youd presentation

Upload: sekkei

Post on 03-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Youd Presentation

    1/16

  • 7/28/2019 Youd Presentation

    2/16

    11/29/20

    CRRplotfrom

    Youdetal(2001)

    usedtoevaluate

    CRRfromSPT

    measuremets

    BothCetinand

    Seed(2004)and

    Idrissand

    Boulanger(2008)

    madesignificant

    modificationsto

    thischart andalso

    tothetermrdintheCSRequation

    BridgesitesinArkansasforwhichcomparisonsweremade

    betweenproceduresof(1)IdrissandBoulanger;(2)Cetin,Seedet

    al;and(3)Youdetal. Site1isusedforcomparisonsinthis

    presentation (CoxandGriffiths2011)

    Comparisonsbetweenprocedures

    8

    Comparisonofthefactorofsafety(FS)against

    liquefactionatSiteNo.1forthreeprocedures;

    MW =7.6,pga =0.82g(CoxandGriffiths2011)

    clay

    sand

    Arkansas Site1 Fordepthslessthan70ft,

    meanofcalculatedFS

    calculatedatanydepthare

    generallywithin+/10%of

    themeanofindividual

    values,withIdrissand

    BoulangerFSgenerally

    highestandCetin,Seedet

    alFSgenerallylowest

    9

    densesand

    DepthtowhichCRRis

    constrainedbyempirical

    data

    FS>2plottedas2

    Watertable

    Comparisonoffactorofsafety(FS)againstliquefactionfor

    Sapanca Hotelsite,MW =7.0,pga=0.40bythree

    procedures(Shawn

    Griffiths,

    University

    of

    Arkansas)

    Sapanca Hotelsite,Turkey(1999eq)

    MeanofcalculatedFS

    within+/ 30%of

    individualvalueswith

    IdrissandBoulanger

    FSgenerallyhighest

    andCetin,Seedetal

    FSgenerallylowest

    10

    Question2.Willliquefactionleadto

    detrimentalgrounddeformation,ground

    displacement,orgroundfailure?

    Typesofliquefactioninducedgroundfailure

    Flowfailure

    Lateralsspread

    Groundoscillation

    Lossofbearingstrength

    Groundsettlement

    Before

    earthquake

    After

    earthquake

    Liquefiablesoil

  • 7/28/2019 Youd Presentation

    3/16

    11/29/20

    Flowfailure,HalfMoonBay,Calif.,1906SanFranciscoEarthquake

    Beforeearthquake

    Afterearthquake

    AerialViewofSanFernandoValleyJuvenileHallLateralSpread

    areaafter1971SanFernando,Californiaearthquake;ground

    slopeacross

    lateral

    spread

    zone

    about

    1%

    caption

    Fissures

    and

    ground

    displacements

    (up

    to

    2

    m)

    generated

    byJuvenileHallLateralSpread

    SanFernandoValleyJuvenileHallDamagedbyLateralSpread

    During1971SanFernando,Calif.Earthquake caption

    Groundbeneathstandingpartofbuildingmoved1mtoward

    camerarelativetostablegroundbeyondleftendofbuilding

  • 7/28/2019 Youd Presentation

    4/16

    11/29/20

    Interiorviewofbuilding

    pulledapartbylateral

    spread,

    SanFernando

    ValleyJuvenileHall

    DiagrammaticviewofbuildingdamagecausedbySanFernando

    ValleyJuvenileHalllateralspread

    Wallaround

    San

    Fernando

    Valley

    Juvenile

    Hall

    pulled

    apart

    by

    lateralspreadduring1971earthquake;about50juveniles

    escapedthroughholeshortlyafterearthquakecaption

    Cratersand

    flooding

    due

    to

    gas

    and

    water

    pipeline

    breaks,

    San

    FernandoJuvenileHalllateralspread

    MeasuredlateralspreaddisplacementaroundNBuilding

    followingthe1964Niigata,Japanearthquake caption

    1985photooffracturedpilesbeneathNBuildingcausedby

    lateral spreadduring1964Niigata,Japanearthquake

  • 7/28/2019 Youd Presentation

    5/16

    11/29/20

    Diagrams of (a) post

    earthquake pile

    configuration at N-building site and (b) plot

    of standard penetration

    resistance, N, versus

    depth

    watertable

    Soiltoodensefor

    lateralspreadto

    occur

    Liquefiable

    soil

    Tall building supported onpiles pulled apart atfoundation level by lateralspread toward nearbyisland edge; building islocated on,Rokko Island;

