yanhong hu, postdoctoral scholar , kai wang, research professor donald brenner, pi

29
Transferable, Quantum-Based Reactive Potentials for Simulating CHON Species: A Bridge Between ab initio Calculations and Condensed-Phase Reactive Dynamics Yanhong Hu, Postdoctoral Scholar, Kai Wang, Research Professor Donald Brenner, PI Materials Science and Engineering North Carolina State University, Raleigh, NC, 27695-7907

Upload: yelena

Post on 10-Feb-2016

38 views

Category:

Documents


0 download

DESCRIPTION

Transferable, Quantum-Based Reactive Potentials for Simulating CHON Species: A Bridge Between ab initio Calculations and Condensed-Phase Reactive Dynamics. Yanhong Hu, Postdoctoral Scholar , Kai Wang, Research Professor Donald Brenner, PI Materials Science and Engineering - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Transferable, Quantum-Based Reactive Potentials for Simulating CHON Species:

A Bridge Between ab initio Calculations and Condensed-Phase Reactive Dynamics

Yanhong Hu, Postdoctoral Scholar, Kai Wang, Research Professor

Donald Brenner, PI

Materials Science and Engineering

North Carolina State University,

Raleigh, NC, 27695-7907

Page 2: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Program Objectives

Develop an inter-atomic potential for HCNO molecular solids that

• allows reactivity (i.e. bond breaking and forming with rehybridization) within and between molecules

-multiple molecules react under low and high P conditions

• is general and transferable between molecules

-same potential function regardless of molecule

-requires quantum-based functional forms, not ad hoc functions

• reproduces high and low pressure structures

-fit to molecular and solid structures (high & low coordination)

Page 3: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Program Objectives

Continued...

Develop an inter-atomic potential for HCNO molecular solids that

• incorporates intermolecular vdW and Coulombic forces

-must be consistent with reactivity

• is suitable for large-scale simulations (106+ atoms)

• is compatable with existing force fields

-takes advantage of prior work by Rice, Thompson, etc.

Page 4: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Strategy• Bonding Forces: Reactive covalent bonding based on

near-neighbor tight binding theory in the form of a bond order formalism.

• Use screening criterion rather than distance to fullfill near neighbor requirement.

• Non-bonded Forces: Fixed Dispersion (LJ) and Coulomb Interactions.

• Transfer functions to ARL/Thompson

• Variable charge/charge transfer

• Validate, validate, validate

Green: Largely done Yellow: In progress Red: Challenge to be met.

Today

Page 5: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Team Synergies• Richard Martin has provided data for hypothetical high-

coordination oxygen structures needed for effective potential fitting.

• Rod Bartlett is providing data regarding reaction paths for validation (e.g. nitromethane geometries along the C-N rxn coordinate)

• Betsy Rice has been working to incorporate functions into ARL/DoD modeling codes

• Work with Don Truhlar on charge transfer

• Validate, validate, validate

Green: Largely done Yellow: In progress Red: To be initiated.

Today

Page 6: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Bonding FormalismBond Order Potential - pair terms coupled to a bond order

)]ij

(rAVijb)ij

(rR[Vi)j(

Σi

Σb

E

Pair terms model repulsive

core-core interactions and attractive bonding from valence electrons

Bond order modulates attraction depending on•local coordination•bond angles•other environmental effects (e.g. conjugation, rotation about double bonds)

bond energy decreasesbond length increases

Bij (N)-1/2

Page 7: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Bonding FormalismQuantum Basis of the Bond Order Formalism

drrxcV

rVrxcEkk

)(

2

)()(

Self-consistent DFT

scscsc

sc sc

Non-self-consistent Harris functional

in

in

in

in

out Density Functional Energy

Tight Binding Energy

)(rkk

)(||

)(

2ˆ rVxc

Rr

rVH ext 2

Density of statesmomentsdescription

Superposition of atomic orbitals

2nd moment: Eel=(2)1/2=(N)1/2

Page 8: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Bond Order Equations

Multi-step fitting process:

First Step:

• Near-neighbor pair terms (repulsive and attractive) and discrete empirical bond order values for monoelemental structures (molecules, clusters, and solids) fit to bond energies/ lengths/force constants.

• Key feature - same pair potentials used for same elements, only difference being the value of the many-body bond order.

• Produces pair terms and bond order values that are transferable between environments (molecules, solids).

