7% 7%

0.022 0.022 0.022 0.022 0.023 0.023 0.0253.533 3.533 3.533 3.533 3.533 3.533 3.53337% 37% 37% 37% 37% 37% 37%

1 1 1 1 1 1 1 38.12 38.12 38.12 38.12 38.12 38.12 38.121600 1600 1600 1600 1600 1600 1600

70668 94224 67135 88335 47112 70668 10600256535 75379 31330 41223 37690 56535 84802

240272 320362 161123 212005 160181 240272 3604081040 1040 1040 1040 1200 1200 1200

19222 25629 12890 16960 12814 19222 2883316819 22425 11279 14840 11213 16819 2522992575 123434 55498 73024 61717 92575 13886357.86 77.15 34.69 45.64 38.57 57.86 86.7989.01 118.69 53.36 70.22 51.43 77.15 115.72

9.33 15.55 9.33 15.55 28.44 56.88 15.903.45 5.75 3.45 5.75 10.52 21.05 5.88

54.36 72.48 27.11 35.67 31.41 47.11 70.6758.64 58.64 58.64 58.64 50.82 50.82 50.82

125.78 152.42 98.53 115.61 121.20 175.86 143.2781.76 99.07 64.05 75.15 90.90 131.90 107.45

139.62 176.22 98.73 120.79 129.47 189.76 194.24214.80 271.11 151.90 185.83 172.63 253.01 258.99

214.80 271.11 151.90 185.83 172.63 253.01 258.99

Processor Loader Chipper Bundler103.85 61.79 64.29 115.72

U4
See helicopter sheet
V4
See helicopter sheet

MachineCosts

Page 152

Loaders for Helicopter Yarding

MoveInCosts

Page 153

MoveIn InputsArea, acres 1MoveInDist, miles on 0

Move-In AssumptionsSpeedLoaded, mph: 25SpeedBack, mph 40MoveInLabor, $/SH 0LoadHrs, SH/load 2LoadHrsYarder, SH/l 4Truck,$/SH 35Truck Driver, $/SH 18

Move-In Calculated ValuesTravLoadedHrs, SH/l 0BackhaulHrs, SH/load 0LowboyCost, $/SH 53

System CostsGround-BasedManual Log Manual WT Mech WT CTL

LowboyLoads 3 4 5Fixed, $ skidder 217 skidder 217 fellerbunch 285 harvester

loader 230 processor 314 skidder 217 forwarderchipper 235 loader 230 processor 314 loader

chipper 235 loader 230 chipperchipper 235

Total 681 Total 994 Total 1280 TotalVariable, $/mile skidder 4.33 skidder 4.33 fellerbunch 5.70 harvester

loader 4.59 processor 6.27 skidder 4.33 forwarderchipper 4.69 loader 4.59 processor 6.27 loaderBackhaul 3.98 chipper 4.69 loader 4.59 chipper

Backhaul 5.30 chipper 4.69 BackhaulBackhaul 6.63

Total 17.59 Total 25.19 Total 32.22 TotalTotal, $ 681 994 1280$/CCF 52.35 76.47 98.40

MoveInCosts

Page 154

Cable CableManual Log CTL Manual WT/Log Manual WT

4 3 4 4 5382 yarder 192 harvester 382 yarder 192 yarder 192293 loader 230 yarder 192 loader 230 processor 314230 chipper 235 loader 230 chipper 235 loader 230235 chipper 235 chipper 235

1140 Total 656 Total 1039 Total 656 Total 9707.65 yarder 3.84 harvester 7.65 yarder 3.84 yarder 3.845.87 loader 4.59 yarder 3.84 loader 4.59 processor 6.274.59 chipper 4.69 loader 4.59 chipper 4.69 loader 4.594.69 Backhaul 3.98 chipper 4.69 Backhaul 5.30 chipper 4.695.30 Backhaul 5.30 Backhaul 6.63

28.10 Total 17.10 Total 26.07 Total 18.43 Total 26.031140 656 1039 656 970

104.51 50.47 79.87 50.47 74.60

MoveInCosts

Page 155

Helicopter BundlingManual Log CTL Residues

3 4 2helicopter 1588 harvester 382 bundler 337loaders 459 helicopter 1588 forwarder 293chipper 235 loaders 459

chipper 235

Total 2282 Total 2664 Total 631helicopter 26.47 harvester 7.65 bundler 6.75loaders 9.18 helicopter 26.47 forwarder 5.87chipper 4.69 loaders 9.18 Backhaul 2.65Backhaul 3.98 chipper 4.69

Backhaul 5.30

Total 44.32 Total 53.29 Total 15.272282 2664 631

175.46 244.27 $/GT: 186.44

FRCS-North.xls 05/06/2023 18:28:26

Page 156 of 182

FRCS Scenario Report

Site Data and Scenario SpecificationsFRCS Region Northeast Include move-in cost? NoState Connecticut Treatment Area, acres (1 if no move-in cost) 1System Ground-Based Mech WT One-way move-in distance, miles 0Yarding Dist, ft 1820 Include costs of collecting and chipping residues? YesSlope, % 1 Partial cut? YesElevation, ft 0 Include loading costs? Yes

Wood density, lb/ft3, for Chip Trees, Small Log Trees, Large Log Trees: 60 60 60Residue fractions for Chip Trees, Small Log Trees, Large Log Trees: 0 0.133588 0.142481

Hardwood fractions for Chip Trees, Small Log Trees, Large Log Trees: 0.6245923586 0.868142 0.472753

Cut Tree Data and Estimated Costs Chip Trees Small Log Trees Large Log Trees Estimated Total Cost

Trees/acre Vol/tree (ft3) Trees/acre Vol/tree(ft3) Trees/acre Vol/tree(ft3) $/CCF $/Ton $/Acre

Machine Cost SettingsMachine User Data Default Used Machine User Data Default UsedBundler 0.0 259.0 259.0 Harvester big 0.0 354.3 354.3Chainsaw 0.0 102.9 102.9 Harvester small 0.0 283.6 283.6Chipper big 0.0 253.0 253.0 Loader big 0.0 185.8 185.8Chipper small 0.0 172.6 172.6 Loader small 0.0 151.9 151.9Fbuncher DriveToTree 0.0 186.8 186.8 Processor big 0.0 271.1 271.1Fbuncher SelfLeveling 0.0 244.5 244.5 Processor small 0.0 214.8 214.8Fbuncher SwingBoom 0.0 239.5 239.5 Skidder big 0.0 195.6 195.6Forwarder big 0.0 260.1 260.1 Skidder small 0.0 139.3 139.3Forwarder small 0.0 203.2 203.2 Yarder intermediate 0.0 372.4 372.4

Yarder small 0.0 311.9 311.9

B15
FRCS: Trees to be chipped (normally small or of unmerchantable species).
D15
FRCS: Trees < 80 ft3 from which logs can be cut.
F15
FRCS: Trees 80 ft3 or larger from which logs can be cut.
H16
FRCS: $/CCF - Dollars per hundred cubic feet of logs.
I16
FRCS: Dollars per green ton of logs and chips.
J16
FRCS: Cost of all operations in dollars per acre.

Appendix

See below: Table 1. Oven-dry weight of logs for selected species (from line 9).Table 2. Ratio of top weight to bole weight for selected species (from line 24).

References for Data Used in FRCS (from line 105).

DBHSpecies 6 7 8 9 10 11+Alpine fir 18.1 18.4 18.6 18.7 18.8Douglas-fir 27.1 27.5 27 27.8 27.9

19.2 19.6 19.8 19.9 20

Grand fir 19.6 20 20.6 20.8 21 21.220.8 21.6 22.1 22.4 22.7 23

24 24.5 24.9 25.1 25.2 25.4

23.2 23.2 23.2 23.1

Red cedar 17.3 17.9 18.3 18.5 18.7 18.824.5 24.9 25.1 25.3 25.4

28 28 28.4 28.7 28.8 29.1

White pine 20.6 20.9 21 21.1 21.2

DBHSpecies 6 7 8 9 10 11 12 13+Alpine fir 1.05 0.89 0.8 0.76 0.73 0.72 0.7Douglas-fir 0.95 0.73 0.61 0.54 0.49 0.46 0.41

1.08 0.77 0.61 0.51 0.45 0.41 0.32

Grand fir 1.26 0.81 0.61 0.51 0.44 0.4 0.38 0.331 0.64 0.47 0.39 0.33 0.3 0.28 0.24

1.05 0.73 0.58 0.5 0.46 0.43 0.41 0.38

0.9 0.78 0.7 0.64 0.6 0.46

Red cedar 0.53 0.32 0.23 0.19 0.16 0.14 0.13 0.120.31 0.22 0.17 0.15 0.13 0.12 0.1

Table 3. Volume of logs in cubic feet to a 4 inch minimum top by species, tree diameter, and height (from line 40).

