yes iii: computational methods for model choice

201
On some computational methods for Bayesian model choice On some computational methods for Bayesian model choice Christian P. Robert CREST-INSEE and Universit´ e Paris Dauphine http://www.ceremade.dauphine.fr/ ~ xian YES III workshop, Eindhoven, October 7, 2009 Joint works with J.-M. Marin, M. Beaumont, N. Chopin, J.-M. Cornuet, and D. Wraith

Upload: christian-robert

Post on 10-May-2015

732 views

Category:

Education


0 download

DESCRIPTION

These are the slides I gave during three lectures at the YES III meeting in Eindhoven, October 5-7, 2009. They include a presentation of the Savage-Dickey paradox and a comparison of major importance sampling solution, both obtained in collaboration with Jean-Michel Marin.

TRANSCRIPT

Page 1: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

On some computational methods for Bayesianmodel choice

Christian P. Robert

CREST-INSEE and Universite Paris Dauphinehttp://www.ceremade.dauphine.fr/~xian

YES III workshop, Eindhoven,October 7, 2009

Joint works with J.-M. Marin, M. Beaumont, N. Chopin,J.-M. Cornuet, and D. Wraith

Page 2: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Outline

1 Introduction

2 Importance sampling solutions

3 Cross-model solutions

4 Nested sampling

5 ABC model choice

Page 3: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Introduction

Bayes tests

Construction of Bayes tests

Definition (Test)

Given an hypothesis H0 : θ ∈ Θ0 on the parameter θ ∈ Θ0 of astatistical model, a test is a statistical procedure that takes itsvalues in {0, 1}.

Theorem (Bayes test)

The Bayes estimator associated with π and with the 0− 1 loss is

δπ(x) =

{1 if π(θ ∈ Θ0|x) > π(θ 6∈ Θ0|x),0 otherwise,

Page 4: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Introduction

Bayes tests

Construction of Bayes tests

Definition (Test)

Given an hypothesis H0 : θ ∈ Θ0 on the parameter θ ∈ Θ0 of astatistical model, a test is a statistical procedure that takes itsvalues in {0, 1}.

Theorem (Bayes test)

The Bayes estimator associated with π and with the 0− 1 loss is

δπ(x) =

{1 if π(θ ∈ Θ0|x) > π(θ 6∈ Θ0|x),0 otherwise,

Page 5: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Introduction

Bayes factor

Bayes factor

Definition (Bayes factors)

For testing hypotheses H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0, under prior

π(Θ0)π0(θ) + π(Θc0)π1(θ) ,

central quantity

B01 =π(Θ0|x)π(Θc

0|x)

/π(Θ0)π(Θc

0)=

∫Θ0

f(x|θ)π0(θ)dθ∫Θc0

f(x|θ)π1(θ)dθ

[Jeffreys, 1939]

Page 6: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Introduction

Bayes factor

Self-contained concept

Outside decision-theoretic environment:

eliminates impact of π(Θ0) but depends on the choice of(π0, π1)Bayesian/marginal equivalent to the likelihood ratio

Jeffreys’ scale of evidence:

if log10(Bπ10) between 0 and 0.5, evidence against H0 weak,if log10(Bπ10) 0.5 and 1, evidence substantial,if log10(Bπ10) 1 and 2, evidence strong andif log10(Bπ10) above 2, evidence decisive

Requires the computation of the marginal/evidence underboth hypotheses/models

Page 7: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Introduction

Model choice

Model choice and model comparison

Choice between models

Several models available for the same observation

Mi : x ∼ fi(x|θi), i ∈ I

where I can be finite or infinite

Replace hypotheses with models but keep marginal likelihoods andBayes factors

Page 8: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Introduction

Model choice

Model choice and model comparison

Choice between models

Several models available for the same observation

Mi : x ∼ fi(x|θi), i ∈ I

where I can be finite or infinite

Replace hypotheses with models but keep marginal likelihoods andBayes factors

Page 9: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Introduction

Model choice

Bayesian model choiceProbabilise the entire model/parameter space

allocate probabilities pi to all models Mi

define priors πi(θi) for each parameter space Θi

compute

π(Mi|x) =pi

∫Θi

fi(x|θi)πi(θi)dθi∑j

pj

∫Θj

fj(x|θj)πj(θj)dθj

take largest π(Mi|x) to determine “best” model,or use averaged predictive∑

j

π(Mj |x)∫

Θj

fj(x′|θj)πj(θj |x)dθj

Page 10: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Introduction

Model choice

Bayesian model choiceProbabilise the entire model/parameter space

allocate probabilities pi to all models Mi

define priors πi(θi) for each parameter space Θi

compute

π(Mi|x) =pi

∫Θi

fi(x|θi)πi(θi)dθi∑j

pj

∫Θj

fj(x|θj)πj(θj)dθj

take largest π(Mi|x) to determine “best” model,or use averaged predictive∑

j

π(Mj |x)∫

Θj

fj(x′|θj)πj(θj |x)dθj

Page 11: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Introduction

Model choice

Bayesian model choiceProbabilise the entire model/parameter space

allocate probabilities pi to all models Mi

define priors πi(θi) for each parameter space Θi

compute

π(Mi|x) =pi

∫Θi

fi(x|θi)πi(θi)dθi∑j

pj

∫Θj

fj(x|θj)πj(θj)dθj

take largest π(Mi|x) to determine “best” model,or use averaged predictive∑

j

π(Mj |x)∫

Θj

fj(x′|θj)πj(θj |x)dθj

Page 12: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Introduction

Model choice

Bayesian model choiceProbabilise the entire model/parameter space

allocate probabilities pi to all models Mi

define priors πi(θi) for each parameter space Θi

compute

π(Mi|x) =pi

∫Θi

fi(x|θi)πi(θi)dθi∑j

pj

∫Θj

fj(x|θj)πj(θj)dθj

take largest π(Mi|x) to determine “best” model,or use averaged predictive∑

j

π(Mj |x)∫

Θj

fj(x′|θj)πj(θj |x)dθj

Page 13: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Introduction

Evidence

Evidence

All these problems end up with a similar quantity, the evidence

Zk =∫

Θk

πk(θk)Lk(θk) dθk,

aka the marginal likelihood.

Page 14: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Bayes factor approximation

When approximating the Bayes factor

B01 =

∫Θ0

f0(x|θ0)π0(θ0)dθ0∫Θ1

f1(x|θ1)π1(θ1)dθ1

use of importance functions $0 and $1 and

B01 =n−1

0

∑n0i=1 f0(x|θi0)π0(θi0)/$0(θi0)

n−11

∑n1i=1 f1(x|θi1)π1(θi1)/$1(θi1)

Page 15: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Diabetes in Pima Indian women

Example (R benchmark)

“A population of women who were at least 21 years old, of PimaIndian heritage and living near Phoenix (AZ), was tested fordiabetes according to WHO criteria. The data were collected bythe US National Institute of Diabetes and Digestive and KidneyDiseases.”200 Pima Indian women with observed variables

plasma glucose concentration in oral glucose tolerance test

diastolic blood pressure

diabetes pedigree function

presence/absence of diabetes

Page 16: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Probit modelling on Pima Indian women

Probability of diabetes function of above variables

P(y = 1|x) = Φ(x1β1 + x2β2 + x3β3) ,

Test of H0 : β3 = 0 for 200 observations of Pima.tr based on ag-prior modelling:

β ∼ N3(0, n(XTX)−1

)

Page 17: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Probit modelling on Pima Indian women

Probability of diabetes function of above variables

P(y = 1|x) = Φ(x1β1 + x2β2 + x3β3) ,

Test of H0 : β3 = 0 for 200 observations of Pima.tr based on ag-prior modelling:

β ∼ N3(0, n(XTX)−1

)

Page 18: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

MCMC 101 for probit models

Use of either a random walk proposal

β′ = β + ε

in a Metropolis-Hastings algorithm (since the likelihood isavailable)or of a Gibbs sampler that takes advantage of the missing/latentvariable

z|y, x, β ∼ N (xTβ, 1){

Iyz≥0 × I1−yz≤0

}(since β|y,X, z is distributed as a standard normal)

[Gibbs three times faster]

Page 19: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

MCMC 101 for probit models

Use of either a random walk proposal

β′ = β + ε

in a Metropolis-Hastings algorithm (since the likelihood isavailable)or of a Gibbs sampler that takes advantage of the missing/latentvariable

z|y, x, β ∼ N (xTβ, 1){

Iyz≥0 × I1−yz≤0

}(since β|y,X, z is distributed as a standard normal)

[Gibbs three times faster]

Page 20: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

MCMC 101 for probit models

Use of either a random walk proposal

β′ = β + ε

in a Metropolis-Hastings algorithm (since the likelihood isavailable)or of a Gibbs sampler that takes advantage of the missing/latentvariable

z|y, x, β ∼ N (xTβ, 1){

Iyz≥0 × I1−yz≤0

}(since β|y,X, z is distributed as a standard normal)

[Gibbs three times faster]

Page 21: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Diabetes in Pima Indian womenMCMC output for βmax = 1.5, β = 1.15, k = 40, and 20, 000simulations.

0 5000 10000 15000 20000

0.91.0

1.11.2

1.3

Freq

uenc

y0.9 1.0 1.1 1.2 1.3

050

010

0015

0020

0025

00

0 5000 10000 15000 20000

1020

3040

5060

70

12 21 29 37 45 53 61 69

010

020

030

040

0

Page 22: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Importance sampling for the Pima Indian dataset

Use of the importance function inspired from the MLE estimatedistribution

β ∼ N (β, Σ)

R Importance sampling codemodel1=summary(glm(y~-1+X1,family=binomial(link="probit")))

is1=rmvnorm(Niter,mean=model1$coeff[,1],sigma=2*model1$cov.unscaled)

is2=rmvnorm(Niter,mean=model2$coeff[,1],sigma=2*model2$cov.unscaled)

bfis=mean(exp(probitlpost(is1,y,X1)-dmvlnorm(is1,mean=model1$coeff[,1],

sigma=2*model1$cov.unscaled))) / mean(exp(probitlpost(is2,y,X2)-

dmvlnorm(is2,mean=model2$coeff[,1],sigma=2*model2$cov.unscaled)))

Page 23: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Importance sampling for the Pima Indian dataset

Use of the importance function inspired from the MLE estimatedistribution

β ∼ N (β, Σ)

R Importance sampling codemodel1=summary(glm(y~-1+X1,family=binomial(link="probit")))

is1=rmvnorm(Niter,mean=model1$coeff[,1],sigma=2*model1$cov.unscaled)

is2=rmvnorm(Niter,mean=model2$coeff[,1],sigma=2*model2$cov.unscaled)

bfis=mean(exp(probitlpost(is1,y,X1)-dmvlnorm(is1,mean=model1$coeff[,1],

sigma=2*model1$cov.unscaled))) / mean(exp(probitlpost(is2,y,X2)-

dmvlnorm(is2,mean=model2$coeff[,1],sigma=2*model2$cov.unscaled)))

Page 24: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Diabetes in Pima Indian womenComparison of the variation of the Bayes factor approximationsbased on 100 replicas for 20, 000 simulations for a simulation fromthe prior and the above importance sampler

●●

Monte Carlo Importance sampling

23

45

Page 25: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Bridge sampling

Special case:If

π1(θ1|x) ∝ π1(θ1|x)π2(θ2|x) ∝ π2(θ2|x)

live on the same space (Θ1 = Θ2), then

B12 ≈1n

n∑i=1

π1(θi|x)π2(θi|x)

θi ∼ π2(θ|x)

[Gelman & Meng, 1998; Chen, Shao & Ibrahim, 2000]

Page 26: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Bridge sampling variance

The bridge sampling estimator does poorly if

var(B12)B2

12

≈ 1n

E

[(π1(θ)− π2(θ)

π2(θ)

)2]

is large, i.e. if π1 and π2 have little overlap...

Page 27: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Bridge sampling variance

The bridge sampling estimator does poorly if

var(B12)B2

12

≈ 1n

E

[(π1(θ)− π2(θ)

π2(θ)

)2]

is large, i.e. if π1 and π2 have little overlap...