Page 9: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Bond Order EquationsMulti-step fitting process:

First Step (continued):

Assume pair functions:

Nine parameters for the pair terms; one bond order per structure

reAQ/r)(1 (r)(r)RV α cf

rne

1,3nn

BcAVβ

)()( rfr

Page 10: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Bond Energy vs. Bond Distance

-15

-10

-5

0

1 1.5 2 2.5Bond Length (A)

Bo

nd

En

erg

y (

eV

)

Bond Order EquationsFirst Step (continued): Nitrogen

Nitrogen Pair Terms

-2000

-1000

0

1000

2000

0.5 1 1.5 2 2.5

Interatomic Distance (A)En

erg

y (e

V)

Nitrogen Pair Potential

-10

-5

0

5

10

0.5 1 1.5 2 2.5Interatomic Distance (A)

En

erg

y (e

V)

N8

N2

N6 N4

fccbccsccd

solids

molecules

Page 11: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Bond Energy vs. Bond Distance

-6

-4

-2

0

1 1.5 2 2.5

Bond Length (A)

Bo

nd E

nerg

y (e

V)

Bond Order EquationsFirst Step (continued):

fccbccsccd

solids

O2

O3

molecules

Force Constant vs. Bond Distance

0

25

50

75

100

1 1.5 2 2.5

Bond Length (A)

K (

eV

/A2 )

Oxygenfcc oxygen

-432

-430

-428

-426

-424

-422

-420

0 10 20 30 40 50 60

lattice constant

En

erg

y (

eV

) First principles data

From Martin

Page 12: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Bond Order EquationsFirst Step (continued):

Force Constant vs. Bond Distance

0

25

50

75

100

1 1.5 2 2.5

Bond Length (A)

K (

eV

/A2 )

Carbon

Bond Energy vs. Bond Distance

-9

-7

-5

-3

-1

1 1.5 2

Bond Length (A)

Bon

d En

ergy

(eV)

fccsc

cd solids

Double

Single

molecules

Triple

Graphite

C-H Bonds

-5

-4.5

-4

-3.5

1.08 1.1 1.12 1.14

Bond Length (A)

Bo

nd

En

erg

y (

eV

)

CHCH2CH3

molecules

Page 13: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Bond Order EquationsFirst Step (continued):

Force Constant vs. Bond Distance

0

25

50

75

100

1 1.5 2 2.5

Bond Length (A)

K (

eV

/A2 )

CN

C-N Bonds

-10

-8

-6

-4

-2

0

1 1.2 1.4 1.6 1.8

Bond Length (A)

Bon

d En

ergy

(eV) molecules

Solids

Some CN compounds have been predicted to be “super”-hard

materials. The potentials developed here are also applicable

to these systems.

Page 14: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Bond Order Equations

NO Bonds-10

-5

0

1.1 1.2 1.3

Bond Length (A)

Bo

nd

En

erg

y (

eV

)

OH Bonds

-4.8

-4.6

-4.4

-4.2

0.955 0.965 0.975

Bond Length (A)

Bo

nd

En

erg

y (

eV

)

NH Bonds

-5

-4.5

-4

-3.5

-3

1 1.025 1.05

Bond Length (A)

Bo

nd

En

erg

y (

eV

)

CO Bonds

-12

-10

-8

-6

-4

1.1 1.15 1.2 1.25 1.3

Bond Length (A)

Bo

nd

En

erg

y (e

V)

Page 15: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Bond Order EquationsTransferable Effective Pair Potentials

OH Bonds

-4.8

-4.6

-4.4

-4.2

0.955 0.965 0.975

Bond Length (A)

Bo

nd

En

erg

y (

eV

)

NH Bonds

-5

-4.5

-4

-3.5

-3

1 1.025 1.05

Bond Length (A)

Bo

nd

En

erg

y (

eV

)

C-N Bonds

-10

-8

-6

-4

-2

0

1 1.2 1.4 1.6 1.8

O-O Bonds

-6

-4

-2

0

1 1.5 2 2.5

Bon

d E

nerg

y (e

V)

Bond Energy vs. Bond Distance

-9

-7

-5

-3

-1

1 1.5 2

Bond Length (A)

Bond

Ene

rgy

(eV)

C-C Bonds

Bond Energy vs. Bond Distance

-15

-10

-5

0

1 1.5 2 2.5Bond Length (A)B

ond

Ene

rgy

(eV

)