    damage occurred during1995 Kobe, Japanearthquake (photo by LesHarder)

    CaptionVectors of Lateral Spread Displacement, 1964 Niigata, Japan Earthquake caption

    Bandai bridge pier displaced toward Shinano River during 1964Niigata, Japan earthquake (M = 7.5); bridge deck acted as buttress

    causing the bridge pier to tilt away from the river rather than toward it

    RioBananitio railway

    bridgethattipped

    downstreamduring

    the1991Limon

    Province,CostaRica

    earthquake(M

    =7.6)

    Lateralspreadtiltedthecaissontowardriverwithcapitalblockslidingoff,

    allowingbridgetrusstotip;notethatinthisinstancethetrussdidrestrain

    thetopsofthecaissonsallowingthemtotipfreelytowardtheriver

  • 7/28/2019 Youd Presentation

    6/16

    11/29/20

    Beforeearthquake

    Afterearthquake

    captionPavementandcurb

    damagecausedby

    groundoscillation

    during1989

    LomaPrieta,

    Californiaearthquake

    Before

    earthquake

    After

    earthquake

    Apartmentbuildingsthatsettledandtippedduring1964Niigata,Japanearthquake

    GroundSettlement

    0.75mofdifferentialgroundsettlementbetweentopofpilecap

    andsurroundinggroundduetoliquefactionandcompactionof

    12moflooseartificialfillduring1995Kobe,Japanearthquake

    (M=7.6)

    PredictionofLateralSpreadDisplacement

    EmpiricalMLREquations

    Youd,HansonandBartlett,2002

    Widelyusedforpredictionoflateralspreaddisplacement

    BasedoncasehistorydatafromseveralU.S.andJapaneseearthquakes

    Datacompliedfromabout500lateralspreadlocations

    Equationsregressedusingmultiplelinearregression(MLR)procedure

  • 7/28/2019 Youd Presentation

    7/16

    11/29/20

    Equations

    T.L.Youd,C.M.HansenandS.F.Bartlett

    FreeFace

    Conditions

    LogDH= 16.713+1.532M 1.406logR* 0.012R+0.540logT15 +0.592logW

    +3.413log(100 F15) 0.795log(D5015 +0.1mm)

    GroundSlopeConditionsLogDH= 16.213+1.532M 1.406logR* 0.012R+0.540logT15+0.338logS

    +3.413log(100 F15) 0.795log(D5015 +0.1mm)

    Where:

    R*=R+Ro and Ro=10(0.89M 5.64)

    Casehistorydatacompiledfo MLRanalysis:

    Seismicparameters:

    M =Momentmagnitude

    R=Horizontaldistancefromsitetoseismicenergysource,inkm

    (sameparameters usedgroundmotionattenuationcorrelations)

    Topographicparameters

    W=Freefaceratio,inpercent

    or

    S=Groundslope,inpercent

    Geotechnicalparameters

    T15 =Thicknessoflayerwith(N1)60

  • 7/28/2019 Youd Presentation

    8/16

    11/29/20

    Locationmap(courtesyofGoogleEarth2011)withlocationsofdamagedbridges

    analyzedbyKevinFranke (BYUPhDdissertation)andbridgesdiscussedherein

    Highway bridge over Rio Cuba compressed by lateral spread of

    floodplain toward river channel

    Rotatedeasternabutment

    ViewofEasternabutmentandbridgegirders Eastern abutment bridge over Rio Cuba

    DisplacedandRotated

    abutmentPushedabutment contactedgirder,preventing

    furtherdisplacementoftopofabutment

    Sheared bridge seating due to compression of ground between abutments

    Eastabutment

    BridgePlan,RioCubacrossing

    Lateral

    spread

    displacement

  • 7/28/2019 Youd Presentation

    9/16

    11/29/20

    AccordingtobridgeplansprovidedbytheCostaRicanMinistryof

    Transportation,bridgeisfoundedonaseriesof14inchsquarereinforced

    concrete

    piles.