Page 28: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

(Further) bridge sampling

In addition

B12 =

∫π2(θ|x)α(θ)π1(θ|x)dθ∫π1(θ|x)α(θ)π2(θ|x)dθ

∀ α(·)

1n1

n1∑i=1

π2(θ1i|x)α(θ1i)

1n2

n2∑i=1

π1(θ2i|x)α(θ2i)θji ∼ πj(θ|x)

Page 29: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

An infamous example

When

α(θ) =1

π1(θ|x)π2(θ|x)

harmonic mean approximation to B12

B21 =

1n1

n1∑i=1

1/π1(θ1i|x)

1n2

n2∑i=1

1/π2(θ2i|x)

θji ∼ πj(θ|x)

Page 30: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

The original harmonic mean estimator

When θki ∼ πk(θ|x),

1T

T∑t=1

1L(θkt|x)

is an unbiased estimator of 1/mk(x)[Newton & Raftery, 1994]

Highly dangerous: Most often leads to an infinite variance!!!

Page 31: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

The original harmonic mean estimator

When θki ∼ πk(θ|x),

1T

T∑t=1

1L(θkt|x)

is an unbiased estimator of 1/mk(x)[Newton & Raftery, 1994]

Highly dangerous: Most often leads to an infinite variance!!!

Page 32: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

“The Worst Monte Carlo Method Ever”

“The good news is that the Law of Large Numbers guarantees thatthis estimator is consistent ie, it will very likely be very close to thecorrect answer if you use a sufficiently large number of points fromthe posterior distribution.The bad news is that the number of points required for thisestimator to get close to the right answer will often be greaterthan the number of atoms in the observable universe. The evenworse news is that it’s easy for people to not realize this, and tonaıvely accept estimates that are nowhere close to the correctvalue of the marginal likelihood.”

[Radford Neal’s blog, Aug. 23, 2008]

Page 33: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

“The Worst Monte Carlo Method Ever”

“The good news is that the Law of Large Numbers guarantees thatthis estimator is consistent ie, it will very likely be very close to thecorrect answer if you use a sufficiently large number of points fromthe posterior distribution.The bad news is that the number of points required for thisestimator to get close to the right answer will often be greaterthan the number of atoms in the observable universe. The evenworse news is that it’s easy for people to not realize this, and tonaıvely accept estimates that are nowhere close to the correctvalue of the marginal likelihood.”

[Radford Neal’s blog, Aug. 23, 2008]

Page 34: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Optimal bridge sampling

The optimal choice of auxiliary function is

α? =n1 + n2

n1π1(θ|x) + n2π2(θ|x)

leading to

B12 ≈

1n1

n1∑i=1

π2(θ1i|x)n1π1(θ1i|x) + n2π2(θ1i|x)

1n2

n2∑i=1

π1(θ2i|x)n1π1(θ2i|x) + n2π2(θ2i|x)

Back later!

Page 35: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Optimal bridge sampling (2)

Reason:

Var(B12)B2

12

≈ 1n1n2

{∫π1(θ)π2(θ)[n1π1(θ) + n2π2(θ)]α(θ)2 dθ(∫

π1(θ)π2(θ)α(θ) dθ)2 − 1

}

(by the δ method)Drag: Dependence on the unknown normalising constants solvediteratively

Page 36: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Optimal bridge sampling (2)

Reason:

Var(B12)B2

12

≈ 1n1n2

{∫π1(θ)π2(θ)[n1π1(θ) + n2π2(θ)]α(θ)2 dθ(∫

π1(θ)π2(θ)α(θ) dθ)2 − 1

}

(by the δ method)Drag: Dependence on the unknown normalising constants solvediteratively

Page 37: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Extension to varying dimensions

When π1 and π2 work on different dimensions, for instanceθ2 = (θ1, ψ), introduction of a pseudo-posterior density,ω(ψ|θ1, x), to augment π1(θ1|x) into joint distributionπ1(θ1|x)× ω(ψ|θ1, x) on θ2 so that

B12 =

∫π1(θ1|x)α(θ1, ψ)π2(θ1, ψ|x)dθ1ω(ψ|θ1, x) dψ∫π2(θ1, ψ|x)α(θ1, ψ)π1(θ1|x)dθ1 ω(ψ|θ1, x) dψ

,

Page 38: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Extension to varying dimensions

When π1 and π2 work on different dimensions, for instanceθ2 = (θ1, ψ), introduction of a pseudo-posterior density,ω(ψ|θ1, x), to augment π1(θ1|x) into joint distributionπ1(θ1|x)× ω(ψ|θ1, x) on θ2 so that

B12 =

∫π1(θ1|x)α(θ1, ψ)π2(θ1, ψ|x)dθ1ω(ψ|θ1, x) dψ∫π2(θ1, ψ|x)α(θ1, ψ)π1(θ1|x)dθ1 ω(ψ|θ1, x) dψ

,

Page 39: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Illustration for the Pima Indian dataset

Use of the MLE induced conditional of β3 given (β1, β2) as apseudo-posterior and mixture of both MLE approximations on β3

in bridge sampling estimate

R Bridge sampling codecova=model2$cov.unscaled

expecta=model2$coeff[,1]

covw=cova[3,3]-t(cova[1:2,3])%*%ginv(cova[1:2,1:2])%*%cova[1:2,3]

probit1=hmprobit(Niter,y,X1)

probit2=hmprobit(Niter,y,X2)

pseudo=rnorm(Niter,meanw(probit1),sqrt(covw))

probit1p=cbind(probit1,pseudo)

bfbs=mean(exp(probitlpost(probit2[,1:2],y,X1)+dnorm(probit2[,3],meanw(probit2[,1:2]),

sqrt(covw),log=T))/ (dmvnorm(probit2,expecta,cova)+dnorm(probit2[,3],expecta[3],

cova[3,3])))/ mean(exp(probitlpost(probit1p,y,X2))/(dmvnorm(probit1p,expecta,cova)+dnorm(pseudo,

expecta[3],cova[3,3])))

Page 40: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Illustration for the Pima Indian dataset

Use of the MLE induced conditional of β3 given (β1, β2) as apseudo-posterior and mixture of both MLE approximations on β3

in bridge sampling estimate

R Bridge sampling codecova=model2$cov.unscaled

expecta=model2$coeff[,1]

covw=cova[3,3]-t(cova[1:2,3])%*%ginv(cova[1:2,1:2])%*%cova[1:2,3]

probit1=hmprobit(Niter,y,X1)

probit2=hmprobit(Niter,y,X2)

pseudo=rnorm(Niter,meanw(probit1),sqrt(covw))

probit1p=cbind(probit1,pseudo)

bfbs=mean(exp(probitlpost(probit2[,1:2],y,X1)+dnorm(probit2[,3],meanw(probit2[,1:2]),

sqrt(covw),log=T))/ (dmvnorm(probit2,expecta,cova)+dnorm(probit2[,3],expecta[3],

cova[3,3])))/ mean(exp(probitlpost(probit1p,y,X2))/(dmvnorm(probit1p,expecta,cova)+dnorm(pseudo,

expecta[3],cova[3,3])))

Page 41: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Diabetes in Pima Indian women (cont’d)Comparison of the variation of the Bayes factor approximationsbased on 100 replicas for 20, 000 simulations for a simulation fromthe prior, the above bridge sampler and the above importancesampler

●●

MC Bridge IS

23

45

Page 42: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Ratio importance sampling

Another identity:

B12 =Eϕ [π1(θ)/ϕ(θ)]Eϕ [π2(θ)/ϕ(θ)]

for any density ϕ with sufficiently large support[Torrie & Valleau, 1977]

Use of a single sample θ1, . . . , θn from ϕ

B12 =∑

i=1 π1(θi)/ϕ(θi)∑i=1 π2(θi)/ϕ(θi)

Page 43: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Ratio importance sampling

Another identity:

B12 =Eϕ [π1(θ)/ϕ(θ)]Eϕ [π2(θ)/ϕ(θ)]

for any density ϕ with sufficiently large support[Torrie & Valleau, 1977]

Use of a single sample θ1, . . . , θn from ϕ

B12 =∑

i=1 π1(θi)/ϕ(θi)∑i=1 π2(θi)/ϕ(θi)

Page 44: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Ratio importance sampling (2)

Approximate variance:

var(B12)B2

12

≈ 1n

[((π1(θ)− π2(θ))2

ϕ(θ)2

)2]

Optimal choice:

ϕ∗(θ) =| π1(θ)− π2(θ) |∫| π1(η)− π2(η) | dη

[Chen, Shao & Ibrahim, 2000]

Page 45: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Ratio importance sampling (2)

Approximate variance:

var(B12)B2

12

≈ 1n

[((π1(θ)− π2(θ))2

ϕ(θ)2

)2]

Optimal choice:

ϕ∗(θ) =| π1(θ)− π2(θ) |∫| π1(η)− π2(η) | dη

[Chen, Shao & Ibrahim, 2000]

Page 46: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Improving upon bridge sampler

Theorem 5.5.3: The asymptotic variance of the optimal ratioimportance sampling estimator is smaller than the asymptoticvariance of the optimal bridge sampling estimator

[Chen, Shao, & Ibrahim, 2000]Does not require the normalising constant∫

| π1(η)− π2(η) | dη

but a simulation from

ϕ∗(θ) ∝| π1(θ)− π2(θ) | .

Page 47: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Regular importance

Improving upon bridge sampler

Theorem 5.5.3: The asymptotic variance of the optimal ratioimportance sampling estimator is smaller than the asymptoticvariance of the optimal bridge sampling estimator

[Chen, Shao, & Ibrahim, 2000]Does not require the normalising constant∫

| π1(η)− π2(η) | dη

but a simulation from

ϕ∗(θ) ∝| π1(θ)− π2(θ) | .

Page 48: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Varying dimensions

Generalisation to point null situations

When

B12 =

∫Θ1

π1(θ1)dθ1∫Θ2

π2(θ2)dθ2

and Θ2 = Θ1 ×Ψ, we get θ2 = (θ1, ψ) and

B12 = Eπ2

[π1(θ1)ω(ψ|θ1)π2(θ1, ψ)

]holds for any conditional density ω(ψ|θ1).

Page 49: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Varying dimensions

X-dimen’al bridge sampling

Generalisation of the previous identity:For any α,

B12 =Eπ2 [π1(θ1)ω(ψ|θ1)α(θ1, ψ)]Eπ1×ω [π2(θ1, ψ)α(θ1, ψ)]

and, for any density ϕ,

B12 =Eϕ [π1(θ1)ω(ψ|θ1)/ϕ(θ1, ψ)]

Eϕ [π2(θ1, ψ)/ϕ(θ1, ψ)]

[Chen, Shao, & Ibrahim, 2000]Optimal choice: ω(ψ|θ1) = π2(ψ|θ1)

[Theorem 5.8.2]

Page 50: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Varying dimensions

X-dimen’al bridge sampling

Generalisation of the previous identity:For any α,

B12 =Eπ2 [π1(θ1)ω(ψ|θ1)α(θ1, ψ)]Eπ1×ω [π2(θ1, ψ)α(θ1, ψ)]

and, for any density ϕ,

B12 =Eϕ [π1(θ1)ω(ψ|θ1)/ϕ(θ1, ψ)]

Eϕ [π2(θ1, ψ)/ϕ(θ1, ψ)]

[Chen, Shao, & Ibrahim, 2000]Optimal choice: ω(ψ|θ1) = π2(ψ|θ1)

[Theorem 5.8.2]

Page 51: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Harmonic means

Approximating Zk from a posterior sample

Use of the [harmonic mean] identity

Eπk[

ϕ(θk)πk(θk)Lk(θk)

∣∣∣∣x] =∫

ϕ(θk)πk(θk)Lk(θk)

πk(θk)Lk(θk)Zk

dθk =1Zk

no matter what the proposal ϕ(·) is.[Gelfand & Dey, 1994; Bartolucci et al., 2006]

Direct exploitation of the MCMC outputRB-RJ

Page 52: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Harmonic means

Approximating Zk from a posterior sample

Use of the [harmonic mean] identity

Eπk[

ϕ(θk)πk(θk)Lk(θk)

∣∣∣∣x] =∫

ϕ(θk)πk(θk)Lk(θk)