N-N BondsC-H Bonds

-5

-4.5

-4

-3.5

1.08 1.1 1.12 1.14

NO Bonds-10

-5

0

1.1 1.2 1.3

Bond Length (A)

Methyl hydrazine

1,2-dinitrocyclo-

propane

Page 16: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Bond Order EquationsMulti-step fitting process:

Second Step: Fit bond order values to tight-binding-based functional form

Empirical Bond Order Values for Nitrogen

0.96

0.97

0.98

0.99

1

0 2 4 6 8 10 12

Coordination

Bo

nd

Ord

er

Page 17: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Bond Order Equations

i j

k1

k2

k3

i-j bond order

ijk1 ijk3

ijk2

bij = [1+G(cos(ijk1)+G(cos(ijk2))]-1/2

(3)-1/2

bji = [1+G(cos(ijk3)]-1/2

(2)-1/2

Bij = (bij+bji)/2

Tight binding Constant

Tight Binding Result: b (Z) -1/2

Bij = {A-1+[1+Gik(cos(ijk)]-0.5}/A = 1-1/A + {1+ Gik(cos(ijk)]-0.5}/A

New parameter

Page 18: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Bond Order Equations

Nitrogen

1

1.2

1.4

1.6

1.8

2

2.2

60 80 100 120 140 160 180

Angle

G(co

s(an

gle)

)

Oxygen

0.5

1

1.5

2

60 120 180

Angle

G(c

os

())

Oxygen and nitrogen functions have minima around 110o, producing bent structures. Carbon has a minimum at 180o, creating a tendency for open structures.

Example: Ammonia

Carbon

Page 19: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Bond Order EquationsThird Step:

Linear combination of elemental bond order functions and add correction factors for mixed system. Because the tight binding theory is followed (b (Z)-1/2) the corrections are small and the terms are transferable.

Additional Hydrazine Fitting Data Base - bond energies/lengths for:

NH HN2H H2N(NH)2NH2

NH2 H2N2H2 H3N2H3

NH3 (+ inversion barrier)

Bij = (bij+bji)/2 bij = { A - 1+C(N,C,O,H)+[1+Gik(cos(ijk)]-0.5}/A

Page 20: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Screening• The tight binding theory requires that near-neighbors be

defined, which is invaluable for fitting, but…….

• How do you effectively define near neighbors without introducing severe cut-offs and associated non-physical forces?

• Can this definition be used to incorporate intermolecular non-bonded forces?

Page 21: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Screening• We are utilizing an atomic screening function that analytically

distinquishes between covalent and non-bonding forces:

i

k

j

No screening, Sij = 1

ij

Screened, Sij = 0

Screening function:

Potential Energies: Sij x bonded + (1-Sij) x nonbonded

•Significantly smooths potential surface relative to distance dependent cut-off function

•With the exception of O..H hydrogen bonding, the function does remarkably well for energetic molecular solids.

k

Page 22: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

CH4 Symmetric Dissociation

Page 23: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

CH3-H Dissociation

Page 24: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Screening Function

N N C H H H H H HN X 0.999999 1 1 0.000258 0.000557 0.000204 3.15E-05 0.000115N 0.999999 X 0.000159 8.54E-05 1 1 0.00013 7.09E-05 0C 1 0.000159 X 0.000367 7.41E-09 0 1 1 1H 1 8.54E-05 0.000367 X 0.008738 1.28E-07 0 7.27E-06 0.000268H 0.000258 1 7.41E-09 0.008738 X 0.000529 5.76E-16 0.03176 0H 0.000557 1 0 1.28E-07 0.000529 X 0 0 0H 0.000204 0.00013 1 0 5.76E-16 0 X 0.000549 0.000759H 3.15E-05 7.09E-05 1 7.27E-06 0.03176 0 0.000549 X 0.000455H 0.000115 0 1 0.000268 0 0 0.000759 0.000455 XN 0 7.01E-12 0 4.99E-11 0.981258 0 0 3.16E-09 0N 0 0 0 0 9.48E-08 0 0 0 0C 0 0 0 0 2.43E-06 0 0 1.10E-09 0N 0 0 0 9.39E-11 1.23E-07 0 0 0 0N 0 0 0 0 0 0 0 0 0H 0 0 0 0 0.001617 1.16E-13 0 0 0H 0 6.48E-10 1.07E-13 0 0.204587 0 2.81E-14 0.489794 0H 0 0 0 0 0 0 0 0 0H 0 0 3.19E-12 1.25E-06 0.000172 0 0 0.93376 0