    The

    abutments

    are

    supported

    by

    two

    rows

    of

    piles

    (8

    piles

    infrontrow,7pilesinsecondrow)thatareapproximately14meterslong

    andspacedat4.1diametersinthetransverse directionand2.5diameters

    inthelongitudinaldirection.Thedimensionsofthepilecapateach

    abutmentis10.36meters(transverse)x1.90meters(longitudinal)x2.60

    meters(vertical). (KevinFranke,PhDdissertation,BYU)

    FoundationDescription

    LogofBoringP1atRio

    CubaBridge,drilled

    April 2010(courtesy of

    KevinFranke)

    Liquefiablelayer,2.5mthick(T15)

    SoildataandliquefactionFS

    calculationforBoreholeP1,Rio

    CubaBridge(courtesyKevin

    Franke)

    2.5m

    CrosssectionEastabutmentareaRioCubabridge

    =FSagainstrotationalslide

    LateralSpreadDisplacementCalculationRioCubaBridge

    Project:

    Borehole: H (m) L (m)

    Date: 11/1/2011 10 60

    W (%)= 1 6.66 66 66 7

    HorizontalDisplacement Calculation

    Does the site conta ina free face (f)ora ground slope (g)? f

    Mw R (km) W (%) T15 (m) F15 (%) D 5015 (mm)

    7.6 41 12 2.5 12 1.1 R 0 R*

    D is pl ac ement: 0 .2 7 m 13.30 54.30

    Initials Date

    Completed By: TLY

    Checked By:

    Revised MLR Equations for Prediction of Lateral Spread DisplacementT.L. Youd, C.M. Hansen, and S.F. Bartlett

    R* Calculation

    W Calculation**Rio Cuba

    P1

    Ground Slope Equation:Log Dh = -16.213 + 1.532 M - 1.406 Log R* -0.012 R + 0.338 Log S + 0.540 Log T 15 + 3.413 Log (100 -F15)- 0.795 Log (D5015 + 0.1 mm)

    Free Face Equation:

    Log Dh = -16.713 + 1.532 M -1.406 Log R* -0.012 R + 0.592 Log W+ 0.540 Log T15 + 3.413 Log (100 -F 15)- 0.795 Log (D5015 + 0.1 mm)

    Dh = HorizontalDisplacement, (meters)

    M= Moment Magnitude of Earthquake, MwR = Horizontal Distance to Nearest Seismic Energy Source orFault Rupture, (kilometers)

    R* = R + R0R0 = 10

    (0.89 M -5.64)

    W= (H/L)*100 = Free Face Ratio, (percent)

    H = Height of the Free Face, (meters)L = Length to the Free Face f romthe Point of Displacement (meters)

    S = Ground Slope, (percent)

    T15 = Thickness of Saturated CohesionlessSoils with (N1)60

  • 7/28/2019 Youd Presentation

    10/16

    11/29/20

    Deterministically

    computedpile

    response

    for

    east

    abutment,Rio

    CubaBridge

    (courtesyKevin

    Franke)

    Pinnedby

    bridge

    girder

    CollapsedRioEstrella Bridge

    Westerntruss

    Collapsed Estrella bridge with improvised temporary ramp

    Westerntruss

    Easterntruss

    Central pier of collapsed Rio Estrella highway bridge

    Shattered and spread highway

    embankment approaching

    eastern end of Rio Estrella

    bridge

    Easterntruss

    Cracked and settled highway embankment at eastern abutment of

    collapsed Rio Estrella highway bridge (University of Costa Rica photo)