Table 1—Oven-dry weight of logs in pounds per cubic foot to a 4” minimum top by species and tree diameter.

Engelmann spruce

Lodgepole pineMountain hemlockPonderosa pine

Western hemlockWestern larch

Table 2—Ratio of the weight of tops above a 4” minimum and limbs, to the weight of logs by species and tree diameter.

Engelmann spruce

Lodgepole pineMountain hemlockPonderosa pine

Western hemlock

1.22 0.76 0.55 0.44 0.37 0.33 0.3 0.25

White pine 0.76 0.56 0.46 0.39 0.36 0.34 0.31

Alpine fir Douglas-fir Englemann spruce Grand fir DBH Height Log Volume Height Log Volume Height Log Volume Height Log Volume

Inches Feet Cubic feet Feet Cubic feet Feet Cubic feet Feet Cubic feet6.06.0 41 3

6.0 46 3 48 3 45 3 53 47.0 35 37.0 42 4 42 4 41 4 48 57.0 52 5 54 5 51 5 60 68.0 36 4 34 4 35 5 41 58.0 47 6 47 6 46 6 54 78.0 57 8 60 7 57 8 67 10

9.0 40 6 38 5 39 6 45 79.0 51 9 52 8 50 9 59 109.0 62 11 66 10 62 11 73 14

10.0 44 9 41 7 42 9 49 1010.0 56 12 56 11 55 11 64 1410.0 67 15 71 14 67 15 80 1911.0 47 11 45 9 45 11 53 1311.0 59 15 61 14 58 15 69 18

11.0 71 19 76 18 71 19 84 2412.0 50 14 48 12 48 14 57 1712.0 63 19 65 18 62 19 73 23

12.0 75 24 82 23 75 24 89 3013.0 52 17 51 15 51 18 61 2113.0 66 23 69 22 65 23 77 2913.0 79 29 87 29 79 29 93 3714.0 55 21 53 18 54 22 65 2614.0 68 27 73 27 69 28 81 3514.0 82 35 92 35 83 35 97 4515.0 57 25 56 22 57 26 68 30

15.0 71 32 76 32 72 33 84 4215.0 85 41 96 42 87 42 101 5316.0 60 30 59 26 59 31 70 36

16.0 74 38 80 38 75 40 87 4916.0 88 48 100 49 91 49 104 6317.0 61 34 61 30 62 36 72 4117.0 76 43 83 44 78 46 90 5617.0 91 55 104 57 94 57 107 7218.0 62 38 63 34 64 42 74 4618.0 78 49 86 51 81 53 92 63

18.0 94 62 108 66 97 66 110 82

Western larch

Table 3--Volume of logs in cubic feet to a 4 inch minimum top by species, tree diameter, and height.

19.0 63 43 66 39 66 47 77 5319.0 79 55 89 58 83 61 95 7219.0 96 70 112 76 101 76 112 9220.0 64 48 68 44 68 54 80 60

20.0 81 62 92 66 86 69 97 8120.0 98 78 116 87 104 86 114 10321.0 67 55 70 50 70 61 83 6821.0 83 69 95 75 89 78 100 9121.0 100 87 120 98 107 97 117 11622.0 69 62 72 56 73 68 85 7622.0 85 77 98 84 91 88 103 10222.0 102 96 123 111 110 109 120 129

23.0 70 68 73 62 75 76 87 8323.0 87 85 100 94 94 98 104 11223.0 104 105 127 124 113 121 122 142

24.0 72 75 75 68 77 85 88 9124.0 89 94 103 104 96 109 106 122

24.0 105 115 131 138 116 135 124 155

References for Data used in FRCSUpdated March 2, 2008.References shown in blue have been added by Dennis Dykstra in February and March 2008.

Andersson, B. and G. Young. 1998. Harvesting coastal second growth forests: Summary of harvesting system performance. FERIC Technical Report TR-120, Forest Engineering Research Institute of Canada, Pointe Claire, PQ.

Baumgras, John E.; Hassler, Curt C.; LeDoux, Chris B. 1993. Estimating and validating harvesting system production through computer simulation. Forest Products Journal 43(11/12):65-71.

Bolding, M.C. 2003. Forest fuel reduction and energy wood production using a CTL/small chipper harvesting system. M.S. Thesis, Auburn University, Auburn, AL.

Bolding, M.C. and B. Lanford. 2002. Productivity of a Ponsse Ergo harvester working on steep terrain. In: Forest Engineering Challenges – A Global Perspective. Proceedings of the 25th Annual Meeting of the Council on Forest Engineering, Auburn, Alabama. June 16-20.

Boswell, B. 1998. Vancouver Island mechanized thinning trials. FERIC Technical Note TN-271, Forest Engineering Research Institute of Canada, Pointe Claire, PQ.

Boswell, B. 2001. Partial cutting with a cable yarding system in coastal British Columbia. FERIC Advantage 2(44), Forest Engineering Research Institute of Canada, Pointe Claire, PQ.

Brinker, R.W. and R.A. Tufts. 1990. Economics of a cut-to-length harvesting system in second thinnings. IN: Proceedings, Managing Forestry Operations in a Changing Environment. 13th COFE Annual Meeting. Outer Banks, NC. August 12-16. COFE, Corvallis, OR. pp. 84-88.

Brinker, R.W., D. Miller, B.J. Stokes and B.L. Lanford. 1989. Machine rates for selected harvesting machines. Circular 296, Alabama Agricultural Experiment Station, Auburn University, Auburn, AL.

Brinker, R.W.; Kinard, J.; Rummer, B.; Lanford, B. 2002. Machine rates for selected forest harvesting machines. Circular 296 (1989, revised 2002). Alabama Agricultural Experiment Station, Auburn University, Auburn, AL. 31 p. Available at http://www.ag.auburn.edu/aaes/communications/circulars/cir296machine.pdf (accessed 29 Feb 2008).

Brown, C.G. and L.D. Kellogg. 1996. Harvesting economics and wood fiber utilization in a fuels reduction project: a case study in eastern Oregon. Forest Products Journal 46(9):45-52.

Carino, Honorio F.; Foronda, Segundino U. 1989. Equivalent pricing of logs scaled under different log rules. Forest Products Journal 39(1):16-18.

Cubbage, Frederick W.; Greene, W. Dale; Lyon, John P. 1989. Tree size and species, stand volume, and tract size: Effects on southern harvesting costs. Southern Journal of Applied Forestry 13:145-152.

Cubbage, Frederick W.; Stokes, Bryce J.; Granskog, James E. 1988. Trends in southern forest harvesting equipment and logging costs. Forest Products Journal 38(2):6-10.

Cubbage, Frederick; Arriagada, Rodrigo; Frey, Gregory. 2006. Estimating harvest costs for applying fuel treatments to FIA plots. Unpublished draft final research report prepared for RWU-FS-SRS-4851, Economics of Forest Protection and Management, USDA Forest Service, Southern Research Station, Research Triangle Park, NC 27709. 15 p.

Cuchet, E., P. Roux and R. Spinelli. 2004. Performance of a logging residue bundler in the temperate forests of France. Biomass and Bioenergy 27(1):31-3.

Desrochers, L., D. Puttock and M. Ryans. 1995. Recovery of roadside residues using drum chippers. FERIC Technical Report TR-111, Forest Engineering Research Institute of Canada, Pointe Claire, PQ.

Doyal, J.A. 1997. The Limber Jim case study: production and economics of line logging in a thinning/fuels reduction setting of mixed conifer stands in the Blue Mountains of Northeastern Oregon. Master of Forestry paper. Oregon State University, Corvallis. 112 p.

Drews, E.S., B.R. Hartsough, J.A. Doyal and L.D. Kellogg. 2001. Cut-to-length harvesting for reducing fuel loadings in the Blue Mountains of Oregon. Journal of Forest Engineering 12(1):81-91.