Methyl HydrazineCH3NHNH2

yellow: Intramoleulqr

pink: Intermolecular

Page 25: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Screening Function1,2-dinitrocyclopropane

NO2C3H4NO2

yellow: Intramoleulqr

pink: IntermolecularC C C N N O O O O H H H H

C X 1 0.999988 9.97E-06 1 4.14E-06 0 1.36E-05 4.09E-06 1 2.74E-06 4.56E-06 5.68E-06C 1 X 0.999997 1 1.48E-05 4.35E-06 1.11E-05 0 4.07E-06 1.97E-06 1 8.94E-06 9.32E-07C 0.999988 0.999997 X 5.10E-07 1.69E-06 4.64E-08 0 0 2.01E-07 1.38E-06 1.28E-05 1 1N 9.97E-06 1 5.10E-07 X 0 1 1 0 0 0.000563 5.19E-06 0 1.85E-05N 1 1.48E-05 1.69E-06 0 X 0 0 1 1 1.11E-05 0.001232 0.000549 0O 4.14E-06 4.35E-06 4.64E-08 1 0 X 6.12E-07 0 0 0.600877 0 0 0.11288O 0 1.11E-05 0 1 0 6.12E-07 X 0 0 0 0.002571 0 0O 1.36E-05 0 0 0 1 0 0 X 4.20E-07 0.005761 0 0 0O 4.09E-06 4.07E-06 2.01E-07 0 1 0 0 4.20E-07 X 0 0.725678 0.472852 0H 1 1.97E-06 1.38E-06 0.000563 1.11E-05 0.600877 0 0.005761 0 X 0 0 1.49E-05H 2.74E-06 1 1.28E-05 5.19E-06 0.001232 0 0.002571 0 0.725678 0 X 0.00083 0H 4.56E-06 8.94E-06 1 0 0.000549 0 0 0 0.472852 0 0.00083 X 1.63E-05H 5.68E-06 9.32E-07 1 1.85E-05 0 0.11288 0 0 0 1.49E-05 0 1.63E-05 XC 0 0 0 0 0 0 0 0 0 0 0 0 0C 0 0 0 0 0 0 0 0 0 0 0 0 0C 0 0 0 0 0 0 1.87E-11 0 0 0 0 0 0N 0 0 0 0 0 0 0 0 0 0 0 0 0N 0 0 0 0 0 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 0 9.46E-12 0 0 0 0 0O 0 0 0 0 0 0 0 0 2.95E-16 0 4.43E-14 0 0H 0 0 0 0 0 0 0 0 0 0 0 0 0H 0 0 0 0 0 0 0 0 0 0 0 0 0H 0 0 0 9.99E-16 0 0 0.000819 0 0 0 0.001493 0 0H 0 0 0 3.36E-11 0 0 0.730241 0 0 0 8.06E-17 0 0

Page 26: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Screening Function• How to handle intramolecular electrostatics?

-4

-2

0

2

4

0 1 2 3 4

Distance (A)

En

erg

y (

eV

)

-12

-8

-4

0

4

0 1 2 3 4

Distance (A)

En

erg

y (

eV

)

H…H OK

bonding

Non-bonding

Typical intramolecular 2nd neighbor

N…N too strongbonding

Non-bonding

Page 27: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Topology Function

...)()1( 10

k l k l mmjlmklikljklik

kjkikijij SSSSSSSSSFSNS

2nd 3rd 4th ...

j

i

k l

m j

i

kl

m

Need an analytic function that distiguishes between atom pairs in the same molecule and pairs in different molecules.

Page 28: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

Screening Function• Partial charges vary within a molecule:

• How do we compensate in the intramolecular bonding forces? This is where we are today!

Page 29: Yanhong Hu,  Postdoctoral Scholar , Kai Wang,  Research Professor Donald Brenner,  PI

PlansShort-Term Plans (6 months): •Incorporate forces from the bond-order potential into our codes •Help with incorporating forces into ARL/Missouri codes•Validate against reaction paths from ab initio/Bartlett data.•Validate against shock/phase data (with Rice/Thompson)•Refine parameters as needed•Incorporate efficient partial charges into simulation codes (with Phillpot/Florida)

Long-Term Plans (6 months - 3 years)

•Incorporate charge-transfer terms into potential (with Truhlar/Stuart(Clemson))•Refit bond order terms terms including charge transfer as needed•Validate against phase and chemistry data