πk(θk)Lk(θk)Zk

dθk =1Zk

no matter what the proposal ϕ(·) is.[Gelfand & Dey, 1994; Bartolucci et al., 2006]

Direct exploitation of the MCMC outputRB-RJ

Page 53: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Harmonic means

Comparison with regular importance sampling

Harmonic mean: Constraint opposed to usual importance samplingconstraints: ϕ(θ) must have lighter (rather than fatter) tails thanπk(θk)Lk(θk) for the approximation

Z1k = 1

/1T

T∑t=1

ϕ(θ(t)k )

πk(θ(t)k )Lk(θ

(t)k )

to have a finite variance.E.g., use finite support kernels (like Epanechnikov’s kernel) for ϕ

Page 54: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Harmonic means

Comparison with regular importance sampling

Harmonic mean: Constraint opposed to usual importance samplingconstraints: ϕ(θ) must have lighter (rather than fatter) tails thanπk(θk)Lk(θk) for the approximation

Z1k = 1

/1T

T∑t=1

ϕ(θ(t)k )

πk(θ(t)k )Lk(θ

(t)k )

to have a finite variance.E.g., use finite support kernels (like Epanechnikov’s kernel) for ϕ

Page 55: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Harmonic means

Comparison with regular importance sampling (cont’d)

Compare Z1k with a standard importance sampling approximation

Z2k =1T

T∑t=1

πk(θ(t)k )Lk(θ

(t)k )

ϕ(θ(t)k )

where the θ(t)k ’s are generated from the density ϕ(·) (with fatter

tails like t’s)

Page 56: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Harmonic means

HPD indicator as ϕUse the convex hull of MCMC simulations corresponding to the10% HPD region (easily derived!) and ϕ as indicator:

ϕ(θ) =1T

∑t

Id(θ,θ(t))≤ε

Page 57: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Harmonic means

HPD indicator as ϕUse the convex hull of MCMC simulations corresponding to the10% HPD region (easily derived!) and ϕ as indicator:

ϕ(θ) =1T

∑t

Id(θ,θ(t))≤ε

Page 58: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Harmonic means

Diabetes in Pima Indian women (cont’d)Comparison of the variation of the Bayes factor approximationsbased on 100 replicas for 20, 000 simulations for a simulation fromthe above harmonic mean sampler and importance samplers

●●

Harmonic mean Importance sampling

3.102

3.104

3.106

3.108

3.110

3.112

3.114

3.116

Page 59: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Mixtures to bridge

Approximating Zk using a mixture representation

Bridge sampling redux

Design a specific mixture for simulation [importance sampling]purposes, with density

ϕk(θk) ∝ ω1πk(θk)Lk(θk) + ϕ(θk) ,

where ϕ(·) is arbitrary (but normalised)Note: ω1 is not a probability weight

Page 60: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Mixtures to bridge

Approximating Zk using a mixture representation

Bridge sampling redux

Design a specific mixture for simulation [importance sampling]purposes, with density

ϕk(θk) ∝ ω1πk(θk)Lk(θk) + ϕ(θk) ,

where ϕ(·) is arbitrary (but normalised)Note: ω1 is not a probability weight

Page 61: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Mixtures to bridge

Approximating Z using a mixture representation (cont’d)

Corresponding MCMC (=Gibbs) sampler

At iteration t

1 Take δ(t) = 1 with probability

ω1πk(θ(t−1)k )Lk(θ

(t−1)k )

/(ω1πk(θ

(t−1)k )Lk(θ

(t−1)k ) + ϕ(θ(t−1)

k ))

and δ(t) = 2 otherwise;

2 If δ(t) = 1, generate θ(t)k ∼ MCMC(θ(t−1)

k , θk) whereMCMC(θk, θ′k) denotes an arbitrary MCMC kernel associatedwith the posterior πk(θk|x) ∝ πk(θk)Lk(θk);

3 If δ(t) = 2, generate θ(t)k ∼ ϕ(θk) independently

Page 62: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Mixtures to bridge

Approximating Z using a mixture representation (cont’d)

Corresponding MCMC (=Gibbs) sampler

At iteration t

1 Take δ(t) = 1 with probability

ω1πk(θ(t−1)k )Lk(θ

(t−1)k )

/(ω1πk(θ

(t−1)k )Lk(θ

(t−1)k ) + ϕ(θ(t−1)

k ))

and δ(t) = 2 otherwise;

2 If δ(t) = 1, generate θ(t)k ∼ MCMC(θ(t−1)

k , θk) whereMCMC(θk, θ′k) denotes an arbitrary MCMC kernel associatedwith the posterior πk(θk|x) ∝ πk(θk)Lk(θk);

3 If δ(t) = 2, generate θ(t)k ∼ ϕ(θk) independently

Page 63: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Mixtures to bridge

Approximating Z using a mixture representation (cont’d)

Corresponding MCMC (=Gibbs) sampler

At iteration t

1 Take δ(t) = 1 with probability

ω1πk(θ(t−1)k )Lk(θ

(t−1)k )

/(ω1πk(θ

(t−1)k )Lk(θ

(t−1)k ) + ϕ(θ(t−1)

k ))

and δ(t) = 2 otherwise;

2 If δ(t) = 1, generate θ(t)k ∼ MCMC(θ(t−1)

k , θk) whereMCMC(θk, θ′k) denotes an arbitrary MCMC kernel associatedwith the posterior πk(θk|x) ∝ πk(θk)Lk(θk);

3 If δ(t) = 2, generate θ(t)k ∼ ϕ(θk) independently

Page 64: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Mixtures to bridge

Evidence approximation by mixtures

Rao-Blackwellised estimate

ξ =1T

T∑t=1

ω1πk(θ(t)k )Lk(θ

(t)k )/ω1πk(θ

(t)k )Lk(θ

(t)k ) + ϕ(θ(t)

k ) ,

converges to ω1Zk/{ω1Zk + 1}Deduce Z3k from ω1Z3k/{ω1Z3k + 1} = ξ ie

Z3k =

∑Tt=1 ω1πk(θ

(t)k )Lk(θ

(t)k )/ω1π(θ(t)

k )Lk(θ(t)k ) + ϕ(θ(t)

k )

∑Tt=1 ϕ(θ(t)

k )/ω1πk(θ

(t)k )Lk(θ

(t)k ) + ϕ(θ(t)

k )

[Bridge sampler]

Page 65: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Mixtures to bridge

Evidence approximation by mixtures

Rao-Blackwellised estimate

ξ =1T

T∑t=1

ω1πk(θ(t)k )Lk(θ

(t)k )/ω1πk(θ

(t)k )Lk(θ

(t)k ) + ϕ(θ(t)

k ) ,

converges to ω1Zk/{ω1Zk + 1}Deduce Z3k from ω1Z3k/{ω1Z3k + 1} = ξ ie

Z3k =

∑Tt=1 ω1πk(θ

(t)k )Lk(θ

(t)k )/ω1π(θ(t)

k )Lk(θ(t)k ) + ϕ(θ(t)

k )

∑Tt=1 ϕ(θ(t)

k )/ω1πk(θ

(t)k )Lk(θ

(t)k ) + ϕ(θ(t)

k )

[Bridge sampler]

Page 66: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Chib’s representation

Direct application of Bayes’ theorem: given x ∼ fk(x|θk) andθk ∼ πk(θk),

Zk = mk(x) =fk(x|θk)πk(θk)

πk(θk|x)

Use of an approximation to the posterior

Zk = mk(x) =fk(x|θ∗k)πk(θ∗k)

πk(θ∗k|x).

Page 67: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Chib’s representation

Direct application of Bayes’ theorem: given x ∼ fk(x|θk) andθk ∼ πk(θk),

Zk = mk(x) =fk(x|θk)πk(θk)

πk(θk|x)

Use of an approximation to the posterior

Zk = mk(x) =fk(x|θ∗k)πk(θ∗k)

πk(θ∗k|x).

Page 68: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Case of latent variables

For missing variable z as in mixture models, natural Rao-Blackwellestimate

πk(θ∗k|x) =1T

T∑t=1

πk(θ∗k|x, z(t)k ) ,

where the z(t)k ’s are Gibbs sampled latent variables

Page 69: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Label switching

A mixture model [special case of missing variable model] isinvariant under permutations of the indices of the components.E.g., mixtures

0.3N (0, 1) + 0.7N (2.3, 1)

and0.7N (2.3, 1) + 0.3N (0, 1)

are exactly the same!c© The component parameters θi are not identifiablemarginally since they are exchangeable

Page 70: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Label switching

A mixture model [special case of missing variable model] isinvariant under permutations of the indices of the components.E.g., mixtures

0.3N (0, 1) + 0.7N (2.3, 1)

and0.7N (2.3, 1) + 0.3N (0, 1)

are exactly the same!c© The component parameters θi are not identifiablemarginally since they are exchangeable

Page 71: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Connected difficulties

1 Number of modes of the likelihood of order O(k!):c© Maximization and even [MCMC] exploration of the

posterior surface harder

2 Under exchangeable priors on (θ,p) [prior invariant underpermutation of the indices], all posterior marginals areidentical:c© Posterior expectation of θ1 equal to posterior expectation

of θ2

Page 72: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Connected difficulties

1 Number of modes of the likelihood of order O(k!):c© Maximization and even [MCMC] exploration of the

posterior surface harder

2 Under exchangeable priors on (θ,p) [prior invariant underpermutation of the indices], all posterior marginals areidentical:c© Posterior expectation of θ1 equal to posterior expectation

of θ2

Page 73: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

License

Since Gibbs output does not produce exchangeability, the Gibbssampler has not explored the whole parameter space: it lacksenergy to switch simultaneously enough component allocations atonce

0 100 200 300 400 500

−10

12

3

n

µ i

−1 0 1 2 3

0.20.3

0.40.5

µi

p i

0 100 200 300 400 500

0.20.3

0.40.5

n

p i

0.2 0.3 0.4 0.5

0.40.6

0.81.0

pi

σ i

0 100 200 300 400 500

0.40.6

0.81.0

n

σ i

0.4 0.6 0.8 1.0

−10

12

3

σi

µ i

Page 74: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Label switching paradox

We should observe the exchangeability of the components [labelswitching] to conclude about convergence of the Gibbs sampler.If we observe it, then we do not know how to estimate theparameters.If we do not, then we are uncertain about the convergence!!!

Page 75: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Label switching paradox

We should observe the exchangeability of the components [labelswitching] to conclude about convergence of the Gibbs sampler.If we observe it, then we do not know how to estimate theparameters.If we do not, then we are uncertain about the convergence!!!

Page 76: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Label switching paradox

We should observe the exchangeability of the components [labelswitching] to conclude about convergence of the Gibbs sampler.If we observe it, then we do not know how to estimate theparameters.If we do not, then we are uncertain about the convergence!!!

Page 77: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Compensation for label switching

For mixture models, z(t)k usually fails to visit all configurations in a

balanced way, despite the symmetry predicted by the theory

πk(θk|x) = πk(σ(θk)|x) =1k!

∑σ∈S

πk(σ(θk)|x)

for all σ’s in Sk, set of all permutations of {1, . . . , k}.Consequences on numerical approximation, biased by an order k!Recover the theoretical symmetry by using

πk(θ∗k|x) =1T k!

∑σ∈Sk

T∑t=1

πk(σ(θ∗k)|x, z(t)k ) .

[Berkhof, Mechelen, & Gelman, 2003]

Page 78: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Compensation for label switching

For mixture models, z(t)k usually fails to visit all configurations in a

balanced way, despite the symmetry predicted by the theory

πk(θk|x) = πk(σ(θk)|x) =1k!

∑σ∈S

πk(σ(θk)|x)

for all σ’s in Sk, set of all permutations of {1, . . . , k}.Consequences on numerical approximation, biased by an order k!Recover the theoretical symmetry by using

πk(θ∗k|x) =1T k!

∑σ∈Sk

T∑t=1

πk(σ(θ∗k)|x, z(t)k ) .

[Berkhof, Mechelen, & Gelman, 2003]

Page 79: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Galaxy dataset

n = 82 galaxies as a mixture of k normal distributions with bothmean and variance unknown.