Eliasson, L., J. Bengtsson, J. Cedergren and H. Lageson. 1999. Comparison of single grip harvester productivity in clear and shelterwood cutting. Journal of Forest Engineering 10(1):43-48.

Gardner, R.B. 1979. Turn cycle time prediction for rubber tired skidders in the northern Rockies. USDA Forest Service, Research Note INT-257, Intermountain Forest and Range Experiment Station, Ogden, UT.

Gardner, R.B. 1980. Skyline logging productivity under alternative harvesting prescriptions and levels of utilization in larch-fir stands. USDA Forest Service Research Paper INT-247, Intermountain Forest and Range Experiment Station, Ogden, UT.

Gebhardt, P.G. 1977. Timber harvesting production rates in mixed-conifer stands of eastern Oregon and Washington. Master of Forestry Thesis, University of Washington. Seattle, WA.

Gibson, D.F. and L.T. Egging. 1973. A location model for determining the optimal number and location of decks for rubber-tired skidders. Paper No. 73-1534. American Society of Agricultural Engineers. St. Joseph, MI.

Gingras, J.F. 1988. The effect of site and stand factors on feller-buncher performance. Technical Report TR-84, Forest Engineering Research Institute of Canada, Pointe Claire, PQ.

Gingras, J.F. 1996. The cost of product sorting during harvesting. FERIC Technical Note TN-245, Forest Engineering Research Institute of Canada, Pointe Claire, PQ.

Gonsior, M.J. and J.M. Mandzak. 1987. Mechanized systems for harvesting small-stem lodgepole pine in mountainous terrain. IN: R.L. Barger (comp.) Management of Small-Stem Stands of Lodgepole Pine-Workshop Proceedings. General Technical Report INT-237. USDA Forest Service, Intermountain Research Station, Ogden, UT. pp. 53-66.

Greene, W. Dale. 1991. Cost estimates for saw felling heads in the South. Forest Products Journal 41(2):21-26.

Greene, W. Dale; Lanford, Bobby L.; Mykytka, Edward F. 1987. Stand and operating effects on feller-buncher productivity in second thinnings of southern pine. Forest Products Journal 37(3):27-34.

Greene, W. Dale; McNeel, Joseph F. 1987. Productivity, costs, and levels of butt damage with a Bell Model T feller-buncher. Forest Products Journal 37(11-12):70-74.

Greene, W.D. and J.F. McNeel. 1991. Productivity and cost of sawhead feller-bunchers in the South. Forest Products Journal 41(3):21-36.

Hartsough, B. R., A. Gicqueau, and R.D. Fight. 1998. Productivity and cost relationships for harvesting ponderosa pine plantations. Forest Products Journal 48(9):87-93.

Hartsough, B. R., J. A. Miles, and M. B. Lambert. 1986. Simulating changes to helicopter logging operations. Transactions of the ASAE 29(5):1228-1231.

Hartsough, B.R. 2001. Productivity and cost of harvesting to maintain high structural diversity, and resulting damage to residual trees. Final report to the USDA Forest Service Pacific Southwest Research Station on Cooperative Agreement USDA-PSW-95-0028CA. University of California, Davis. 29 pages + appendices.

Hartsough, B.R. Unpublished data on Morbark 22 chipper. Biological and Agricultural Engineering, University of California, Davis.

Hartsough, B.R., E.S. Drews, J.F. McNeel, T.A. Durston and B.J. Stokes. 1997. Comparison of mechanized systems for thinning ponderosa pine and mixed conifer stands. Forest Products Journal 47(11/12):59-68.

Hartsough, Bruce R.; Stokes, Bryce J.; Kaiser, Charles. 1992. Short-rotation poplar: a harvesting trial. Forest Products Journal 42(10):59-64.

Hartsough, Bruce R.; Zhang, Xiaoshan; Fight, Roger D. 2001. Harvesting cost model for small trees in natural stands in the Interior Northwest. Forest Products Journal 51(4):54-61.

Henderson, B. 2001. Roadside harvesting with low ground-pressure skidders in northwestern British Columbia. FERIC Advantage 2(54), Forest Engineering Research Institute of Canada, Pointe Claire, PQ.

Hensel, W.A. and L.R. Johnson. 1979. Operating characteristics and production capabilities of the Wyssen skyline system. Transactions of the American Society of Agricultural Engineers 22(4):724-732.

Holtzscher, M. and B. Lanford 1997. Tree diameter effects on costs and productivity of cut-to-length systems. Forest Products Journal 47(3):25-30.

Huyler, Neil K.; LeDoux, Chris B. 1997. Cycle-time equation for the Koller K300 cable yarder operating on steep slopes in the Northeast. Res. Pap. NE-705. Broomall, PA: USDA Forest Service, Northeastern Forest Experiment Station. 4 p.

Jackson, T.P., R.P. Withycombe and C.E. Keegan III. 1984. Estimating the costs of recovering forest residue in the northern Rocky Mountains. Bureau of Business and Economic Research, University of Montana, Missoula.

Johnson, L.R. 1979. Production of wood from small diameter stands: a cost assessment. Transactions of the American Society of Agricultural Engineers 22(3):487-493.

Johnson, L.R. 1988. Final report: Summary of production and time studies of mechanized harvesting equipment in the intermountain west. Forest Products Department, University of Idaho, Moscow.

Johnson, L.R. 1989. Wood residue recovery, collection and processing. The Department of Energy Bonneville Power Administration. As a Supplement to the Biomass Energy Project Development Guidebook. Forest Products Dept., University of Idaho, Moscow.

Johnson, L.R. and H.W. Lee. 1988. Skidding and processing of forest residues for firewood. Forest Products Journal 38(3):35-40.

Keatley, T.A. 2000. Harvesting options in small diameter stands operating on gentle slopes. M.S. Thesis, Forest Products Department, University of Idaho, Moscow. 199 p.

Kellogg, L., G. Milota and M. Miller. 1996. A comparison of skyline harvesting costs for alternative commercial thinning prescriptions. Journal of Forest Engineering 7(3):7-23.

Kellogg, L., M. Miller and E. Olsen, 1999. Skyline thinning production and costs: experience from the Willamette Young Stand Project. Research Contribution 21. Forest Research Laboratory, Oregon State University, Corvallis.

Kellogg, L.D. and P. Bettinger. 1994. Thinning productivity and cost for a mechanized cut-to-length system in the northwest Pacific Coast Region of the USA. Journal of Forest Engineering 5(2):43-54.

Kellogg, L.D., E.D. Olsen and M.A. Hargrave. 1986. Skyline thinning a western hemlock-Sitka spruce stand: Harvesting cost and stand damage. Research Bulletin 53, Forest Research Lab., College of Forestry, Oregon State University, Corvallis, OR.

Kluender, R.; Lortz, D.; McCoy, W.; Stokes, B.; Klepac, J. 1997. Productivity of rubber-tired skidders in southern pine forests. Forest Products Journal 47(11/12):53-58.

Kluender, R.; Lortz, D.; McCoy, W.; Stokes, B.; Klepac, J. 1998. Removal intensity and tree size effects on harvesting cost and productivity. Forest Products Journal 48(1):54-59.

Kosicki, K. 2000. Productivities and costs of two harvesting trials in a western Alberta riparian zone. FERIC Advantage 1(19), Forest Engineering Research Institute of Canada, Pointe Claire, PQ.

Kosicki, K. 2002. Evaluation of Trans-Gesco TG88C and Tigercat 635 grapple skidders working in central Alberta. FERIC Advantage 3(37), Forest Engineering Research Institute of Canada, Pointe Claire, PQ.

Kosicki, K. 2002. Productivity and cost of summer harvesting in a central Alberta mixedwood stand. FERIC Advantage 3(6), Forest Engineering Research Institute of Canada, Pointe Claire, PQ.

Lageson, H. 1997. Effects of thinning type on the harvester productivity and on the residual stand. Journal of Forest Engineering 8(2):7-14.

Lanford, Bobby L.; Stokes, Bryce J. 1996. Comparison of two thinning systems. Part 2. Productivity and costs. Forest Products Journal 46(11-12):47-53.

LeDoux, Chris B. 1985. Stump-to-mill timber production cost equations for cable logging eastern hardwoods. Res. Pap. NE-566. Broomall, PA: USDA Forest Service, Northeastern Forest Experiment Station. 6 p.

