z. feng mtu ee4800 cmos digital ic design & analysis 4.1 ee4800 cmos digital ic design &...

60
Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis Analysis 4. 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng

Post on 20-Jan-2016

250 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.11

EE4800 CMOS Digital IC Design & Analysis 

Lecture 4 DC and Transient Responses, Circuit Delays

Zhuo Feng

Page 2: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.22

Outline■Pass Transistors■DC Response■Logic Levels and Noise Margins■Transient Response■RC Delay Models■Delay Estimation

Page 3: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.33

Activity1)     If the width of a transistor increases, the current will 

increase decrease not change 2)     If the length of a transistor increases, the current will

increase decrease not change3)     If the supply voltage of a chip increases, the

maximum transistor current willincrease decrease not change

4)     If the width of a transistor increases, its gate capacitance willincrease decrease not change

5)     If the length of a transistor increases, its gate capacitance willincrease decrease not change

6)     If the supply voltage of a chip increases, the gate capacitance of each transistor willincrease decrease not change

Page 4: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.44

Activity1)     If the width of a transistor increases, the current will 

increase decrease not change 2)     If the length of a transistor increases, the current will

increase decrease not change3)     If the supply voltage of a chip increases, the

maximum transistor current willincrease decrease not change

4)     If the width of a transistor increases, its gate capacitance willincrease decrease not change

5)     If the length of a transistor increases, its gate capacitance willincrease decrease not change

6)     If the supply voltage of a chip increases, the gate capacitance of each transistor willincrease decrease not change

Page 5: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.55

Pass Transistors■ We have assumed source is grounded■ What if source > 0?

► e.g. pass transistor passing VDD

■ Vg = VDD

► If Vs > VDD-Vt, Vgs < Vt

► Hence transistor would turn itself off

■ NMOS pass transistors pull no higher than VDD-Vtn

► Called a degraded “1”

► Approach degraded value slowly (low Ids)

■ PMOS pass transistors pull no lower than Vtp

VDDVDD

Page 6: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.66

Pass Transistor Ckts

VDDVDD Vs = VDD-Vtn

VSS

Vs = |Vtp|

VDD

VDD-Vtn VDD-Vtn

VDD-Vtn

VDD

VDD VDD VDD

VDD

VDD-Vtn

VDD-2Vtn

Page 7: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.77

DC Response■DC Response: Vout vs. Vin for a gate

■Ex: Inverter►When Vin = 0 -> Vout = VDD

►When Vin = VDD -> Vout = 0

► In between, Vout depends on

transistor size and current►By KCL, must settle such that

Idsn = |Idsp|

►We could solve equations►But graphical solution gives more insight

Idsn

Idsp Vout

VDD

Vin

Page 8: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.88

Transistor Operation■ Current depends on region of transistor

behavior

■ For what Vin and Vout are NMOS and PMOS in► Cutoff?► Linear?► Saturation?