  • 7/28/2019 Youd Presentation

    11/16

    11/29/20

    Eastern abutment of Rio Estrella highway bridge

    1991 Limon Costa Rica: Plans for highway bridge over Rio Estrella

    Eastern abutmentWestern abutment

    Note:liquefactionandlateralspreaddidnotgeneratesignificantdisplacementof

    bridgepiersorabutments atRioEstrella bridge

    WEST

    WEST

    WEST&EAST

    EAST

    Theeasternbentisfoundedontwo3.94meterx4.94

    meterpilecaps.Eachpilecapissupportedbytwenty

    12BP53steelpiles(fourrowsoffivepiles)thatare20

    metersinlengthandspacedat1meterintervalsinboth

    thetransverseandlongitudinaldirections.Theeastern

    abutmentofthebridgewasdesignedtobeconverted

    intoabentintheeventofabridgeexpansion.The

    abutmentisfoundedontwo3.96meterx5.96meterpile

    caps.Eachofthesepilecapsissupportedby2412BP53

    steelpiles(fourrowsofsixpiles)thatare20metersin

    lengthandspacedat1meterintervalsinboththe

    transverseandlongitudinaldirections.Finally,thefront

    rowofpilesateachabutmentandbentarebatteredat

    approximately5V:1H.(Franke, BYUPhDdissertation)

    FoundationDataforEasternBentandAbutment

    BridgeEastern

    abutment

    BoreholeLogs,RioEstraela Bridge

    Liquefiable

    sediment

  • 7/28/2019 Youd Presentation

    12/16

    11/29/20

    BoreholeP1

    4.0m

    Project:

    Borehole: H (m) L (m)

    Date: 11/1/2011 10 60

    W (% )= 1 6.66 66 66 7

    HorizontalDisplacementCalculation

    Does thes itecontaina freeface (f)ora ground s lope (g)? f

    Mw R (km) W (%) T15 (m) F15 (%) D 5015 (mm)

    7.6 21 20 4.0 3 3 R 0 R*

    D is pl ac e me nt : 1 .0 1 m 13.30 34.30

    Initials Date

    CompletedBy: TLY

    Checked By:

    Revised MLR Equations for Prediction of Lateral Spread DisplacementT.L.Youd,C.M. Hansen, and S.F. Bartlett

    R* Calculation

    W Calculation**Rio Estrella

    P1

    Ground SlopeEquation:LogDh = -16.213+ 1.532 M - 1.406Log R* -0.012 R + 0.338 Log S + 0.540 Log T15 + 3.413 Log (100 -F15)- 0.795 Log(D5015 + 0.1mm)

    Free Face Equation:

    LogDh = -16.713+ 1.532 M -1.406Log R* -0.012 R +0.592 Log W+ 0.540 LogT 15 + 3.413 Log(100 -F15)- 0.795 Log (D5015 +0.1mm)

    Dh = HorizontalDisplacement, (meters)

    M =Moment Magnitude of Earthquake,MwR =HorizontalDistance to Nearest SeismicEnergy Source or Fault Rupture, (kilometers)

    R* = R + R0R0 = 10

    (0.89 M -5.64)

    W =(H/L)*100 = Free Face Ratio, (percent)

    H =Height of the Free Face, (meters)L =Length to the Free Face fromthePoint of Displacement (meters)

    S =Ground Slope, (percent)T15 = Thickness of Saturated Cohesionless Soils with(N1)60

  • 7/28/2019 Youd Presentation

    13/16

    11/29/20

    AvoidtheHazard

    Valdez,

    Alaska,

    1964AlaskaEarthquake

    73

    Mw=9.2

    Valdezanddocksbeforeearthquake Afterearthquake

    Valdezdocksweredestroyedbyflowslidesandcommunitywaspulled

    apartbylateralspreadduring1964GreatAlaskaearthquake,Mw=9.2

    74

    Toavoid

    liquefaction

    hazard,Valdezwas

    rebuiltonanon

    liquefiablesiteLiquefiable

    glacialoutwash

    deposit

    (undeveloped)