LeDoux, Chris B. 1987. Estimating yarding costs for the Clearwater yarder. Res. Pap. NE-609. Broomall, PA: USDA Forest Service, Northeastern Forest Experiment Station. 4 p.

LeDoux, Chris B. 1999. An integrated approach for determining the size of hardwood group-selection openings. Forest Products Journal 49(3):34-37.

LeDoux, Chris B. 2000. Matching skidder size to wood harvested to increase hardwood fiber availability: A case study. Forest Products Journal 50(10):86-90.

LeDoux, Chris B.; Erickson, Michael D.; Hassler, Curt C. 1993. Production rates and costs of group-selection harvests with ground-based logging system. In: Gillespie, Andrew R.; Parker, George R.; Pope, Phillip E.; Rink, George (eds.) Proceedings of the 9th Central Hardwood Forest Conference. Gen. Tech. Rep. NC-161. St. Paul, MN: USDA Forest Service, North Central Forest Experiment Station. p. 363-372.

LeDoux, Chris B.; Huyler, Neil K. 1992. Cycle-time equations for five small tractors operating in low-volume small-diameter hardwood stands. Radnor, PA: USDA Forest Service, Northeastern Forest Experiment Station, Research Paper NE-664, 6 p.

LeDoux, Chris B.; Huyler, Neil K. 2000. Cost comparisons for three harvesting systems operating in northern hardwood stands. Radnor, PA: USDA Forest Service, Northeastern Forest Experiment Station, Research Paper NE-715, 6 p.

Lortz, D.; Kluender, R.; McCoy, W.; Stokes, B.; Klepac, J. 1997. Manual felling time and productivity in southern pine forests. Forest Products Journal 47(10):59-63.

MacDonald, A.J. 1990. A case study of roadside logging in the northern interior of British Columbia. FERIC Technical Report TR-97, Forest Engineering Research Institute of Canada, Vancouver, BC.

MacDonald, C. 1988. Evaluation of the Bruun T 610-H-A single grip harvester. B.S. Thesis, University of New Brunswick, Fredericton.

Matzka, P. 2003. Thinning with prescribed fire and timber harvesting mechanization for fuels reduction and forest restoration. Ph.D. Thesis. Oregon State University, Corvallis.

McKinney, Chuck; Lenhart, J. David; Cook, Deborah F. 1992. Topload component of truckloads of tree-length pine stems in East Texas. Forest Products Journal 42(7/8):29-30.

McNeel, J.F. 1994. Productivity of manual felling operations in selection and clearcuts: A case study. Paper Number 94-7515. American Society of Agricultural Engineers, St. Joseph, MI.

McNeel, J.F. and D. Rutherford. 1994. Modeling harvester-forwarder system performance in a selection harvest. Journal of Forest Engineering 6(1):7-14.

Meek, P. 2000. Productivity and costs of single-grip harvesters in commercial thinning: summary report. FERIC Advantage 1(41), Forest Engineering Research Institute of Canada, Pointe Claire, PQ.

Mellgren, P.G. 1990. Predicting the performance of harvesting systems in different operating conditions. FERIC Special Report SR-67, Forest Engineering Research Institute of Canada, Vancouver, BC.

Miller, Douglas E.; Straka, Thomas J.; Stokes, Bryce J.; Watson, William F. 1987. Productivity and cost of conventional understory biomass harvesting systems. Forest Products Journal 37(5):39-43.

Miyata, E.S. 1980. Determining fixed and operating costs of logging equipment. USDA Forest Service General Technical Report NC-55, North Central Forest Experiment Station, Houghton, MI.

Patterson, David W.; Clark, Alexander III. 1992. Bulk density of yellow-poplar sawlogs. Forest Products Journal 42(6):30-32.

Pavel, M. 1999. Analysis of a skyline partial cutting operation in the interior cedar-hemlock biogeoclimatic zone. FERIC Technical Report TR-125, Forest Engineering Research Institute of Canada, Pointe Claire, PQ.

Peterson, J.T. 1987. Harvesting economics: Handfalling second-growth timber. FERIC Technical Note TN-98. Forest Engineering Research Institute of Canada, Vancouver, BC.

Plamondon, J. 1998. Trials of mechanized tree-length harvesting in eastern Canada. FERIC Technical Note TN-273, Forest Engineering Research Institute of Canada, Pointe Claire, PQ.

Puttock, G.D. 1987. The economics of collecting and processing whole-tree chips and logging residues for energy. Forest Products Journal 37(6):15-20.

Rheinberger, S.J. (accessed June 2005) LogCost 5.1. Developed for the USDA Forest Service Pacific Northwest Region, Portland, OR. http://www.fs.fed.us/r6/nr/fp/FPWebPage/FP70104A/FP70104A.htm.

Rummer, B., D. Len and O. O'Brien. 2004. Forest residues bundling project, new technology for residue removal. USDA Forest Service, Forest Operations Research Unit, Southern Research Station, Auburn, Alabama. 18p.

Sambo, S. 1999. Reduction of trail density in a partial cut with a cut-to-length system. FERIC Technical Note TN 293, Forest Engineering Research Institute of Canada, Pointe Claire, PQ.

Schillings, P.L. 1969. A technique for comparing the cost of skidding methods. USDA Forest Service Research Report INT-60. Intermountain Forest and Range Experiment Station, Ogden, UT.

Schroder, P.C. and L.R. Johnson. 1997. Production functions for cut-to-length harvesting in bunched and unbunched material. IN: J.J. Ball and L.W. Starnes (eds.) Proceedings, Forest Operations for Sustainable Forests and Healthy Economies, 20th COFE Annual Meeting. COFE, Corvallis, OR. pp. 52-61.

Shrestha, Suraj P.; Lanford, Bobby L.; Rummer, Robert B.; Dubois, Mark. 2005. Utilization and cost of log production from animal logging operations. International Journal of Forest Engineering 16(2):167-180.

Spinelli, Rafaele; Hartsough, Bruce R.; Owende, Philip M.O.; Ward, Shane M. 2002. Productivity and cost of mechanized whole-tree harvesting of fast-growing eucalypt stands. International Journal of Forest Engineering 13(2):49-60.

Stuart, William B.; Grace, Laura A.; Altizer, Clayton B.; Smith, Jeffrey J. 2007. 2005 Logging cost indices. Wood Supply Research Institute, Forest and Wildlife Research Center, Mississippi State University, Mississippi State, Mississippi. FWRC Publication FO364, 31 p. Available at http://www.fwrc.msstate.edu/pubs/WSRI-2005Final.pdf (accessed 22 Feb 2008).

Sturos, John A.; Barron, Robert M.; Miyata, Edwin S.; Steinhilb, Helmuth M. 1983. The economics of mechanized multiproduct harvesting system for stand conversion of northern hardwoods. Res. Pap. NC-237. St. Paul, MN: USDA Forest Service, North Central Forest Experiment Station. 12 p.

Tufts, R.A., B.J. Stokes and B.L Lanford. 1988. Productivity of grapple skidders in southern pine. Forest Products Journal 38(10):24-30.

USFS Region 6 Logging Cost Guide (accessed December 2003) labor rates for FY 2000 data, June 2000.

Vaughan, L. 1989. Loading logs: a comparison of Bell Super Loggers and rubber-tired front-end loaders at Tarawera forest. Logging Industry Research Association, New Zealand.

Wang, Jingxin; LeDoux, Chris B. 2003. Estimating and validating ground-based timber harvesting production through computer simulation. Forest Science 49(1):64-76.

Wang, Jingxin; Long, Charlie; McNeel, Joe. 2004. Production and cost analysis of a feller-buncher and grapple skidder in central Appalachian hardwood forests. Forest Products Journal 54(12):159-167.

Wang, Jingxin; Long, Charlie; McNeel, Joe; Baumgras, John. 2004. Productivity and cost of manual felling and cable skidding in central Appalachian hardwood forests. Forest Products Journal 54(12):45-51.