[Roeder, 1992]Average density

data

Rel

ativ

e F

requ

ency

−2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

Page 80: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Galaxy dataset (k)Using only the original estimate, with θ∗k as the MAP estimator,

log(mk(x)) = −105.1396

for k = 3 (based on 103 simulations), while introducing thepermutations leads to

log(mk(x)) = −103.3479

Note that−105.1396 + log(3!) = −103.3479

k 2 3 4 5 6 7 8

mk(x) -115.68 -103.35 -102.66 -101.93 -102.88 -105.48 -108.44

Estimations of the marginal likelihoods by the symmetrised Chib’sapproximation (based on 105 Gibbs iterations and, for k > 5, 100permutations selected at random in Sk).

[Lee, Marin, Mengersen & Robert, 2008]

Page 81: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Galaxy dataset (k)Using only the original estimate, with θ∗k as the MAP estimator,

log(mk(x)) = −105.1396

for k = 3 (based on 103 simulations), while introducing thepermutations leads to

log(mk(x)) = −103.3479

Note that−105.1396 + log(3!) = −103.3479

k 2 3 4 5 6 7 8

mk(x) -115.68 -103.35 -102.66 -101.93 -102.88 -105.48 -108.44

Estimations of the marginal likelihoods by the symmetrised Chib’sapproximation (based on 105 Gibbs iterations and, for k > 5, 100permutations selected at random in Sk).

[Lee, Marin, Mengersen & Robert, 2008]

Page 82: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Galaxy dataset (k)Using only the original estimate, with θ∗k as the MAP estimator,

log(mk(x)) = −105.1396

for k = 3 (based on 103 simulations), while introducing thepermutations leads to

log(mk(x)) = −103.3479

Note that−105.1396 + log(3!) = −103.3479

k 2 3 4 5 6 7 8

mk(x) -115.68 -103.35 -102.66 -101.93 -102.88 -105.48 -108.44

Estimations of the marginal likelihoods by the symmetrised Chib’sapproximation (based on 105 Gibbs iterations and, for k > 5, 100permutations selected at random in Sk).

[Lee, Marin, Mengersen & Robert, 2008]

Page 83: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Case of the probit model

For the completion by z,

π(θ|x) =1T

∑t

π(θ|x, z(t))

is a simple average of normal densities

R Bridge sampling codegibbs1=gibbsprobit(Niter,y,X1)

gibbs2=gibbsprobit(Niter,y,X2)

bfchi=mean(exp(dmvlnorm(t(t(gibbs2$mu)-model2$coeff[,1]),mean=rep(0,3),

sigma=gibbs2$Sigma2)-probitlpost(model2$coeff[,1],y,X2)))/

mean(exp(dmvlnorm(t(t(gibbs1$mu)-model1$coeff[,1]),mean=rep(0,2),

sigma=gibbs1$Sigma2)-probitlpost(model1$coeff[,1],y,X1)))

Page 84: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Case of the probit model

For the completion by z,

π(θ|x) =1T

∑t

π(θ|x, z(t))

is a simple average of normal densities

R Bridge sampling codegibbs1=gibbsprobit(Niter,y,X1)

gibbs2=gibbsprobit(Niter,y,X2)

bfchi=mean(exp(dmvlnorm(t(t(gibbs2$mu)-model2$coeff[,1]),mean=rep(0,3),

sigma=gibbs2$Sigma2)-probitlpost(model2$coeff[,1],y,X2)))/

mean(exp(dmvlnorm(t(t(gibbs1$mu)-model1$coeff[,1]),mean=rep(0,2),

sigma=gibbs1$Sigma2)-probitlpost(model1$coeff[,1],y,X1)))

Page 85: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Diabetes in Pima Indian women (cont’d)Comparison of the variation of the Bayes factor approximationsbased on 100 replicas for 20, 000 simulations for a simulation fromthe above Chib’s and importance samplers

●●

Chib's method importance sampling

0.024

00.0

245

0.025

00.0

255

Page 86: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

The Savage–Dickey ratio

The Savage–Dickey ratio

Special representation of the Bayes factor used for simulationGiven a test H0 : θ = θ0 in a model f(x|θ, ψ) with a nuisanceparameter ψ, under priors π0(ψ) and π1(θ, ψ) such that

π1(ψ|θ0) = π0(ψ)

then

B01 =π1(θ0|x)π1(θ0)

,

with the obvious notations

π1(θ) =∫π1(θ, ψ)dψ , π1(θ|x) =

∫π1(θ, ψ|x)dψ ,

[Dickey, 1971; Verdinelli & Wasserman, 1995]

Page 87: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

The Savage–Dickey ratio

Measure-theoretic difficulty

The representation depends on the choice of versions of conditionaldensities:

B01 =∫π0(ψ)f(x|θ0, ψ) dψ∫

π1(θ, ψ)f(x|θ, ψ) dψdθ[by definition]

=∫π1(ψ|θ0)f(x|θ0, ψ) dψ π1(θ0)∫π1(θ, ψ)f(x|θ, ψ) dψdθ π1(θ0)

[specific version of π1(ψ|θ0)]

=∫π1(θ0, ψ)f(x|θ0, ψ) dψ

m1(x)π1(θ0)[specific version of π1(θ0, ψ)]

=π1(θ0|x)π1(θ0)

c© Dickey’s (1971) condition is not a condition

Page 88: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

The Savage–Dickey ratio

Similar measure-theoretic difficulty

Verdinelli-Wasserman extension:

B01 =π1(θ0|x)π1(θ0)

Eπ1(ψ|x,θ0,x)

[π0(ψ)π1(ψ|θ0)

]depends on similar choices of versions

Monte Carlo implementation relies on continuous versions of alldensities without making mention of it

[Chen, Shao & Ibrahim, 2000]

Page 89: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

The Savage–Dickey ratio

Similar measure-theoretic difficulty

Verdinelli-Wasserman extension:

B01 =π1(θ0|x)π1(θ0)

Eπ1(ψ|x,θ0,x)

[π0(ψ)π1(ψ|θ0)

]depends on similar choices of versions

Monte Carlo implementation relies on continuous versions of alldensities without making mention of it

[Chen, Shao & Ibrahim, 2000]

Page 90: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

The Savage–Dickey ratio

Computational implementation

Starting from the (new) prior

π1(θ, ψ) = π1(θ)π0(ψ)

define the associated posterior

π1(θ, ψ|x) = π0(ψ)π1(θ)f(x|θ, ψ)/m1(x)

and imposeπ1(θ0|x)π0(θ0)

=∫π0(ψ)f(x|θ0, ψ) dψ

m1(x)

to hold.Then

B01 =π1(θ0|x)π1(θ0)

m1(x)m1(x)

Page 91: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

The Savage–Dickey ratio

Computational implementation

Starting from the (new) prior

π1(θ, ψ) = π1(θ)π0(ψ)

define the associated posterior

π1(θ, ψ|x) = π0(ψ)π1(θ)f(x|θ, ψ)/m1(x)

and imposeπ1(θ0|x)π0(θ0)

=∫π0(ψ)f(x|θ0, ψ) dψ

m1(x)

to hold.Then

B01 =π1(θ0|x)π1(θ0)

m1(x)m1(x)

Page 92: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

The Savage–Dickey ratio

First ratio

If (θ(1), ψ(1)), . . . , (θ(T ), ψ(T )) ∼ π(θ, ψ|x), then

1T

∑t

π1(θ0|x, ψ(t))

converges to π1(θ0|x) (if the right version is used in θ0).When π1(θ0|x, ψ unavailable, replace with

1T

T∑t=1

π1(θ0|x, z(t), ψ(t))

Page 93: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

The Savage–Dickey ratio

First ratio

If (θ(1), ψ(1)), . . . , (θ(T ), ψ(T )) ∼ π(θ, ψ|x), then

1T

∑t

π1(θ0|x, ψ(t))

converges to π1(θ0|x) (if the right version is used in θ0).When π1(θ0|x, ψ unavailable, replace with

1T

T∑t=1

π1(θ0|x, z(t), ψ(t))

Page 94: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

The Savage–Dickey ratio

Bridge revival (1)

Since m1(x)/m1(x) is unknown, apparent failure!Use of the identity

Eπ1(θ,ψ|x)

[π1(θ, ψ)f(x|θ, ψ)

π0(ψ)π1(θ)f(x|θ, ψ)

]= Eπ1(θ,ψ|x)

[π1(ψ|θ)π0(ψ)

]=m1(x)m1(x)

to (biasedly) estimate m1(x)/m1(x) by

T/ T∑t=1

π1(ψ(t)|θ(t))π0(ψ(t))

based on the same sample from π1.

Page 95: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

The Savage–Dickey ratio

Bridge revival (1)

Since m1(x)/m1(x) is unknown, apparent failure!Use of the identity

Eπ1(θ,ψ|x)

[π1(θ, ψ)f(x|θ, ψ)

π0(ψ)π1(θ)f(x|θ, ψ)

]= Eπ1(θ,ψ|x)

[π1(ψ|θ)π0(ψ)

]=m1(x)m1(x)

to (biasedly) estimate m1(x)/m1(x) by

T/ T∑t=1

π1(ψ(t)|θ(t))π0(ψ(t))

based on the same sample from π1.

Page 96: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

The Savage–Dickey ratio

Bridge revival (2)Alternative identity

Eπ1(θ,ψ|x)

[π0(ψ)π1(θ)f(x|θ, ψ)π1(θ, ψ)f(x|θ, ψ)

]= Eπ1(θ,ψ|x)

[π0(ψ)π1(ψ|θ)

]=m1(x)m1(x)

suggests using a second sample (θ(1), ψ(1), z(1)), . . . ,(θ(T ), ψ(T ), z(T )) ∼ π1(θ, ψ|x) and

1T

T∑t=1

π0(ψ(t))π1(ψ(t)|θ(t))

Resulting estimate:

B01 =1T

∑t π1(θ0|x, z(t), ψ(t))

π1(θ0)1T

T∑t=1

π0(ψ(t))π1(ψ(t)|θ(t))

Page 97: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

The Savage–Dickey ratio

Bridge revival (2)Alternative identity

Eπ1(θ,ψ|x)

[π0(ψ)π1(θ)f(x|θ, ψ)π1(θ, ψ)f(x|θ, ψ)

]= Eπ1(θ,ψ|x)

[π0(ψ)π1(ψ|θ)

]=m1(x)m1(x)

suggests using a second sample (θ(1), ψ(1), z(1)), . . . ,(θ(T ), ψ(T ), z(T )) ∼ π1(θ, ψ|x) and

1T

T∑t=1

π0(ψ(t))π1(ψ(t)|θ(t))

Resulting estimate:

B01 =1T

∑t π1(θ0|x, z(t), ψ(t))

π1(θ0)1T

T∑t=1

π0(ψ(t))π1(ψ(t)|θ(t))

Page 98: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Importance sampling solutions

The Savage–Dickey ratio

Diabetes in Pima Indian women (cont’d)Comparison of the variation of the Bayes factor approximationsbased on 100 replicas for 20, 000 simulations for a simulation fromthe above importance, Chib’s, Savage–Dickey’s and bridgesamplers

IS Chib Savage−Dickey Bridge

2.83.0

3.23.4

Page 99: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Variable selection

Bayesian variable selection

Example of a regression setting: one dependent random variable yand a set {x1, . . . , xk} of k explanatory variables.

Question: Are all xi’s involved in the regression?

Assumption: every subset {i1, . . . , iq} of q (0 ≤ q ≤ k)explanatory variables, {1n, xi1 , . . . , xiq}, is a proper set ofexplanatory variables for the regression of y [intercept included inevery corresponding model]

Computational issue

2k models in competition...

[Marin & Robert, Bayesian Core, 2007]

Page 100: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Variable selection

Bayesian variable selection

Example of a regression setting: one dependent random variable yand a set {x1, . . . , xk} of k explanatory variables.

Question: Are all xi’s involved in the regression?

Assumption: every subset {i1, . . . , iq} of q (0 ≤ q ≤ k)explanatory variables, {1n, xi1 , . . . , xiq}, is a proper set ofexplanatory variables for the regression of y [intercept included inevery corresponding model]

Computational issue

2k models in competition...

[Marin & Robert, Bayesian Core, 2007]

Page 101: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Variable selection

Bayesian variable selection

Example of a regression setting: one dependent random variable yand a set {x1, . . . , xk} of k explanatory variables.