Page 9: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.99

NMOS Operation

Cutoff Linear Saturated

Vgsn < Vtn Vgsn > Vtn

Vdsn < Vgsn – Vtn

Vgsn > Vtn

Vdsn > Vgsn – Vtn

Idsn

Idsp Vout

VDD

Vin

Page 10: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.1010

NMOS Operation

Cutoff Linear Saturated

Vgsn < Vtn Vgsn > Vtn

Vdsn < Vgsn – Vtn

Vgsn > Vtn

Vdsn > Vgsn – Vtn

Idsn

Idsp Vout

VDD

Vin

Vgsn = Vin

Vdsn = Vout

Page 11: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.1111

NMOS Operation

Cutoff Linear Saturated

Vgsn < Vtn

Vin < Vtn

Vgsn > Vtn

Vin > Vtn

Vdsn < Vgsn – Vtn

Vout < Vin - Vtn

Vgsn > Vtn

Vin > Vtn

Vdsn > Vgsn – Vtn

Vout > Vin - Vtn

Idsn

Idsp Vout

VDD

Vin

Vgsn = Vin

Vdsn = Vout

Page 12: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.1212

PMOS Operation

Cutoff Linear Saturated

Vgsp > Vgsp <

Vdsp >

Vgsp <

Vdsp <

Idsn

Idsp Vout

VDD

Vin

Page 13: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.1313

PMOS Operation

Cutoff Linear Saturated

Vgsp > Vtp Vgsp < Vtp

Vdsp > Vgsp – Vtp

Vgsp < Vtp

Vdsp < Vgsp – Vtp

Idsn

Idsp Vout

VDD

Vin

Page 14: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.1414

PMOS Operation

Cutoff Linear Saturated

Vgsp > Vtp Vgsp < Vtp

Vdsp > Vgsp – Vtp

Vgsp < Vtp

Vdsp < Vgsp – Vtp

Idsn

Idsp Vout

VDD

Vin

Vgsp = Vin - VDD

Vdsp = Vout - VDD

Vtp < 0

Page 15: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.1515

PMOS Operation

Cutoff Linear Saturated

Vgsp > Vtp

Vin > VDD + Vtp

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp > Vgsp – Vtp

Vout > Vin - Vtp

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp < Vgsp – Vtp

Vout < Vin - Vtp

Idsn

Idsp Vout

VDD

Vin

Vgsp = Vin - VDD

Vdsp = Vout - VDD

Vtp < 0

Page 16: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.1616

I-V Characteristics■Make PMOS is wider than NMOS such

that n = pVgsn5

Vgsn4

Vgsn3

Vgsn2Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

-VDD

Vdsn

-Vdsp

-Idsp

Idsn

0

Page 17: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.1717

Current vs. Vout, Vin

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

Page 18: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.1818

Load Line Analysis

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

■For a given Vin:►Plot Idsn, Idsp vs. Vout

►Vout must be where |currents| are equal in

Idsn

Idsp Vout

VDD

Vin

Page 19: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.1919

Load Line Analysis

Vin0

Vin0

Idsn, |Idsp|

VoutVDD

■Vin = 0

Page 20: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.2020

Load Line Analysis

Vin1

Vin1Idsn, |Idsp|

VoutVDD

■Vin = 0.2VDD

Page 21: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.2121

Load Line Analysis

Vin2

Vin2

Idsn, |Idsp|

VoutVDD

■Vin = 0.4VDD

Page 22: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.2222

Load Line Analysis

Vin3

Vin3

Idsn, |Idsp|

VoutVDD

■Vin = 0.6VDD

Page 23: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.2323

Load Line Analysis

Vin4

Vin4

Idsn, |Idsp|

VoutVDD

■Vin = 0.8VDD

Page 24: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.2424

Load Line Analysis

Vin5Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

■Vin = VDD

Page 25: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.2525

Load Line Summary

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

Page 26: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.2626

DC Transfer Curve■Transcribe points onto Vin vs. Vout plot

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

VoutVDD

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+Vtp

Page 27: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.2727

Operating Regions■Revisit transistor operating regions

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+Vtp

Region NMOS PMOS

A Cutoff Linear

B Saturation Linear

C Saturation Saturation

D Linear Saturation

E Linear Cutoff

Page 28: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.2828

Beta Ratio■ If p / n 1, switching point will move from

VDD/2

■ Called skewed gate■ Other gates: collapse into equivalent inverter

Vout

0

Vin

VDD

VDD

0.51

2

10p

n

0.1p

n

Page 29: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.2929

Noise Margins■How much noise can a gate input see

before it does not recognize the input?

IndeterminateRegion

NML

NMH

Input CharacteristicsOutput Characteristics

VOH

VDD

VOL

GND

VIH

VIL

Logical HighInput Range

Logical LowInput Range

Logical HighOutput Range

Logical LowOutput Range

Page 30: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.3030

Logic Levels■ To maximize noise margins, select logic levels

at ► unity gain point of DC transfer characteristic

VDD

Vin

Vout

VOH

VDD

VOL

VIL VIHVtn

Unity Gain PointsSlope = -1

VDD-|Vtp|

p/n > 1

Vin Vout

0

Page 31: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.3131

Transient Response■ DC analysis tells us Vout if Vin is constant

■ Transient analysis tells us Vout(t) if Vin(t) changes

► Requires solving differential equations

■ Input is usually considered to be a step or ramp

► From 0 to VDD or vice versa

Page 32: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.3232

Inverter Step Response■ Ex: find step response of inverter driving load

cap0

0

( )