Lodgepole pine Mountain hemlock Ponderosa pine Red cedarDBH Height Log Volume Height Log Volume Height Log Volume Height Log VolumeDBH

Inches Feet Cubic feet Feet Cubic feet Feet Cubic feet Feet Cubic feet Inches6 66 43 3 46 3 39 3 66 54 4 59 3 49 3 67 36 4 38 3 33 3 77 48 5 52 5 44 4 77 60 7 66 6 43 3 55 6 78 41 6 43 5 38 5 88 53 8 58 7 35 4 50 7 88 65 10 73 9 48 5 61 8 8

9 44 8 48 8 42 7 99 56 11 63 10 38 5 54 9 99 69 13 79 13 52 8 67 12 9

10 47 10 53 11 46 9 1010 60 14 69 14 41 7 59 12 1010 73 18 85 18 56 10 72 15 1011 49 13 57 14 27 6 49 12 1111 62 18 73 19 44 9 62 15 11

11 75 22 90 24 60 13 76 19 1112 51 16 61 18 28 7 51 15 1212 65 22 78 24 46 12 66 19 12

12 78 27 95 31 64 17 80 24 1213 52 20 65 23 29 9 55 18 1313 67 26 82 30 49 15 69 23 1313 81 33 100 38 68 22 84 29 1314 54 24 69 28 31 10 58 22 1414 69 31 87 37 52 18 73 28 1414 83 39 105 47 72 27 88 35 1415 54 27 72 34 33 12 60 26 15

15 70 36 91 44 55 22 75 33 1515 85 45 109 56 76 33 91 41 1516 55 31 75 40 35 15 63 30 16

16 70 41 94 53 58 26 78 38 1616 86 51 114 67 80 39 94 48 1617 56 36 79 48 37 18 65 34 1717 72 47 98 62 61 32 81 44 1717 87 58 117 77 84 47 96 55 1718 57 41 83 56 39 21 68 39 1818 73 53 101 72 64 37 83 50 18

18 89 66 120 88 89 55 99 62 18

19 58 46 85 64 44 26 70 44 1919 74 60 104 82 68 45 86 56 1919 90 74 123 101 92 64 102 71 1920 58 51 87 72 48 33 71 50 20

20 74 66 107 92 72 53 89 63 2020 90 82 126 115 96 75 106 81 2021 58 56 89 82 53 40 73 55 2121 74 72 109 104 76 62 90 70 2121 89 88 128 128 99 86 107 89 2122 58 61 92 93 58 48 74 61 2222 73 77 111 116 80 73 92 77 2222 88 95 130 142 102 98 109 98 22

23 58 67 95 104 62 57 76 67 2323 74 86 114 130 84 83 93 84 2323 90 105 134 159 106 111 110 106 23

24 59 74 98 117 65 66 78 74 2424 75 94 117 145 87 95 95 91 24

24 91 116 137 177 109 126 111 114 24

Western hemlock Western larch Western white pineHeight Log Volume Height Log Volume Height Log VolumeFeet Cubic feet Feet Cubic feet Feet Cubic feet

41 253 365 4 48 348 4

34 3 60 5 44 442 4 72 7 58 630 4 55 7 34 439 5 67 8 51 748 6 80 10 69 9

35 6 60 9 44 743 7 73 12 61 1052 8 85 14 77 1439 8 65 13 54 1148 10 78 15 70 1557 11 91 18 86 1943 11 68 16 56 1453 13 82 20 74 19

63 16 95 23 91 2447 14 72 20 59 1757 17 85 24 78 24

68 21 99 28 96 3048 17 75 24 63 2161 21 89 29 83 2973 26 103 34 102 3750 20 79 29 68 2664 26 93 35 88 3677 32 106 41 107 4553 25 82 35 71 31

68 32 96 42 91 4382 39 110 48 111 5357 30 85 41 73 37

72 38 99 49 94 4987 47 113 56 115 6358 34 88 47 69 3874 44 102 56 91 5389 55 117 65 114 7059 39 91 54 65 4075 50 106 65 89 56

91 63 121 74 112 76

63 45 92 60 66 4578 58 107 72 93 6493 71 122 83 120 9166 52 93 67 67 50

81 66 109 81 97 7495 80 124 93 127 10769 60 96 76 75 6284 76 112 92 101 8699 92 129 106 127 11772 68 99 85 84 7487 86 116 103 105 99

102 105 134 120 127 127

73 75 102 96 73 7291 99 118 114 102 101

108 122 135 131 130 142

75 84 105 107 63 6795 112 120 126 98 102

114 141 136 143 134 158

Batch Mode InstructionsData File

(a)

(b)

(c)

(d)

Table 1: Batch Datafile Format

Column Heading DescriptionA Stand

B State

C Slope Average stand slope in percent. 20 in this column = 20%.

D AYD

E Treatment Area

F Elev

1. In order to use the batch mode, the user must prepare a data file that contains stand profiles in a specific format. Although column headings are unimportant, the inputs are read by FRCS in a specific order to which the data must conform. Table 1 below lists the columns and their required contents. The first row of the table contains only column headers. Other rows contain the actual data.

2. Save your data file as an Excel workbook with the data page named FRCS Data. When the dataset is loaded, FRCS will look for a worksheet named FRCS Data and the text Stand in cell A1 of that worksheet. An error will occur if the datafile is not formatted according to these instructions.

3. Billion-Ton Processing. If the option to enable Billion-Ton Processing is checked on the Interface_page worksheet, FRCS will follow a special set of rules when processing the batch datafile. These are somewhat different from the normal rules because of the special requirements of the Billion-Ton Study, which used FRCS results to prepare supply curves for forest biomass. The special Billion-Ton Rules are as follows:

If slope as indicated in column C of the data worksheet is ≤ 40% (the number 40 in column C would be interpreted as 40%), then one of two ground-based logging systems is to be used: Ground-Based Mech WT or Ground-Based Manual WT.

For ground-based logging under the special Billion-Ton rules, FRCS calculates the production volumes and costs for both of the ground-based whole-tree harvesting systems. It then selects the lower-cost alternative and enters the system name in column G of the data worksheet (see Table 1 below).

If the slope is > 40%, cable yarding is prescribed. Only one cable system is considered under the Billion-Ton processing rules: Cable Manual WT. This is because it is the only cable yarding system among the FRCS options that can include the collection of residues. Helicopter logging is not considered as an alternative under the Billion-Ton processing rules.

It is important to note that the above rules are used only if the special Billion-Ton processing has been enabled. For normal processing you will need to determine yourself whether or not to use cable yarding or ground-based harvesting (or helicopter yarding if appropriate), and whether to specify mechanized or manual felling and whole-tree or log-length processing.

An identifier by which the treatment area and any special condition, such as the fuel-condition class, can be identified. The FRCS batch processor terminates the simulation when it encounters an empty value in this column. This column is required to have a heading in the first row, and it must include only the word Stand.

The state in which the operation is located. This can be either written as a full name (e.g., North Carolina) or as a two-letter abbreviation (NC). The name or abbreviation must be properly capitalized. The names and abbreviations used can be seen in the States&Regions worksheet of FRCS. This column is required to have a heading in the first row, and it must include only the word State.

Average one-way yarding, skidding, or forwarding distance from the stand to a roadside landing, in feet.

Area to be treated, in acres. This is not needed unless move-in costs are to be calculated. When move-in costs are not calculated the treatment area is considered to be one conceptual acre, although any value in this column will be left unchanged.

Elevation of the treatment area, in feet. This value is used only with helicopter logging.

G System

H CT/ac Number of chip trees (biomass trees) to be removed per acre.

I CT residue fraction

J ft3/CT Bole volume per chip tree in cubic feet.

K lb/ft3 CT Average green density of chip trees in pounds per cubic foot.

L CT hardwood fraction

M ST/ac

N ST residue fraction

O ft3/ST Bole volume per small tree in cubic feet.

P lb/ft3 ST Average green density of small trees in pounds per cubic foot.

Q ST hardwood fraction

R LT/ac

S LT residue fraction

T ft3/LT Bole volume per large tree in cubic feet.

U lb/ft3 LT Average green density of large trees in pounds per cubic foot.

V LT hardwood fraction

W Include move-in cost?

One of the set of 10 logging systems recognized by FRCS (see the Users Guide or the “System Type” dropdown list in the Configuration Box of the Interface_page worksheet of FRCS). This information is not used by the Billion-Ton variant of FRCS but the batch-processing routine may fail to run if the value in this column is not one of the 10 systems that FRCS recognizes. For the Billion-Ton variant of FRCS it is safe to always enter Ground-Based Mech WT in this column. FRCS will change this if appropriate during the simulation whenever Billion-Ton processing has been enabled. For normal processing FRCS will calculate logging costs based on the harvesting system specified here.