Question: Are all xi’s involved in the regression?

Assumption: every subset {i1, . . . , iq} of q (0 ≤ q ≤ k)explanatory variables, {1n, xi1 , . . . , xiq}, is a proper set ofexplanatory variables for the regression of y [intercept included inevery corresponding model]

Computational issue

2k models in competition...

[Marin & Robert, Bayesian Core, 2007]

Page 102: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Variable selection

Bayesian variable selection

Example of a regression setting: one dependent random variable yand a set {x1, . . . , xk} of k explanatory variables.

Question: Are all xi’s involved in the regression?

Assumption: every subset {i1, . . . , iq} of q (0 ≤ q ≤ k)explanatory variables, {1n, xi1 , . . . , xiq}, is a proper set ofexplanatory variables for the regression of y [intercept included inevery corresponding model]

Computational issue

2k models in competition...

[Marin & Robert, Bayesian Core, 2007]

Page 103: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Reversible jump

Idea: Set up a proper measure–theoretic framework for designingmoves between models Mk

[Green, 1995]Create a reversible kernel K on H =

⋃k{k} ×Θk such that∫

A

∫B

K(x, dy)π(x)dx =∫B

∫A

K(y, dx)π(y)dy

for the invariant density π [x is of the form (k, θ(k))]

Page 104: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Reversible jump

Idea: Set up a proper measure–theoretic framework for designingmoves between models Mk

[Green, 1995]Create a reversible kernel K on H =

⋃k{k} ×Θk such that∫

A

∫B

K(x, dy)π(x)dx =∫B

∫A

K(y, dx)π(y)dy

for the invariant density π [x is of the form (k, θ(k))]

Page 105: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Local movesFor a move between two models, M1 and M2, the Markov chainbeing in state θ1 ∈M1, denote by K1→2(θ1, dθ) and K2→1(θ2, dθ)the corresponding kernels, under the detailed balance condition

π(dθ1) K1→2(θ1, dθ) = π(dθ2) K2→1(θ2, dθ) ,

and take, wlog, dim(M2) > dim(M1).Proposal expressed as

θ2 = Ψ1→2(θ1, v1→2)

where v1→2 is a random variable of dimensiondim(M2)− dim(M1), generated as

v1→2 ∼ ϕ1→2(v1→2) .

Page 106: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Local movesFor a move between two models, M1 and M2, the Markov chainbeing in state θ1 ∈M1, denote by K1→2(θ1, dθ) and K2→1(θ2, dθ)the corresponding kernels, under the detailed balance condition

π(dθ1) K1→2(θ1, dθ) = π(dθ2) K2→1(θ2, dθ) ,

and take, wlog, dim(M2) > dim(M1).Proposal expressed as

θ2 = Ψ1→2(θ1, v1→2)

where v1→2 is a random variable of dimensiondim(M2)− dim(M1), generated as

v1→2 ∼ ϕ1→2(v1→2) .

Page 107: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Local moves (2)In this case, q1→2(θ1, dθ2) has density

ϕ1→2(v1→2)∣∣∣∣∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣−1

,

by the Jacobian rule.Reverse importance link

If probability $1→2 of choosing move to M2 while in M1,acceptance probability reduces to

α(θ1, v1→2) = 1∧ π(M2, θ2)$2→1

π(M1, θ1)$1→2 ϕ1→2(v1→2)

∣∣∣∣∂Ψ1→2(θ1, v1→2)∂(θ1, v1→2)

∣∣∣∣ .If several models are considered simultaneously, with probability$1→2 of choosing move to M2 while in M1, as in

K(x,B) =∞Xm=1

Zρm(x, y)qm(x, dy) + ω(x)IB(x)

Page 108: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Local moves (2)In this case, q1→2(θ1, dθ2) has density

ϕ1→2(v1→2)∣∣∣∣∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣−1

,

by the Jacobian rule.Reverse importance link

If probability $1→2 of choosing move to M2 while in M1,acceptance probability reduces to

α(θ1, v1→2) = 1∧ π(M2, θ2)$2→1

π(M1, θ1)$1→2 ϕ1→2(v1→2)

∣∣∣∣∂Ψ1→2(θ1, v1→2)∂(θ1, v1→2)

∣∣∣∣ .If several models are considered simultaneously, with probability$1→2 of choosing move to M2 while in M1, as in

K(x,B) =

∞Xm=1

Zρm(x, y)qm(x, dy) + ω(x)IB(x)

Page 109: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Local moves (2)In this case, q1→2(θ1, dθ2) has density

ϕ1→2(v1→2)∣∣∣∣∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣−1

,

by the Jacobian rule.Reverse importance link

If probability $1→2 of choosing move to M2 while in M1,acceptance probability reduces to

α(θ1, v1→2) = 1∧ π(M2, θ2)$2→1

π(M1, θ1)$1→2 ϕ1→2(v1→2)

∣∣∣∣∂Ψ1→2(θ1, v1→2)∂(θ1, v1→2)

∣∣∣∣ .If several models are considered simultaneously, with probability$1→2 of choosing move to M2 while in M1, as in

K(x,B) =

∞Xm=1

Zρm(x, y)qm(x, dy) + ω(x)IB(x)

Page 110: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Generic reversible jump acceptance probability

Acceptance probability of θ2 = Ψ1→2(θ1, v1→2) is

α(θ1, v1→2) = 1 ∧ π(M2, θ2)$2→1

π(M1, θ1)$1→2 ϕ1→2(v1→2)

∣∣∣∣∂Ψ1→2(θ1, v1→2)∂(θ1, v1→2)

∣∣∣∣while acceptance probability of θ1 with (θ1, v1→2) = Ψ−1

1→2(θ2) is

α(θ1, v1→2) = 1 ∧ π(M1, θ1)$1→2 ϕ1→2(v1→2)π(M2, θ2)$2→1

∣∣∣∣∂Ψ1→2(θ1, v1→2)∂(θ1, v1→2)

∣∣∣∣−1

c©Difficult calibration

Page 111: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Generic reversible jump acceptance probability

Acceptance probability of θ2 = Ψ1→2(θ1, v1→2) is

α(θ1, v1→2) = 1 ∧ π(M2, θ2)$2→1

π(M1, θ1)$1→2 ϕ1→2(v1→2)

∣∣∣∣∂Ψ1→2(θ1, v1→2)∂(θ1, v1→2)

∣∣∣∣while acceptance probability of θ1 with (θ1, v1→2) = Ψ−1

1→2(θ2) is

α(θ1, v1→2) = 1 ∧ π(M1, θ1)$1→2 ϕ1→2(v1→2)π(M2, θ2)$2→1

∣∣∣∣∂Ψ1→2(θ1, v1→2)∂(θ1, v1→2)

∣∣∣∣−1

c©Difficult calibration

Page 112: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Generic reversible jump acceptance probability

Acceptance probability of θ2 = Ψ1→2(θ1, v1→2) is

α(θ1, v1→2) = 1 ∧ π(M2, θ2)$2→1

π(M1, θ1)$1→2 ϕ1→2(v1→2)

∣∣∣∣∂Ψ1→2(θ1, v1→2)∂(θ1, v1→2)

∣∣∣∣while acceptance probability of θ1 with (θ1, v1→2) = Ψ−1

1→2(θ2) is

α(θ1, v1→2) = 1 ∧ π(M1, θ1)$1→2 ϕ1→2(v1→2)π(M2, θ2)$2→1

∣∣∣∣∂Ψ1→2(θ1, v1→2)∂(θ1, v1→2)

∣∣∣∣−1

c©Difficult calibration

Page 113: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Green’s sampler

Algorithm

Iteration t (t ≥ 1): if x(t) = (m, θ(m)),

1 Select model Mn with probability πmn2 Generate umn ∼ ϕmn(u) and set

(θ(n), vnm) = Ψm→n(θ(m), umn)3 Take x(t+1) = (n, θ(n)) with probability

min(π(n, θ(n))π(m, θ(m))

πnmϕnm(vnm)πmnϕmn(umn)

∣∣∣∣∂Ψm→n(θ(m), umn)∂(θ(m), umn)

∣∣∣∣ , 1)and take x(t+1) = x(t) otherwise.

Page 114: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Interpretation

The representation puts us back in a fixed dimension setting:

M1 ×V1→2 and M2 in one-to-one relation.

reversibility imposes that θ1 is derived as

(θ1, v1→2) = Ψ−11→2(θ2)

appears like a regular Metropolis–Hastings move from thecouple (θ1, v1→2) to θ2 when stationary distributions areπ(M1, θ1)× ϕ1→2(v1→2) and π(M2, θ2), and when proposaldistribution is deterministic

Page 115: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Interpretation

The representation puts us back in a fixed dimension setting:

M1 ×V1→2 and M2 in one-to-one relation.

reversibility imposes that θ1 is derived as

(θ1, v1→2) = Ψ−11→2(θ2)

appears like a regular Metropolis–Hastings move from thecouple (θ1, v1→2) to θ2 when stationary distributions areπ(M1, θ1)× ϕ1→2(v1→2) and π(M2, θ2), and when proposaldistribution is deterministic

Page 116: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Saturation schemes

AlternativeSaturation of the parameter space H =

⋃k{k} ×Θk by creating

θ = (θ1, . . . , θD)a model index Mpseudo-priors πj(θj |M = k) for j 6= k

[Carlin & Chib, 1995]Validation by

P(M = k|x) =∫P (M = k|x, θ)π(θ|x)dθ = Zk

where the (marginal) posterior is [not πk!]

π(θ|x) =D∑k=1

P(θ,M = k|x)

=D∑k=1

pk Zk πk(θk|x)∏j 6=k

πj(θj |M = k) .

Page 117: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Saturation schemes

AlternativeSaturation of the parameter space H =

⋃k{k} ×Θk by creating

θ = (θ1, . . . , θD)a model index Mpseudo-priors πj(θj |M = k) for j 6= k

[Carlin & Chib, 1995]Validation by

P(M = k|x) =∫P (M = k|x, θ)π(θ|x)dθ = Zk

where the (marginal) posterior is [not πk!]

π(θ|x) =D∑k=1

P(θ,M = k|x)

=D∑k=1

pk Zk πk(θk|x)∏j 6=k

πj(θj |M = k) .

Page 118: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Saturation schemes

MCMC implementation

Run a Markov chain (M (t), θ(t)1 , . . . , θ

(t)D ) with stationary

distribution π(θ,M |x) by

1 Pick M (t) = k with probability π(θ(t−1), k|x)

2 Generate θ(t−1)k from the posterior πk(θk|x) [or MCMC step]

3 Generate θ(t−1)j (j 6= k) from the pseudo-prior πj(θj |M = k)

Approximate P(M = k|x) = Zk by

pk(x) ∝ pkT∑t=1

fk(x|θ(t)k )πk(θ

(t)k )∏j 6=k

πj(θ(t)j |M = k)

/ D∑`=1

p` f`(x|θ(t)` )π`(θ

(t)` )∏j 6=`

πj(θ(t)j |M = `)

Page 119: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Saturation schemes

MCMC implementation

Run a Markov chain (M (t), θ(t)1 , . . . , θ

(t)D ) with stationary

distribution π(θ,M |x) by

1 Pick M (t) = k with probability π(θ(t−1), k|x)

2 Generate θ(t−1)k from the posterior πk(θk|x) [or MCMC step]

3 Generate θ(t−1)j (j 6= k) from the pseudo-prior πj(θj |M = k)

Approximate P(M = k|x) = Zk by

pk(x) ∝ pkT∑t=1

fk(x|θ(t)k )πk(θ

(t)k )∏j 6=k

πj(θ(t)j |M = k)

/ D∑`=1

p` f`(x|θ(t)` )π`(θ

(t)` )∏j 6=`

πj(θ(t)j |M = `)

Page 120: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Saturation schemes

MCMC implementation

Run a Markov chain (M (t), θ(t)1 , . . . , θ

(t)D ) with stationary

distribution π(θ,M |x) by

1 Pick M (t) = k with probability π(θ(t−1), k|x)

2 Generate θ(t−1)k from the posterior πk(θk|x) [or MCMC step]

3 Generate θ(t−1)j (j 6= k) from the pseudo-prior πj(θj |M = k)

Approximate P(M = k|x) = Zk by

pk(x) ∝ pkT∑t=1

fk(x|θ(t)k )πk(θ

(t)k )∏j 6=k

πj(θ(t)j |M = k)

/ D∑`=1

p` f`(x|θ(t)` )π`(θ

(t)` )∏j 6=`

πj(θ(t)j |M = `)

Page 121: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Implementation error

Scott’s (2002) proposal

Suggest estimating P(M = k|x) by

Zk ∝ pkT∑t=1

fk(x|θ(t)k )/ D∑

j=1

pj fj(x|θ(t)j )

,

based on D simultaneous and independent MCMC chains

(θ(t)k )t , 1 ≤ k ≤ D ,

with stationary distributions πk(θk|x) [instead of above joint!!]