    OilterminalforTrans

    AlaskaPipeline

    OldValdez

    (abandoned)

    75

    3km

    Diagramsshowing

    depths

    and

    locations

    of

    liquefiable

    layers

    beneath

    highwayI15,SaltLakeCity,Utah,interpretedfromCPTdata

    Loganalyzedinnextslide

    AcceptTheHazardFS

  • 7/28/2019 Youd Presentation

    14/16

    11/29/20

    Ground fissures caused by lateral spread during 1995 Kobe, Japan

    earthquake; fissures continue beneath houses but caused no damage79

    Foundation under construction

    at time of 1995 Kobe, Japan

    earthquake; note foundation

    walls and grade beams are well

    reinforced creating a strong

    diaphragm. Strengthened

    foundations can withstand

    differential ground

    displacement without fracture

    80

    Cross section showing

    pile configuration for a

    building on Rokko Island

    shaken by 1995 Kobe,

    Japan Earthquake;

    liquefaction and ground

    settlement (up to 0.75 m)

    occurred without causing

    detectable structural

    damage to buildings

    Pile foundations are an

    effective structural

    mitigation measure for at

    sites with tolerable lateral

    ground displacement

    Liquefiable

    loosefill

    81

    As noted previously, liquefaction and lateral spread beneath Rio

    Estrella highway bridge did not generate significant displacement ofabutments and piers founded on sufficiently strong 12BP53steelpiles

    StabilizetheGround

    Manyproceduresmaybeappliedtocompact,drainorcementliquefiable

    soilstoincreasestrengthanddecreasedeformationpotential

    Bottomfedstonecolumns,asshownabove,isacommonlyapplied

    procedureinUSAandothercountriesforstabilizingliquefiablesoils

    83

    Compactsoilwithstonecolumns

    orothervibrocompaction

    techniques

  • 7/28/2019 Youd Presentation

    15/16

    11/29/20

    Constructionoftopfed

    stonecolumn

    caption

    Los Angeles County decided to rebuild the San Fernando Valley

    Juvenile Hall on existing site, but with soils stabilized by excavation

    and replacement or by soil grouting 86

    Exampleofexcavationsoilreplacementandsoilgrouting

    Trench

    cut

    through

    Juvenile

    Hall

    site

    to

    investigate

    existence

    of

    an

    active

    fault;

    trenchwasbackfilledwithcompactedsoiltoformabuttressagainstpossible

    lateralspreaddisplacementduringfutureearthquakes 87

    DiagrammaticcrosssectionshowinggroundstabilizationthatoccurredatSan

    FernandoValleyJuvenileHallsitepriortoreconstructingfacility

    88

    Rebuilt San Fernando

    Valley Juvenile Hall was

    not damaged during

    1994 Northridge

    earthquake. The 1994

    earthquake shook thesite as strongly as the

    1971 San Fernando

    earthquake, but without

    generating destructive

    lateral ground

    displacements.

    89

    Rebuilt San Fernando

    Valley Juvenile Hall after

    the 1994 Northridge

    earthquake. Note open

    minor fissure along buildingwall indicating minor lateral

    spread was generated in

    unmodified ground during

    1994 earthquake.

  • 7/28/2019 Youd Presentation

    16/16

    11/29/20

    SoilDrainsSummary:

    1.Liquefactionmaycauseanyofthefollowingtypesofgroundfailure:

    Flowfailure

    LateralSpread

    GroundOscillation

    Lossof

    bearing

    strength

    GroundSettlement

    2.Amountofpotentialliquefactioninducedgrounddeformationsor

    displacementsassociatedshouldbedetermined. Ifamountofground

    displacementistolerabletothestructure,mitigationisnotrequired.

    3.Thefollowingmitigationmeasuresmaybeapplied:

    Avoidthehazard

    Acceptthehazard

    Strengthenthestructure

    Stabilizetheground

    92