A number between 0 and 1 representing the volume of residues in limbs and tops that could potentially be collected from each chip tree, expressed as a fraction of the chip tree’s bole volume. FRCS assumes for whole-tree harvesting systems that 80% of this residue volume can be processed into biomass chips.

A number between 0 and 1 representing the fraction of the total harvest volume in chip trees (softwood + hardwood) to be harvested from hardwood chip trees.

Number of small trees per acre to be removed. A small tree has a volume £ 80 cubic feet. This is used by FRCS as a criterion for determining whether the tree is small enough to be processed by a harvester.

A number between 0 and 1 representing the volume of residues (tops and limbs) that could potentially be collected from small trees, expressed as a fraction of the small tree’s bole volume. FRCS assumes for whole-tree harvesting systems that 80% of this residue volume can be processed into biomass chips.

A number between 0 and 1 representing the fraction of the total harvest volume in small trees (softwood + hardwood) to be harvested from hardwood small trees.

Number of large trees per acre to be removed. A large tree has a volume > 80 cubic feet. This value is used by FRCS as a criterion for determining whether the tree is too large to be processed by a harvester. The FRCS rule is that harvesters can process all trees with volumes £ 80 cubic feet, and they can process up to 10 trees per acre with volumes greater than this but no more than 100 cubic feet. Harvesters are not used in the special Billion-Ton processing rules.

A number between 0 and 1 representing the volume of residues in limbs and tops that could potentially be collected from each large tree, expressed as a fraction of the large tree’s bole volume. FRCS assumes that 80% of this residue volume can be processed into biomass chips.

A number between 0 and 1 representing the fraction of the total harvest volume in large trees (softwood + hardwood) to be harvested from hardwood large trees.

1 if move-in cost is to be calculated; 0 otherwise. Move-in cost should only be used when a single row of data can be used to represent an entire harvesting operation. If it is to be calculated, both move-in miles (column X) and treatment area (column E) must also be specified.

X Move-in miles

Y Collect & chip residues?

Z Partial cut?

AA Include loading costs?

AB All Costs, $/CCF

AC All Costs, $/GT

AD All Costs, $/ac

AE CT Chips, GT/ac

AF Residue Chips, GT/ac

AG ST Logs, CCF/ac

AH LT Logs, CCF/ac

AI CT Chips, $/GT

AJ Residue Chips, $/GT

Loading Data

Processing the Batch Data

One-way distance in miles from the previous logging operation to the current operation. Any value entered here is used only if the value in column W = 1.

1 if residues are to be collected and chipped at the landing; 0 otherwise. This should always be 1 for the Billion-Ton processing rules, since biomass production is the focus of those rules.

1 if the operation is to be a partial cut, 0 if it is to be a clearcut. This should always be 1 for fuel-reduction thinnings.

1 if loading costs are to be calculated; 0 otherwise. This refers only to the cost of loading logs onto trucks. The cost of processing chips from chip trees and residues already incorporates the cost of loading the chips into a chip van or trailer.

Results Columns: The estimated costs and volumes calculated by FRCS will be written into the following columns in the same row as the data from which the calculations were made.

The sum of all felling, yarding/skidding/forwarding, and chipping costs for all trees (CT, ST, and LT) divided by the total volume of logs produced as measured in hundreds of cubic feet (CCF).

The sum of all felling, yarding/skidding/forwarding, and chipping costs for all trees (CT, ST, and LT) divided by the total volume of logs and chips produced as measured in green tons (GT).

The sum of all felling, yarding/skidding/forwarding, and chipping costs for all trees (CT, ST, and LT) divided by the treatment area in acres.

The total weight of chips produced from all chip trees (biomass trees) harvested on the operation, divided by the treatment area in acres.

The total weight of chips produced from the tops and limbs of all small trees (ST) and large trees (LT), divided by the treatment area in acres.

The total volume of all logs produced from small trees, divided by the treatment area in acres. Log volume is measured in hundreds of cubic feet (CCF).

The total volume of all logs produced from large trees, divided by the treatment area in acres. Log volume is measured in hundreds of cubic feet (CCF).

The total cost of felling, yarding/skidding/forwarding, and chipping all chip trees harvested on the operation, divided by the total weight of CT chips produced on the operation, in green tons.

The total cost of chipping the limbs and tops of small trees and large trees brought to the landing in a whole-tree operation, divided by the total weight of residue chips produced on the operation, in green tons. Felling and yarding/skidding/forwarding costs are not included because those costs have already been allocated to the production of ST logs and LT logs (columns AG and AH).

On the Interface_page worksheet of FRCS, click the checkboard labeled Enable Batch Mode. This will present the batch-mode buttons. Select the Load Batch Data button and follow the menu instructions to load your saved data file. If your data file is properly formatted and named you will be ready to proceed to processing. Select the View Data button to visually inspect your data file to ensure it is consistent with the column assignments described in the table above.

document.xls, Worksheet: VariableList 05/06/2023

Page 175 of 182

FRCS -- List last updated on March 2, 2008

List of variables generated with Insert, Name, Paste, Paste ListAdjustedDieselPrice =CostUpdates!$B$11AdjustedWageFB =WageIndex!$N$15AdjustedWageOther =WageIndex!$O$15altered_machine_cost =Data_management!$C$86Area =Inputs!$D$2AreaLimitedTurnVol =CableYarding!$B$26AvgFBHourlyCost ='Fell-Bunch'!$M$6BackhaulHrs =MoveInCosts!$B$18Base_WageBen2000 =WageIndex!$O$10Base_WageBenFB2000 =WageIndex!$N$10BatchData =data!$A$2beginning_of_stand_table =Report!$A$8BFperCF =Inputs!$B$39BoleWt =Inputs!$H$41BoleWtCT =Inputs!$C$41BoleWtST =Inputs!$F$41BoomReachF =Forwarding!$B$24BunchesPerTurn =Skidding!$R$25Bundler =Data_management!$F$85Bundler_OwnCost =MachineCosts!$T$51ButtDiam =Inputs!$H$34ButtDiamSLT =Inputs!$D$34ButtDiamST =Inputs!$F$34cable_yarding =Interface_page!$AQ$18:$AQ$21CableYardCTLCost =Outputs!$M$38CableYardUnbunchedCost =Outputs!$M$37CalcMoveIn =Inputs!$G$4CalcResidues =Inputs!$G$3CCJammerChangeCost =CableYarding!$D$40CCLiveSLChangeCost =CableYarding!$F$40CCRunSLChangeCost =CableYarding!$E$40Chainsaw =Data_management!$F$86CHardwood =Inputs!$H$50CHardwoodALT =Inputs!$G$50CHardwoodCT =Inputs!$C$50CHardwoodLLT =Inputs!$E$50CHardwoodSLT =Inputs!$D$50CHardwoodST =Inputs!$F$50chip_hardwood_fract =Data_management!$I$6chip_tree_hrdwd_fract =Data_management!$C$82chip_wood_density =Data_management!$J$6chippedbwlweight =Data_management!$E$6chippedtreeavgdiameter =Data_management!$G$6Chipper_big =Data_management!$F$87Chipper_OwnCost =MachineCosts!$R$51Chipper_small =Data_management!$F$88ChipperHourlyCost =Chipping!$B$20