Page 122: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Implementation error

Scott’s (2002) proposal

Suggest estimating P(M = k|x) by

Zk ∝ pkT∑t=1

fk(x|θ(t)k )/ D∑

j=1

pj fj(x|θ(t)j )

,

based on D simultaneous and independent MCMC chains

(θ(t)k )t , 1 ≤ k ≤ D ,

with stationary distributions πk(θk|x) [instead of above joint!!]

Page 123: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Implementation error

Congdon’s (2006) extension

Selecting flat [prohibited!] pseudo-priors, uses instead

Zk ∝ pkT∑t=1

fk(x|θ(t)k )πk(θ

(t)k )/ D∑

j=1

pj fj(x|θ(t)j )πj(θ

(t)j )

,

where again the θ(t)k ’s are MCMC chains with stationary

distributions πk(θk|x)

Page 124: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Implementation error

Examples

Example (Model choice)

Model M1 : x|θ ∼ U(0, θ) with prior θ ∼ Exp(1) is versus modelM2 : x|θ ∼ Exp(θ) with prior θ ∼ Exp(1). Equal prior weights onboth models: %1 = %2 = 0.5.

Approximations of P(M = 1|x):

Scott’s (2002) (blue), and

Congdon’s (2006) (red)

[N = 106 simulations].

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

y

Page 125: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Implementation error

Examples

Example (Model choice)

Model M1 : x|θ ∼ U(0, θ) with prior θ ∼ Exp(1) is versus modelM2 : x|θ ∼ Exp(θ) with prior θ ∼ Exp(1). Equal prior weights onboth models: %1 = %2 = 0.5.

Approximations of P(M = 1|x):

Scott’s (2002) (blue), and

Congdon’s (2006) (red)

[N = 106 simulations].

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

y

Page 126: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Implementation error

Examples (2)

Example (Model choice (2))

Normal model M1 : x ∼ N (θ, 1) with θ ∼ N (0, 1) vs. normalmodel M2 : x ∼ N (θ, 1) with θ ∼ N (5, 1)

Comparison of both

approximations with

P(M = 1|x): Scott’s (2002)

(green and mixed dashes) and

Congdon’s (2006) (brown and

long dashes) [N = 104

simulations].

−1 0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

y

Page 127: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Cross-model solutions

Implementation error

Examples (3)

Example (Model choice (3))

Model M1 : x ∼ N (0, 1/ω) with ω ∼ Exp(a) vs.M2 : exp(x) ∼ Exp(λ) with λ ∼ Exp(b).

Comparison of Congdon’s (2006)

(brown and dashed lines) with

P(M = 1|x) when (a, b) is equal

to (.24, 8.9), (.56, .7), (4.1, .46)and (.98, .081), resp. [N = 104

simulations].

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

y

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

y

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

y

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

y

Page 128: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Purpose

Nested sampling: Goal

Skilling’s (2007) technique using the one-dimensionalrepresentation:

Z = Eπ[L(θ)] =∫ 1

0ϕ(x) dx

withϕ−1(l) = P π(L(θ) > l).

Note; ϕ(·) is intractable in most cases.

Page 129: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Implementation

Nested sampling: First approximation

Approximate Z by a Riemann sum:

Z =j∑i=1

(xi−1 − xi)ϕ(xi)

where the xi’s are either:

deterministic: xi = e−i/N

or random:

x0 = 1, xi+1 = tixi, ti ∼ Be(N, 1)

so that E[log xi] = −i/N .

Page 130: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Implementation

Extraneous white noise

Take

Z =∫e−θ dθ =

∫1δe−(1−δ)θ e−δθ = Eδ

[1δe−(1−δ)θ

]Z =

1N

N∑i=1

δ−1 e−(1−δ)θi(xi−1 − xi) , θi ∼ E(δ) I(θi ≤ θi−1)

N deterministic random50 4.64 10.5

4.65 10.5100 2.47 4.9

2.48 5.02500 .549 1.01

.550 1.14

Comparison of variances and MSEs

Page 131: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Implementation

Extraneous white noise

Take

Z =∫e−θ dθ =

∫1δe−(1−δ)θ e−δθ = Eδ

[1δe−(1−δ)θ

]Z =

1N

N∑i=1

δ−1 e−(1−δ)θi(xi−1 − xi) , θi ∼ E(δ) I(θi ≤ θi−1)

N deterministic random50 4.64 10.5

4.65 10.5100 2.47 4.9

2.48 5.02500 .549 1.01

.550 1.14

Comparison of variances and MSEs

Page 132: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Implementation

Extraneous white noise

Take

Z =∫e−θ dθ =

∫1δe−(1−δ)θ e−δθ = Eδ

[1δe−(1−δ)θ

]Z =

1N

N∑i=1

δ−1 e−(1−δ)θi(xi−1 − xi) , θi ∼ E(δ) I(θi ≤ θi−1)

N deterministic random50 4.64 10.5

4.65 10.5100 2.47 4.9

2.48 5.02500 .549 1.01

.550 1.14

Comparison of variances and MSEs

Page 133: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Implementation

Nested sampling: Second approximation

Replace (intractable) ϕ(xi) by ϕi, obtained by

Nested sampling

Start with N values θ1, . . . , θN sampled from πAt iteration i,

1 Take ϕi = L(θk), where θk is the point with smallestlikelihood in the pool of θi’s

2 Replace θk with a sample from the prior constrained toL(θ) > ϕi: the current N points are sampled from priorconstrained to L(θ) > ϕi.

Page 134: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Implementation

Nested sampling: Second approximation

Replace (intractable) ϕ(xi) by ϕi, obtained by

Nested sampling

Start with N values θ1, . . . , θN sampled from πAt iteration i,

1 Take ϕi = L(θk), where θk is the point with smallestlikelihood in the pool of θi’s

2 Replace θk with a sample from the prior constrained toL(θ) > ϕi: the current N points are sampled from priorconstrained to L(θ) > ϕi.

Page 135: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Implementation

Nested sampling: Second approximation

Replace (intractable) ϕ(xi) by ϕi, obtained by

Nested sampling

Start with N values θ1, . . . , θN sampled from πAt iteration i,

1 Take ϕi = L(θk), where θk is the point with smallestlikelihood in the pool of θi’s

2 Replace θk with a sample from the prior constrained toL(θ) > ϕi: the current N points are sampled from priorconstrained to L(θ) > ϕi.

Page 136: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Implementation

Nested sampling: Third approximation

Iterate the above steps until a given stopping iteration j isreached: e.g.,

observe very small changes in the approximation Z;

reach the maximal value of L(θ) when the likelihood isbounded and its maximum is known;

truncate the integral Z at level ε, i.e. replace∫ 1

0ϕ(x) dx with

∫ 1

εϕ(x) dx

Page 137: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Error rates

Approximation error

Error = Z− Z

=j∑i=1

(xi−1 − xi)ϕi −∫ 1

0ϕ(x) dx = −

∫ ε

0ϕ(x) dx (Truncation Error)

+

[j∑i=1

(xi−1 − xi)ϕ(xi)−∫ 1

εϕ(x) dx

](Quadrature Error)

+

[j∑i=1

(xi−1 − xi) {ϕi − ϕ(xi)}

](Stochastic Error)

[Dominated by Monte Carlo!]

Page 138: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Error rates

A CLT for the Stochastic Error

The (dominating) stochastic error is OP (N−1/2):

N1/2 {Stochastic Error} D→ N (0, V )

with

V = −∫s,t∈[ε,1]

sϕ′(s)tϕ′(t) log(s ∨ t) ds dt.

[Proof based on Donsker’s theorem]

The number of simulated points equals the number of iterations j,and is a multiple of N : if one stops at first iteration j such thate−j/N < ε, then: j = Nd− log εe.

Page 139: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Error rates

A CLT for the Stochastic Error

The (dominating) stochastic error is OP (N−1/2):

N1/2 {Stochastic Error} D→ N (0, V )

with

V = −∫s,t∈[ε,1]

sϕ′(s)tϕ′(t) log(s ∨ t) ds dt.

[Proof based on Donsker’s theorem]

The number of simulated points equals the number of iterations j,and is a multiple of N : if one stops at first iteration j such thate−j/N < ε, then: j = Nd− log εe.

Page 140: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Impact of dimension

Curse of dimension

For a simple Gaussian-Gaussian model of dimension dim(θ) = d,the following 3 quantities are O(d):

1 asymptotic variance of the NS estimator;

2 number of iterations (necessary to reach a given truncationerror);

3 cost of one simulated sample.

Therefore, CPU time necessary for achieving error level e is

O(d3/e2)

Page 141: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Impact of dimension

Curse of dimension

For a simple Gaussian-Gaussian model of dimension dim(θ) = d,the following 3 quantities are O(d):

1 asymptotic variance of the NS estimator;

2 number of iterations (necessary to reach a given truncationerror);

3 cost of one simulated sample.

Therefore, CPU time necessary for achieving error level e is

O(d3/e2)

Page 142: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Impact of dimension

Curse of dimension

For a simple Gaussian-Gaussian model of dimension dim(θ) = d,the following 3 quantities are O(d):

1 asymptotic variance of the NS estimator;

2 number of iterations (necessary to reach a given truncationerror);

3 cost of one simulated sample.

Therefore, CPU time necessary for achieving error level e is

O(d3/e2)

Page 143: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Impact of dimension

Curse of dimension

For a simple Gaussian-Gaussian model of dimension dim(θ) = d,the following 3 quantities are O(d):

1 asymptotic variance of the NS estimator;

2 number of iterations (necessary to reach a given truncationerror);

3 cost of one simulated sample.

Therefore, CPU time necessary for achieving error level e is

O(d3/e2)

Page 144: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Constraints

Sampling from constr’d priors

Exact simulation from the constrained prior is intractable in mostcases!

Skilling (2007) proposes to use MCMC, but:

this introduces a bias (stopping rule).

if MCMC stationary distribution is unconst’d prior, more andmore difficult to sample points such that L(θ) > l as lincreases.

If implementable, then slice sampler can be devised at the samecost!

[Thanks, Gareth!]

Page 145: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Constraints

Sampling from constr’d priors

Exact simulation from the constrained prior is intractable in mostcases!

Skilling (2007) proposes to use MCMC, but:

this introduces a bias (stopping rule).

if MCMC stationary distribution is unconst’d prior, more andmore difficult to sample points such that L(θ) > l as lincreases.

If implementable, then slice sampler can be devised at the samecost!

[Thanks, Gareth!]

Page 146: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Constraints

Sampling from constr’d priors

Exact simulation from the constrained prior is intractable in mostcases!

Skilling (2007) proposes to use MCMC, but:

this introduces a bias (stopping rule).

if MCMC stationary distribution is unconst’d prior, more andmore difficult to sample points such that L(θ) > l as lincreases.

If implementable, then slice sampler can be devised at the samecost!

[Thanks, Gareth!]

Page 147: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Constraints

Illustration of MCMC bias

10 20 30 40 50 60 70 80 90100-50

-40

-30

-20

-10

0

10N=100, M=1

10 20 30 40 50 60 70 80 90100

-4

-2

0

2

4

N=100, M=3

10 20 30 40 50 60 70 80 90100

-4

-2

0

2

4

N=100, M=5

0 20 40 60 80 1000

10000

20000

30000

40000

50000

60000

70000

80000N=100, M=5

10 20 30 40 50 60 70 80 90100-10

-5

0

5

10N=500, M=1

Log-relative error against d (left), avg. number of iterations (right)vs dimension d, for a Gaussian-Gaussian model with d parameters,when using T = 10 iterations of the Gibbs sampler.