( )

( )

( )

ou

DDin

t

out

u t t V

d

d

t

t t

V t

V

V

t

Vin(t) Vout(t)Cload

Idsn(t)

Page 33: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.3333

Inverter Step Response■ Ex: find step response of inverter driving load

cap0

0(

( ))

(

(

)

)

DD

Do

i

D

o t

n

ut

u

V t

u t t V

V

d

d

t

t

V

V

t

t

Vin(t) Vout(t)Cload

Idsn(t)

Page 34: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.3434

Inverter Step Response■ Ex: find step response of inverter driving load

cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

( ) DD tout

ou

ds

t DD t

nI t V V

VV V

V

t t

Vin(t) Vout(t)Cload

Idsn(t)

Page 35: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.3535

Inverter Step Response■ Ex: find step response of inverter driving load

cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

2

2

0

2)

)

( ( )

( DD DD t

DD

out

outout out D t

n

t

ds

D

I V

t t

V V V V

V V V VV

t

V t V t

Vin(t) Vout(t)Cload

Idsn(t)

Page 36: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.3636

Inverter Step Response■ Ex: find step response of inverter driving load

cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

2

2

0

2)

)

( ( )

( DD DD t

DD

out

outout out D t

n

t

ds

D

I V

t t

V V V V

V V V VV

t

V t V t

Vout(t)

Vin(t)

t0t

Vin(t) Vout(t)Cload

Idsn(t)

Page 37: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.3737

Delay Definitions■ tpdr: rising propagation delay

► From input to rising output crossing VDD/2

■ tpdf: falling propagation delay► From input to falling output crossing VDD/2

■ tpd: average propagation delay► tpd = (tpdr + tpdf)/2

■ tr: rise time► From output crossing 0.2 VDD to 0.8 VDD

■ tf: fall time► From output crossing 0.8 VDD to 0.2 VDD

Page 38: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.3838

Delay Definitions■ tcdr: rising contamination delay

► From input to rising output crossing VDD/2

■ tcdf: falling contamination delay► From input to falling output crossing VDD/2

■ tcd: average contamination delay► tpd = (tcdr + tcdf)/2

Page 39: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.3939

Simulated Inverter Delay■ Solving differential equations by hand is too hard■ SPICE simulator solves the equations numerically

► Uses more accurate I-V models too!

■ But simulations take time to write

(V)

0.0

0.5

1.0

1.5

2.0

t(s)0.0 200p 400p 600p 800p 1n

tpdf = 66ps tpdr = 83psVin Vout

Page 40: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.4040

Delay Estimation■ We would like to be able to easily estimate delay

► Not as accurate as simulation► But easier to ask “What if?”

■ The step response usually looks like a 1st order RC response with a decaying exponential.

■ Use RC delay models to estimate delay► C = total capacitance on output node► Use effective resistance R► So that tpd = RC

■ Characterize transistors by finding their effective R

► Depends on average current as gate switches

Page 41: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.4141

Effective Resistance■ Shockley models have limited value

► Not accurate enough for modern transistors► Too complicated for much hand analysis

■ Simplification: treat transistor as resistor► Replace Ids(Vds, Vgs) with effective resistance R

▼ Ids = Vds/R

► R averaged across switching of digital gate

■ Too inaccurate to predict current at any given time

► But good enough to predict RC delay

Page 42: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.4242

RC Delay Model■ Use equivalent circuits for MOS transistors

► Ideal switch + capacitance and ON resistance► Unit NMOS has resistance R, capacitance C► Unit PMOS has resistance 2R, capacitance C

■ Capacitance proportional to width■ Resistance inversely proportional to width

kg

s

d

g

s

d

kCkC

kCR/k

kg

s

d

g

s

d

kC

kC

kC

2R/k

Page 43: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.4343

RC Values■ Capacitance

► C = Cg = Cs = Cd = 2 fF/m of gate width

► Values similar across many processes

■ Resistance► R 6 K*m in 0.6um process► Improves with shorter channel lengths

■ Unit transistors► May refer to minimum contacted device (4/2 )► Or maybe 1 m wide device► Doesn’t matter as long as you are consistent