document.xls, Worksheet: VariableList 05/06/2023

Page 176 of 182

List of variables generated with Insert, Name, Paste, Paste ListChipperSize =Inputs!$B$45chiptreeinfo =Data_management!$C$6:$D$6chiptreesperacre =Data_management!$C$6chipvolpertree =Data_management!$D$6ChokerLogs =Skidding!$B$29ChokerTurnVol =Skidding!$B$30chp_hrdwd_fract =Data_management!$C$82chp_residue_fraction =Data_management!$C$81chp_wd_density =Data_management!$C$80CostBundleResidue ='Bundle&ForwardResidue'!$E$70CostChipBundledRes =Chipping!$D$89CostChipCTL =Chipping!$E$75CostChipLooseRes =Chipping!$D$82CostChipWT =Chipping!$F$61CostDDChipWT =Chipping!$D$68CostFellBunch ='Fell-Bunch'!$M$4CostForward =Forwarding!$M$4CostForwardResidueBundles ='Bundle&ForwardResidue'!$D$77CostHarvest =Harvesters!$M$4CostHeliLoadCTL =HelicopterYarding!$F$100CostHeliLoadML =HelicopterYarding!$F$93CostHeliYardCTL =HelicopterYarding!$F$84CostHeliYardML =HelicopterYarding!$F$77CostLoad =Loading!$G$63CostLoadCTL =Loading!$E$70CostManFell ='Manual Felling (all trees)'!$M$4CostManFellCT2 ='Manual Felling CT-WT, ALT-FLB'!$M$4CostManFellLLT ='Manual Felling LLT'!$M$4CostManFLB ='Manual Felling (all trees)'!$W$4CostManFLBALT2 ='Manual Felling CT-WT, ALT-FLB'!$W$4CostManFLBLLT ='Manual Felling LLT'!$W$4CostManFLBLLT2 ='Manual Felling ST-WT, LLT-FLB'!$W$4CostManWTFellST ='Manual Felling ST-WT, LLT-FLB'!$M$4CostProcess =Processing!$M$4costs =Data_management!$G$24:$G$25CostSkidBun =Skidding!$T$4CostSkidUB =Skidding!$L$4CostYardCCUB =CableYarding!$L$4CostYardCTL =CableYarding!$AB$4CostYardPCUB =CableYarding!$T$4CRemovalsFB_Harv =Inputs!$B$48CSlopeFB_Harv =Inputs!$B$47CSlopeSkidForwLoadSize =Inputs!$B$49CTLFellProcCost =Outputs!$M$33CTLLogsPerTree =Inputs!$F$37CTLLogsPerTreeCT =Inputs!$C$37CTLLogVol =Inputs!$F$38CTLLogVolCT =Inputs!$C$38CTLLogWeight =Chipping!$B$18

document.xls, Worksheet: VariableList 05/06/2023

Page 177 of 182

List of variables generated with Insert, Name, Paste, Paste ListCTLLogWeightDry =Chipping!$B$19CTLTrailSpacing =Inputs!$B$25current_machine_cost =Data_management!$C$90DBH =Inputs!$H$30DBHALT =Inputs!$G$30DBHCT =Inputs!$C$30DBHLLT =Inputs!$E$30DBHSLT =Inputs!$D$30DBHST =Inputs!$F$30DeadDummy =Harvesters!$J$74default_cost_machine =Data_management!$C$89Diesel_fuel_price =Data_management!$E$26DistBetweenTrees ='Fell-Bunch'!$B$14DistInA =Forwarding!$J$15DistInB =Forwarding!$J$35DistInC =Forwarding!$J$58DistIntermA =Forwarding!$J$13DistIntermB =Forwarding!$J$33DistIntermC =Forwarding!$J$56DistIntermD =Forwarding!$J$69DistOutA =Forwarding!$J$14DistOutB =Forwarding!$J$34DistOutC =Forwarding!$J$57DistPerMoveF =Forwarding!$B$20documentation_hidden =Interface_page!$AL$1DownDummy =Harvesters!$J$73Elevation =Inputs!$B$6EnableBillionTon =Interface_page!$AL$22end_of_print_page =Report!$J$22end_of_stand_table =Report!$J$9entry_table =Interface_page!$B$34ExchangeTrucks =Loading!$B$13ExchangeVans =Chipping!$B$8FallBuckWage =CostUpdates!$B$17FB_OwnCost =MachineCosts!$C$51FBMerchTreeHeight ='Fell-Bunch'!$B$15Fbuncher_DriveToTree =Data_management!$F$89Fbuncher_SelfLeveling =Data_management!$F$90Fbuncher_SwingBoom =Data_management!$F$91ForwardCost =Outputs!$M$36Forwarder_big =Data_management!$F$92Forwarder_OwnCost =MachineCosts!$J$51Forwarder_small =Data_management!$F$93ForwarderHourlyCost =Forwarding!$B$21FRCS_Variant ='States&Regions'!$F$25FRCS_Version =Interface_page!$K$2harvest_cost_per_acre =Data_management!$C$33:$J$33Harvester_big =Data_management!$F$94Harvester_OwnCost =MachineCosts!$F$51

document.xls, Worksheet: VariableList 05/06/2023

Page 178 of 182

List of variables generated with Insert, Name, Paste, Paste ListHarvester_small =Data_management!$F$95HarvesterHourlyCost =Harvesters!$B$20HarvestTotalCPA =Data_management!$G$23HdwdCostPremium =Inputs!$B$26HdwdFraction =Inputs!$H$33HdwdFractionALT =Inputs!$G$33HdwdFractionCT =Inputs!$C$33HdwdFractionLLT =Inputs!$E$33HdwdFractionSLT =Inputs!$D$33HdwdFractionST =Inputs!$F$33HeliCruiseSpeed =HelicopterYarding!$B$14HeliMoveInCostPerHr =HelicopterYarding!$F$42HookArea =HelicopterYarding!$B$17include_loading_costs =Interface_page!$AL$17InLimits1 =Outputs!$B$131InLimits10 =Outputs!$K$131InLimits2 =Outputs!$C$131InLimits3 =Outputs!$D$131InLimits4 =Outputs!$E$131InLimits5 =Outputs!$F$131InLimits6 =Outputs!$G$131InLimits7 =Outputs!$H$131InLimits8 =Outputs!$I$131InLimits9 =Outputs!$J$131IntMoveDistS =Skidding!$B$35large_hardwood_fract =Data_management!$I$8Large_log_tre_res_fract =Data_management!$F$8large_wood_density =Data_management!$J$8largelogperacre =Data_management!$C$8largelogtreeinfo =Data_management!$C$8:$D$8largetreeavgdbh =Data_management!$G$8largetreebolewt =Data_management!$E$8largetreevolpertree =Data_management!$D$8LatDist =CableYarding!$B$22llt_density =Data_management!$E$80llt_hrdwd_fract =Data_management!$E$82llt_res_fract =Data_management!$E$81LoadCostALT =Outputs!$M$40LoadCostCTL =Outputs!$M$41Loader_big =Data_management!$F$96Loader_OwnCost =MachineCosts!$P$51Loader_small =Data_management!$F$97LoaderHourlyCost =Loading!$B$18LoadFraction =Forwarding!$B$25LoadHrs =MoveInCosts!$B$11LoadHrsYarder =MoveInCosts!$B$12LoadVolA =Forwarding!$J$12LoadVolALT =Loading!$B$16LoadVolB =Forwarding!$J$32

document.xls, Worksheet: VariableList 05/06/2023

Page 179 of 182

List of variables generated with Insert, Name, Paste, Paste ListLoadVolC =Forwarding!$J$55LoadVolD =Forwarding!$J$68LoadVolSLT =Loading!$B$17LoadWeight =Inputs!$B$23LoadWeightChip =Inputs!$B$24LoadWeightDry =Chipping!$B$16LogLength =Inputs!$B$22LogsPerTree =Inputs!$H$35LogsPerTreeALT =Inputs!$G$35LogsPerTreeCT =Inputs!$C$35LogsPerTreeLLT =Inputs!$E$35LogsPerTreeSLT =Inputs!$D$35LogsPerTreeST =Inputs!$F$35LogsPerTurnS =Skidding!$B$20LogVol =Inputs!$H$36LogVolALT =Inputs!$G$36LogVolST =Inputs!$F$36LogWt =HelicopterYarding!$B$20LogWtST =HelicopterYarding!$E$20LowboyCost =MoveInCosts!$B$19machine_cost_list_result =Data_management!$C$85machine_costs_list =Data_management!$E$85:$E$106ManFellCostALT =Outputs!$M$29ManFellCostAT =Outputs!$M$28ManFellCostCT =Outputs!$M$32ManFellCostLLT =Outputs!$M$30ManFellCostSLT =Outputs!$M$31ManualMachineSize =Inputs!$H$43ManualMachineSizeALT =Inputs!$G$43MaxAYD_CableManualWT =Outputs!$G$128MaxLTVol =Inputs!$B$19MaxSTVol =Inputs!$B$20MechFellCostCT_SLT =Outputs!$M$27MechMachineSize =Inputs!$F$44MerchHeightFLB ='Manual Felling (all trees)'!$B$15MerchHt_WT_ALT ='Manual Felling CT-WT, ALT-FLB'!$B$32MerchHt_WT_CT ='Manual Felling CT-WT, ALT-FLB'!$B$16MerchHt_WT_ST ='Manual Felling ST-WT, LLT-FLB'!$B$30MerchHtLLT ='Manual Felling LLT'!$B$15MoistureContent =Inputs!$B$21move_in =Data_management!$E$24move_in_1 =Data_management!$F$24move_in_dist =Interface_page!$AL$15MoveInDist =Inputs!$D$3MoveInLabor =MoveInCosts!$B$10MovesA =Forwarding!$J$16MovesB =Forwarding!$J$36NonSelfLevelCabDummy =Inputs!$B$46OtherWage =CostUpdates!$C$17