Page 148: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Importance variant

A IS variant of nested sampling

Consider instrumental prior π and likelihood L, weight function

w(θ) =π(θ)L(θ)

π(θ)L(θ)

and weighted NS estimator

Z =j∑i=1

(xi−1 − xi)ϕiw(θi).

Then choose (π, L) so that sampling from π constrained toL(θ) > l is easy; e.g. N (c, Id) constrained to ‖c− θ‖ < r.

Page 149: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

Importance variant

A IS variant of nested sampling

Consider instrumental prior π and likelihood L, weight function

w(θ) =π(θ)L(θ)

π(θ)L(θ)

and weighted NS estimator

Z =j∑i=1

(xi−1 − xi)ϕiw(θi).

Then choose (π, L) so that sampling from π constrained toL(θ) > l is easy; e.g. N (c, Id) constrained to ‖c− θ‖ < r.

Page 150: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

A mixture comparison

Benchmark: Target distribution

Posterior distribution on (µ, σ) associated with the mixture

pN (0, 1) + (1− p)N (µ, σ) ,

when p is known

Page 151: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

A mixture comparison

Experiment

n observations withµ = 2 and σ = 3/2,

Use of a uniform priorboth on (−2, 6) for µand on (.001, 16) forlog σ2.

occurrences of posteriorbursts for µ = xi

computation of thevarious estimates of Z

Page 152: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

A mixture comparison

Experiment (cont’d)

MCMC sample for n = 16observations from the mixture.

Nested sampling sequencewith M = 1000 starting points.

Page 153: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

A mixture comparison

Experiment (cont’d)

MCMC sample for n = 50observations from the mixture.

Nested sampling sequencewith M = 1000 starting points.

Page 154: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

A mixture comparison

Comparison

Monte Carlo and MCMC (=Gibbs) outputs based on T = 104

simulations and numerical integration based on a 850× 950 grid inthe (µ, σ) parameter space.Nested sampling approximation based on a starting sample ofM = 1000 points followed by at least 103 further simulations fromthe constr’d prior and a stopping rule at 95% of the observedmaximum likelihood.Constr’d prior simulation based on 50 values simulated by randomwalk accepting only steps leading to a lik’hood higher than thebound

Page 155: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

A mixture comparison

Comparison (cont’d)

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

V1 V2 V3 V4

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Graph based on a sample of 10 observations for µ = 2 andσ = 3/2 (150 replicas).

Page 156: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

A mixture comparison

Comparison (cont’d)

●●

V1 V2 V3 V4

0.90

0.95

1.00

1.05

1.10

Graph based on a sample of 50 observations for µ = 2 andσ = 3/2 (150 replicas).

Page 157: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

A mixture comparison

Comparison (cont’d)

●●

●●●

●●

V1 V2 V3 V4

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Graph based on a sample of 100 observations for µ = 2 andσ = 3/2 (150 replicas).

Page 158: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

Nested sampling

A mixture comparison

Comparison (cont’d)

Nested sampling gets less reliable as sample size increasesMost reliable approach is mixture Z3 although harmonic solutionZ1 close to Chib’s solution [taken as golden standard]Monte Carlo method Z2 also producing poor approximations to Z

(Kernel φ used in Z2 is a t non-parametric kernel estimate withstandard bandwidth estimation.)

Page 159: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

Approximate Bayesian Computation

Bayesian setting: target is π(θ)f(x|θ)When likelihood f(x|θ) not in closed form, likelihood-free rejectiontechnique:

ABC algorithm

For an observation y ∼ f(y|θ), under the prior π(θ), keep jointlysimulating

θ′ ∼ π(θ) , x ∼ f(x|θ′) ,

until the auxiliary variable x is equal to the observed value, x = y.

[Pritchard et al., 1999]

Page 160: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

Approximate Bayesian Computation

Bayesian setting: target is π(θ)f(x|θ)When likelihood f(x|θ) not in closed form, likelihood-free rejectiontechnique:

ABC algorithm

For an observation y ∼ f(y|θ), under the prior π(θ), keep jointlysimulating

θ′ ∼ π(θ) , x ∼ f(x|θ′) ,

until the auxiliary variable x is equal to the observed value, x = y.

[Pritchard et al., 1999]

Page 161: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

Approximate Bayesian Computation

Bayesian setting: target is π(θ)f(x|θ)When likelihood f(x|θ) not in closed form, likelihood-free rejectiontechnique:

ABC algorithm

For an observation y ∼ f(y|θ), under the prior π(θ), keep jointlysimulating

θ′ ∼ π(θ) , x ∼ f(x|θ′) ,

until the auxiliary variable x is equal to the observed value, x = y.

[Pritchard et al., 1999]

Page 162: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

Population genetics example

Tree of ancestors in a sample of genes

Page 163: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

A as approximative

When y is a continuous random variable, equality x = y is replacedwith a tolerance condition,

%(x, y) ≤ ε

where % is a distance between summary statisticsOutput distributed from

π(θ)Pθ{%(x, y) < ε} ∝ π(θ|%(x, y) < ε)

Page 164: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

A as approximative

When y is a continuous random variable, equality x = y is replacedwith a tolerance condition,

%(x, y) ≤ ε

where % is a distance between summary statisticsOutput distributed from

π(θ)Pθ{%(x, y) < ε} ∝ π(θ|%(x, y) < ε)

Page 165: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

ABC improvements

Simulating from the prior is often poor in efficiencyEither modify the proposal distribution on θ to increase the densityof x’s within the vicinity of y...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimationand by developing techniques to allow for larger ε

[Beaumont et al., 2002]

Page 166: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

ABC improvements

Simulating from the prior is often poor in efficiencyEither modify the proposal distribution on θ to increase the densityof x’s within the vicinity of y...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimationand by developing techniques to allow for larger ε

[Beaumont et al., 2002]

Page 167: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

ABC improvements

Simulating from the prior is often poor in efficiencyEither modify the proposal distribution on θ to increase the densityof x’s within the vicinity of y...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimationand by developing techniques to allow for larger ε

[Beaumont et al., 2002]

Page 168: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

ABC-MCMC

Markov chain (θ(t)) created via the transition function

θ(t+1) =

θ′ ∼ K(θ′|θ(t)) if x ∼ f(x|θ′) is such that x = y

and u ∼ U(0, 1) ≤ π(θ′)K(θ(t)|θ′)π(θ(t))K(θ′|θ(t)) ,

θ(t) otherwise,

has the posterior π(θ|y) as stationary distribution[Marjoram et al, 2003]

Page 169: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

ABC-MCMC

Markov chain (θ(t)) created via the transition function

θ(t+1) =

θ′ ∼ K(θ′|θ(t)) if x ∼ f(x|θ′) is such that x = y

and u ∼ U(0, 1) ≤ π(θ′)K(θ(t)|θ′)π(θ(t))K(θ′|θ(t)) ,

θ(t) otherwise,

has the posterior π(θ|y) as stationary distribution[Marjoram et al, 2003]

Page 170: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

ABC-PRC

Another sequential version producing a sequence of Markov

transition kernels Kt and of samples (θ(t)1 , . . . , θ

(t)N ) (1 ≤ t ≤ T )

ABC-PRC Algorithm

1 Pick a θ? is selected at random among the previous θ(t−1)i ’s

with probabilities ω(t−1)i (1 ≤ i ≤ N).

2 Generateθ

(t)i ∼ Kt(θ|θ?) , x ∼ f(x|θ(t)

i ) ,

3 Check that %(x, y) < ε, otherwise start again.

[Sisson et al., 2007]

Page 171: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

ABC-PRC

Another sequential version producing a sequence of Markov

transition kernels Kt and of samples (θ(t)1 , . . . , θ

(t)N ) (1 ≤ t ≤ T )

ABC-PRC Algorithm

1 Pick a θ? is selected at random among the previous θ(t−1)i ’s

with probabilities ω(t−1)i (1 ≤ i ≤ N).

2 Generateθ

(t)i ∼ Kt(θ|θ?) , x ∼ f(x|θ(t)

i ) ,

3 Check that %(x, y) < ε, otherwise start again.

[Sisson et al., 2007]

Page 172: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

ABC-PRC weight

Probability ω(t)i computed as

ω(t)i ∝ π(θ(t)

i )Lt−1(θ?|θ(t)i ){π(θ?)Kt(θ

(t)i |θ

?)}−1 ,

where Lt−1 is an arbitrary transition kernel.In case

Lt−1(θ′|θ) = Kt(θ|θ′) ,

all weights are equal under a uniform prior.Inspired from Del Moral et al. (2006), who use backward kernelsLt−1 in SMC to achieve unbiasedness

Page 173: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

ABC-PRC weight

Probability ω(t)i computed as

ω(t)i ∝ π(θ(t)

i )Lt−1(θ?|θ(t)i ){π(θ?)Kt(θ

(t)i |θ

?)}−1 ,

where Lt−1 is an arbitrary transition kernel.In case

Lt−1(θ′|θ) = Kt(θ|θ′) ,

all weights are equal under a uniform prior.Inspired from Del Moral et al. (2006), who use backward kernelsLt−1 in SMC to achieve unbiasedness

Page 174: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

ABC-PRC weight

Probability ω(t)i computed as

ω(t)i ∝ π(θ(t)

i )Lt−1(θ?|θ(t)i ){π(θ?)Kt(θ

(t)i |θ

?)}−1 ,

where Lt−1 is an arbitrary transition kernel.In case

Lt−1(θ′|θ) = Kt(θ|θ′) ,

all weights are equal under a uniform prior.Inspired from Del Moral et al. (2006), who use backward kernelsLt−1 in SMC to achieve unbiasedness

Page 175: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

ABC-PRC bias

Lack of unbiasedness of the methodJoint density of the accepted pair (θ(t−1), θ(t)) proportional to

π(θ(t−1)|y)Kt(θ(t)|θ(t−1))f(y|θ(t)) ,

For an arbitrary function h(θ), E[ωth(θ(t))] proportional to

ZZh(θ

(t))π(θ(t))Lt−1(θ(t−1)|θ(t))

π(θ(t−1))Kt(θ(t)|θ(t−1))π(θ

(t−1)|y)Kt(θ(t)|θ(t−1)

)f(y|θ(t))dθ(t−1)dθ(t)

∝ZZ

h(θ(t)

)π(θ(t))Lt−1(θ(t−1)|θ(t))

π(θ(t−1))Kt(θ(t)|θ(t−1))π(θ

(t−1))f(y|θ(t−1)

)

×Kt(θ(t)|θ(t−1)

)f(y|θ(t))dθ(t−1)dθ(t)

∝Zh(θ

(t))π(θ

(t)|y)Z

Lt−1(θ(t−1)|θ(t)

)f(y|θ(t−1))dθ(t−1)

ffdθ(t)

.

Page 176: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

ABC-PRC bias

Lack of unbiasedness of the methodJoint density of the accepted pair (θ(t−1), θ(t)) proportional to

π(θ(t−1)|y)Kt(θ(t)|θ(t−1))f(y|θ(t)) ,

For an arbitrary function h(θ), E[ωth(θ(t))] proportional to

ZZh(θ

(t))π(θ(t))Lt−1(θ(t−1)|θ(t))

π(θ(t−1))Kt(θ(t)|θ(t−1))π(θ

(t−1)|y)Kt(θ(t)|θ(t−1)

)f(y|θ(t))dθ(t−1)dθ(t)

∝ZZ

h(θ(t)

)π(θ(t))Lt−1(θ(t−1)|θ(t))

π(θ(t−1))Kt(θ(t)|θ(t−1))π(θ

(t−1))f(y|θ(t−1)

)

×Kt(θ(t)|θ(t−1)

)f(y|θ(t))dθ(t−1)dθ(t)

∝Zh(θ

(t))π(θ

(t)|y)Z

Lt−1(θ(t−1)|θ(t)

)f(y|θ(t−1))dθ(t−1)

ffdθ(t)

.