Page 44: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.4444

Inverter Delay Estimate■ Estimate the delay of a fanout-of-1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

C

2C

C

2C

RY

2

1

Delay = 6RC

Page 45: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.4545

Delay Model Comparison

Page 46: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.4646

Example: 3-input NAND■ Sketch a 3-input NAND with transistor widths

chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

3

3

222

3

Page 47: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.4747

3-input NAND Caps■ Annotate the 3-input NAND gate with gate and

diffusion capacitance.

2 2 2

3

3

3

Page 48: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.4848

3-input NAND Caps■ Annotate the 3-input NAND gate with gate and

diffusion capacitance.

2 2 2

3

3

33C

3C

3C

3C

2C

2C

2C

2C

2C

2C

3C

3C

3C

2C 2C 2C

Page 49: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.4949

3-input NAND Caps■ Annotate the 3-input NAND gate with gate and

diffusion capacitance.

9C

3C

3C3

3

3

222

5C

5C

5C

Page 50: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.5050

A B C

Inv 1 Inv 2

( ) 1

t

RCV t e

R

C

V(t)1v

What is the time constant for more complex circuits?

Time Constant=RC

Elmore Delay

Page 51: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.5151

Elmore Delay (Cont.)■ ON transistors look like resistors■ Pullup or pulldown network modeled as RC ladder■ Elmore delay of RC ladder

R1 R2 R3 RN

C1 C2 C3 CN

nodes

1 1 1 2 2 1 2... ...

pd i to source ii

N N

t R C

RC R R C R R R C

Page 52: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.5252

,T R Cdelay i downstream ii on path

Tdelay,4=R1(C1+C2+C3+C4+C5)+R2(C2+C4+C5)+R4C4

Elmore Delay (Cont’d)

Resistance-oriented Formula:

Page 53: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.5353

Example: 2-input NAND■ Estimate worst-case rising and falling delay of

2-input NAND driving h identical gates.

h copies2

2

22

B

Ax

Y

Page 54: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.5454

Example: 2-input NAND■ Estimate rising and falling propagation delays

of a 2-input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

Page 55: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.5555

Example: 2-input NAND■ Estimate rising and falling propagation delays

of a 2-input NAND driving h identical gates.

h copies

6C

2C2

2

22

4hC

B

Ax

Y

R

(6+4h)CY

6 4pdrt h RC

RisingDelayRisingDelay

Page 56: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.5656

Example: 2-input NAND■ Estimate rising and falling propagation delays

of a 2-input NAND driving h identical gates.

h copies

6C

2C2

2

22

4hC

B

Ax

Y

2 2 22 6 4 7 4R R Rpdft C h C h RC

(6+4h)C2CR/2

R/2x YFallingDelayFallingDelay

Page 57: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.5757

Delay Components■ Delay has two parts

► Parasitic delay▼ 6 or 7 RC▼ Independent of load

► Effort delay▼ 4h RC▼ Proportional to load capacitance

Page 58: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.5858

Contamination Delay■ Best-case (contamination) delay can be

substantially less than propagation delay.■ Ex: If both inputs fall simultaneously

6C

2C2

2

22

4hC

B

Ax

Y

R

(6+4h)CYR

3 2cdrt h RC

Page 59: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.5959

■ We assumed contacted diffusion on every s / d.■ Good layout minimizes diffusion area■ Ex: NAND3 layout shares one diffusion contact

► Reduces output capacitance by 2C► Merged un-contacted diffusion might help too

7C

3C

3C3

3

3

222

3C

2C2C

3C3C

IsolatedContactedDiffusionMerged

UncontactedDiffusion

SharedContactedDiffusion

Diffusion Capacitance

Page 60: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 4.1 EE4800 CMOS Digital IC Design & Analysis Lecture 4 DC and Transient Responses, Circuit Delays

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

4.4.6060

Layout Comparison■ Which layout is better?

AVDD

GND

B

Y

AVDD

GND

B

Y