document.xls, Worksheet: VariableList 05/06/2023

Page 180 of 182

List of variables generated with Insert, Name, Paste, Paste ListPaint =Forwarding!$J$17partial_cut =Data_management!$E$22partial_cut_1 =Data_management!$F$22partial_cut1 =Data_management!$F$22PartialCut =Inputs!$G$2PCLiveStandSLChangeCost =CableYarding!$F$46PCRunSLChangeCost =CableYarding!$D$46PMH_Bundler =MachineCosts!$T$48PMH_Chainsaw =MachineCosts!$B$48PMH_ChipperB =MachineCosts!$S$48PMH_ChipperS =MachineCosts!$R$48PMH_DriveToTree =MachineCosts!$C$48PMH_ForwarderB =MachineCosts!$K$48PMH_ForwarderS =MachineCosts!$J$48PMH_HarvB =MachineCosts!$G$48PMH_HarvS =MachineCosts!$F$48PMH_LoaderB =MachineCosts!$Q$48PMH_LoaderS =MachineCosts!$P$48PMH_ProcessorB =MachineCosts!$O$48PMH_ProcessorS =MachineCosts!$N$48PMH_SelfLevel =MachineCosts!$E$48PMH_SkidderB =MachineCosts!$I$48PMH_SkidderS =MachineCosts!$H$48PMH_SwingBoom =MachineCosts!$D$48PMH_YarderI =MachineCosts!$M$48PMH_YarderS =MachineCosts!$L$48Print_Area =VariableList!$A$1:$B$387Print_Titles =VariableList!$2:$2Processor_big =Data_management!$F$98Processor_OwnCost =MachineCosts!$N$51Processor_small =Data_management!$F$99ProcessorHourlyCost =Processing!$B$11project_elevation =Interface_page!$D$20Project_Slope =Interface_page!$D$19RegionalGroups ='States&Regions'!$F$20:$J$22RegionFromState =WageIndex!$N$14RegionNames ='States&Regions'!$B$2:$G$2RegionsSupported ='States&Regions'!$F$28:$H$28Relevance_CYCCU =RelevanceWeightInputs!$D$163:$K$170Relevance_CYCTL =RelevanceWeightInputs!$D$189:$K$190Relevance_CYPCU =RelevanceWeightInputs!$D$172:$K$187Relevance_FBunch =RelevanceWeightInputs!$D$67:$K$89Relevance_FellingOnly =RelevanceWeightInputs!$D$11:$K$17Relevance_FellLimbBuck =RelevanceWeightInputs!$D$19:$K$25Relevance_FellLLT =RelevanceWeightInputs!$D$27:$K$33Relevance_FLBALT =RelevanceWeightInputs!$D$59:$K$65Relevance_FLBLLT =RelevanceWeightInputs!$D$35:$K$41Relevance_Forwarding =RelevanceWeightInputs!$D$153:$K$161Relevance_Harvesters =RelevanceWeightInputs!$D$91:$K$111

document.xls, Worksheet: VariableList 05/06/2023

Page 181 of 182

List of variables generated with Insert, Name, Paste, Paste ListRelevance_LoadingCTLLogs =RelevanceWeightInputs!$B$217:$B$219Relevance_LoadingLongLogs =RelevanceWeightInputs!$B$211:$B$215Relevance_Processing =RelevanceWeightInputs!$D$202:$K$209Relevance_SCGB =RelevanceWeightInputs!$D$133:$K$151Relevance_SCGU =RelevanceWeightInputs!$D$113:$K$131Relevance_WT_CT =RelevanceWeightInputs!$D$51:$K$57Relevance_WT_ST =RelevanceWeightInputs!$D$43:$K$49Removals =Inputs!$H$11RemovalsALT =Inputs!$G$11RemovalsCT =Inputs!$C$11RemovalsLLT =Inputs!$E$11RemovalsSLT =Inputs!$D$11RemovalsST =Inputs!$F$11res_fract_chip =Data_management!$F$6Residue =Inputs!$H$42residue_collect =Data_management!$E$25residue_collect_1 =Data_management!$F$25ResidueALT =Inputs!$G$42ResidueCT =Inputs!$C$42ResidueLLT =Inputs!$E$42ResidueRecovFracCTL =Inputs!$B$28ResidueRecovFracWT =Inputs!$B$27ResidueSLT =Inputs!$D$42ResidueST =Inputs!$F$42result_ccf =Data_management!$G$24result_gt =Data_management!$G$25result_match =Data_management!$C$88ResWtRecoverCT =Outputs!$M$8ResWtRecoverSLT =Outputs!$M$10SelectedRegion =CostUpdates!$B$13SelectedState =Data_management!$G$15SelectedStateName =WageIndex!$N$12show_cost_list =Data_management!$F$85:$F$103show_cost_list_A =Data_management!$F$85:$F$103SkidBunchedCost =Outputs!$M$34Skidder_big =Data_management!$F$100Skidder_OwnCost =MachineCosts!$H$51Skidder_small =Data_management!$F$101SkidderHourlyCost =Skidding!$B$22SkidderHourlyCostBig =Skidding!$B$24SkidderHourlyCostSmall =Skidding!$B$23SkidUnbunchedCost =Outputs!$M$35Slope =Inputs!$B$3slt_density =Data_management!$D$80slt_hrdwd_fract =Data_management!$D$82slt_res_fract =Data_management!$D$81small_hardwood_fract =Data_management!$I$7small_log_res_fract =Data_management!$F$7small_wood_density =Data_management!$J$7

document.xls, Worksheet: VariableList 05/06/2023

Page 182 of 182

List of variables generated with Insert, Name, Paste, Paste Listsmalllognumber =Data_management!$C$7smalllogtreeinfo =Data_management!$C$7:$D$7smalltreeavgdiameter =Data_management!$G$7smalltreeboleweight =Data_management!$E$7smalltreevolpertree =Data_management!$D$7SpeedBack =MoveInCosts!$B$9SpeedLoaded =MoveInCosts!$B$8StateAbbreviations ='States&Regions'!$B$20:$D$69StateAndIndex ='States&Regions'!$C$20:$D$69StateNames =WageIndex!$B$7:$B$56StatesByRegion ='States&Regions'!$B$2:$G$16stharvestoverride =Interface_page!$AM$14system_list =Interface_page!$AQ$14:$AQ$23system_type =Data_management!$G$18system_type_selected =Interface_page!$AU$21top_of_settings =Report!$A$10TravLoadedHrs =MoveInCosts!$B$17treatment_area =Interface_page!$AL$14TreeHeight =Inputs!$H$31TreeHeightLLT =Inputs!$E$31TreeHeightST =Inputs!$F$31TreesPerBunch =Skidding!$B$40TreesPerTurnS =Skidding!$B$21TreeVol =Inputs!$H$12TreeVolALT =Inputs!$G$12TreeVolCT =Inputs!$C$12TreeVolLLT =Inputs!$E$12TreeVolSLT =Inputs!$D$12TreeVolST =Inputs!$F$12TreeWeightDry =Chipping!$B$17TurnArea =CableYarding!$B$23TurnVol =Skidding!$B$19use_batch_mode =Interface_page!$AL$21UserChipFraction =Inputs!$B$6VolPerAcre =Inputs!$H$40VolPerAcreALT =Inputs!$G$40VolPerAcreCT =Inputs!$C$40VolPerAcreLLT =Inputs!$E$40VolPerAcreSLT =Inputs!$D$40VolPerAcreST =Inputs!$F$40WageAndBenRate =MachineCosts!$C$2WageAndBenRateF =MachineCosts!$B$2WalkDist_WT_ALT ='Manual Felling CT-WT, ALT-FLB'!$B$31WalkDist_WT_CT ='Manual Felling CT-WT, ALT-FLB'!$B$15