Page 177: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC method

A mixture example

θθ

−3 −1 1 3

0.0

0.2

0.4

0.6

0.8

1.0

θθ

−3 −1 1 3

0.0

0.2

0.4

0.6

0.8

1.0

θθ

−3 −1 1 3

0.0

0.2

0.4

0.6

0.8

1.0

θθ

−3 −1 1 3

0.0

0.2

0.4

0.6

0.8

1.0

θθ

−3 −1 1 3

0.0

0.2

0.4

0.6

0.8

1.0

θθ

−3 −1 1 3

0.0

0.2

0.4

0.6

0.8

1.0

θθ

−3 −1 1 3

0.0

0.2

0.4

0.6

0.8

1.0

θθ

−3 −1 1 3

0.0

0.2

0.4

0.6

0.8

1.0

θθ

−3 −1 1 3

0.0

0.2

0.4

0.6

0.8

1.0

θθ

−3 −1 1 3

0.0

0.2

0.4

0.6

0.8

1.0

Comparison of τ = 0.15 and τ = 1/0.15 in Kt

Page 178: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC-PMC

A PMC version

Use of the same kernel idea as ABC-PRC but with IS correctionGenerate a sample at iteration t by

πt(θ(t)) ∝N∑j=1

ω(t−1)j Kt(θ(t)|θ(t−1)

j )

modulo acceptance of the associated xt, and use an importance

weight associated with an accepted simulation θ(t)i

ω(t)i ∝ π(θ(t)

i )/πt(θ

(t)i ) .

c© Still likelihood free[Beaumont et al., 2008, arXiv:0805.2256]

Page 179: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC-PMC

The ABC-PMC algorithmGiven a decreasing sequence of approximation levels ε1 ≥ . . . ≥ εT ,

1. At iteration t = 1,

For i = 1, ..., NSimulate θ

(1)i ∼ π(θ) and x ∼ f(x|θ(1)i ) until %(x, y) < ε1

Set ω(1)i = 1/N

Take τ2 as twice the empirical variance of the θ(1)i ’s

2. At iteration 2 ≤ t ≤ T ,

For i = 1, ..., N , repeat

Pick θ?i from the θ(t−1)j ’s with probabilities ω

(t−1)j

generate θ(t)i |θ

?i ∼ N (θ?i , σ

2t ) and x ∼ f(x|θ(t)i )

until %(x, y) < εt

Set ω(t)i ∝ π(θ(t)i )/

∑Nj=1 ω

(t−1)j ϕ

(σ−1t

{θ(t)i − θ

(t−1)j )

})Take τ2

t+1 as twice the weighted empirical variance of the θ(t)i ’s

Page 180: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC-PMC

A mixture example (0)

Toy model of Sisson et al. (2007): if

θ ∼ U(−10, 10) , x|θ ∼ 0.5N (θ, 1) + 0.5N (θ, 1/100) ,

then the posterior distribution associated with y = 0 is the normalmixture

θ|y = 0 ∼ 0.5N (0, 1) + 0.5N (0, 1/100)

restricted to [−10, 10].Furthermore, true target available as

π(θ||x| < ε) ∝ Φ(ε−θ)−Φ(−ε−θ)+Φ(10(ε−θ))−Φ(−10(ε+θ)) .

Page 181: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC-PMC

A mixture example (2)

Recovery of the target, whether using a fixed standard deviation ofτ = 0.15 or τ = 1/0.15, or a sequence of adaptive τt’s.

Page 182: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Gibbs random fields

Gibbs distribution

The rv y = (y1, . . . , yn) is a Gibbs random field associated withthe graph G if

f(y) =1Z

exp

{−∑c∈C

Vc(yc)

},

where Z is the normalising constant, C is the set of cliques of G

and Vc is any function also called potentialU(y) =

∑c∈C Vc(yc) is the energy function

c© Z is usually unavailable in closed form

Page 183: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Gibbs random fields

Gibbs distribution

The rv y = (y1, . . . , yn) is a Gibbs random field associated withthe graph G if

f(y) =1Z

exp

{−∑c∈C

Vc(yc)

},

where Z is the normalising constant, C is the set of cliques of G

and Vc is any function also called potentialU(y) =

∑c∈C Vc(yc) is the energy function

c© Z is usually unavailable in closed form

Page 184: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Potts model

Potts model

Vc(y) is of the form

Vc(y) = θS(y) = θ∑l∼i

δyl=yi

where l∼i denotes a neighbourhood structure

In most realistic settings, summation

Zθ =∑x∈X

exp{θTS(x)}

involves too many terms to be manageable and numericalapproximations cannot always be trusted

[Cucala, Marin, CPR & Titterington, 2009]

Page 185: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Potts model

Potts model

Vc(y) is of the form

Vc(y) = θS(y) = θ∑l∼i

δyl=yi

where l∼i denotes a neighbourhood structure

In most realistic settings, summation

Zθ =∑x∈X

exp{θTS(x)}

involves too many terms to be manageable and numericalapproximations cannot always be trusted

[Cucala, Marin, CPR & Titterington, 2009]

Page 186: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Bayesian Model Choice

Comparing a model with potential S0 taking values in Rp0 versus amodel with potential S1 taking values in Rp1 can be done throughthe Bayes factor corresponding to the priors π0 and π1 on eachparameter space

Bm0/m1(x) =

∫exp{θT

0 S0(x)}/Zθ0,0π0(dθ0)∫exp{θT

1 S1(x)}/Zθ1,1π1(dθ1)

Use of Jeffreys’ scale to select most appropriate model

Page 187: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Bayesian Model Choice

Comparing a model with potential S0 taking values in Rp0 versus amodel with potential S1 taking values in Rp1 can be done throughthe Bayes factor corresponding to the priors π0 and π1 on eachparameter space

Bm0/m1(x) =

∫exp{θT

0 S0(x)}/Zθ0,0π0(dθ0)∫exp{θT

1 S1(x)}/Zθ1,1π1(dθ1)

Use of Jeffreys’ scale to select most appropriate model

Page 188: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Neighbourhood relations

Choice to be made between M neighbourhood relations

im∼ i′ (0 ≤ m ≤M − 1)

withSm(x) =

∑im∼i′

I{xi=xi′}

driven by the posterior probabilities of the models.

Page 189: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Model index

Formalisation via a model index M that appears as a newparameter with prior distribution π(M = m) andπ(θ|M = m) = πm(θm)Computational target:

P(M = m|x) ∝∫

Θm

fm(x|θm)πm(θm) dθm π(M = m) ,

Page 190: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Model index

Formalisation via a model index M that appears as a newparameter with prior distribution π(M = m) andπ(θ|M = m) = πm(θm)Computational target:

P(M = m|x) ∝∫

Θm

fm(x|θm)πm(θm) dθm π(M = m) ,

Page 191: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Sufficient statisticsBy definition, if S(x) sufficient statistic for the joint parameters(M, θ0, . . . , θM−1),

P(M = m|x) = P(M = m|S(x)) .

For each model m, own sufficient statistic Sm(·) andS(·) = (S0(·), . . . , SM−1(·)) also sufficient.For Gibbs random fields,

x|M = m ∼ fm(x|θm) = f1m(x|S(x))f2

m(S(x)|θm)

=1

n(S(x))f2m(S(x)|θm)

wheren(S(x)) = ] {x ∈ X : S(x) = S(x)}

c© S(x) is therefore also sufficient for the joint parameters[Specific to Gibbs random fields!]

Page 192: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Sufficient statisticsBy definition, if S(x) sufficient statistic for the joint parameters(M, θ0, . . . , θM−1),

P(M = m|x) = P(M = m|S(x)) .

For each model m, own sufficient statistic Sm(·) andS(·) = (S0(·), . . . , SM−1(·)) also sufficient.For Gibbs random fields,

x|M = m ∼ fm(x|θm) = f1m(x|S(x))f2

m(S(x)|θm)

=1

n(S(x))f2m(S(x)|θm)

wheren(S(x)) = ] {x ∈ X : S(x) = S(x)}

c© S(x) is therefore also sufficient for the joint parameters[Specific to Gibbs random fields!]

Page 193: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Sufficient statisticsBy definition, if S(x) sufficient statistic for the joint parameters(M, θ0, . . . , θM−1),

P(M = m|x) = P(M = m|S(x)) .

For each model m, own sufficient statistic Sm(·) andS(·) = (S0(·), . . . , SM−1(·)) also sufficient.For Gibbs random fields,

x|M = m ∼ fm(x|θm) = f1m(x|S(x))f2

m(S(x)|θm)

=1

n(S(x))f2m(S(x)|θm)

wheren(S(x)) = ] {x ∈ X : S(x) = S(x)}

c© S(x) is therefore also sufficient for the joint parameters[Specific to Gibbs random fields!]

Page 194: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

ABC model choice Algorithm

ABC-MC

Generate m∗ from the prior π(M = m).

Generate θ∗m∗ from the prior πm∗(·).

Generate x∗ from the model fm∗(·|θ∗m∗).

Compute the distance ρ(S(x0), S(x∗)).

Accept (θ∗m∗ ,m∗) if ρ(S(x0), S(x∗)) < ε.

[Cornuet, Grelaud, Marin & Robert, 2008]

Note When ε = 0 the algorithm is exact

Page 195: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

ABC approximation to the Bayes factor

Frequency ratio:

BFm0/m1(x0) =

P(M = m0|x0)P(M = m1|x0)

× π(M = m1)π(M = m0)

=]{mi∗ = m0}]{mi∗ = m1}

× π(M = m1)π(M = m0)

,

replaced with

BFm0/m1(x0) =

1 + ]{mi∗ = m0}1 + ]{mi∗ = m1}

× π(M = m1)π(M = m0)

to avoid indeterminacy (also Bayes estimate).

Page 196: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

ABC approximation to the Bayes factor

Frequency ratio:

BFm0/m1(x0) =

P(M = m0|x0)P(M = m1|x0)

× π(M = m1)π(M = m0)

=]{mi∗ = m0}]{mi∗ = m1}

× π(M = m1)π(M = m0)

,

replaced with

BFm0/m1(x0) =

1 + ]{mi∗ = m0}1 + ]{mi∗ = m1}

× π(M = m1)π(M = m0)

to avoid indeterminacy (also Bayes estimate).

Page 197: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

Illustrations

Toy example

iid Bernoulli model versus two-state first-order Markov chain, i.e.

f0(x|θ0) = exp

(θ0

n∑i=1

I{xi=1}

)/{1 + exp(θ0)}n ,

versus

f1(x|θ1) =12

exp

(θ1

n∑i=2

I{xi=xi−1}

)/{1 + exp(θ1)}n−1 ,

with priors θ0 ∼ U(−5, 5) and θ1 ∼ U(0, 6) (inspired by “phasetransition” boundaries).

Page 198: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

Illustrations

Toy example (2)

−40 −20 0 10

−50

5

BF01

BF01

−40 −20 0 10−10

−50

510

BF01

BF01

(left) Comparison of the true BFm0/m1(x0) with BFm0/m1

(x0)(in logs) over 2, 000 simulations and 4.106 proposals from theprior. (right) Same when using tolerance ε corresponding to the1% quantile on the distances.

Page 199: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

Illustrations

Protein folding

Superposition of the native structure (grey) with the ST1structure (red.), the ST2 structure (orange), the ST3 structure(green), and the DT structure (blue).

Page 200: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

Illustrations

Protein folding (2)

% seq . Id. TM-score FROST score

1i5nA (ST1) 32 0.86 75.31ls1A1 (ST2) 5 0.42 8.91jr8A (ST3) 4 0.24 8.91s7oA (DT) 10 0.08 7.8

Characteristics of dataset. % seq. Id.: percentage of identity withthe query sequence. TM-score.: similarity between predicted andnative structure (uncertainty between 0.17 and 0.4) FROST score:quality of alignment of the query onto the candidate structure(uncertainty between 7 and 9).

Page 201: Yes III: Computational methods for model choice

On some computational methods for Bayesian model choice

ABC model choice

Illustrations

Protein folding (3)

NS/ST1 NS/ST2 NS/ST3 NS/DT

BF 1.34 1.22 2.42 2.76P(M = NS|x0) 0.573 0.551 0.708 0.734

Estimates of the Bayes factors between model NS and modelsST1, ST2, ST3, and DT, and corresponding posteriorprobabilities of model NS based on an ABC-MC algorithm using1.2 106 simulations and a tolerance ε equal to the 1% quantile ofthe distances.