-andrew ludlow -martin boyd -gretchen campbell -sebastian blatt -jan thomsen - matt swallows -travis...

20
-Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches: Jeff Kimble, Caltech Mirror coatings: Ramin Lalezari, Advanced Thin Films An Introduction to Noise in Frequency Stabilization Michael J. Martin University of Colorado at Boulder, JILA PTB collaborators: Uwe Sterr, Fritz Riehle

Upload: samantha-cordelia-randall

Post on 21-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

-Andrew Ludlow-Martin Boyd

-Gretchen Campbell

-Sebastian Blatt

-Jan Thomsen

- Matt Swallows

-Travis Nicholson

The Sr team:

Group leader: Jun Ye

New approaches: Jeff Kimble, Caltech

Mirror coatings: Ramin Lalezari, Advanced Thin Films

An Introduction to Noise in Frequency StabilizationMichael J. MartinUniversity of Colorado at Boulder, JILA

PTB collaborators: Uwe Sterr, Fritz Riehle

Page 2: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

Motivations

• Optical atomic clocks (spectroscopy).

FWHM:2.1 Hz

• Gravity wave detection.

• More…

• Quantum Optics.

Page 3: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

Introduction – Noise sources

LaserFabry-Perot Cavity

Pound-Drever-Hall

Discriminator

Cavity servo

Contamination of signal (RAM)

5-100 Hz

Seismic acceleration

Erro

r sig

nal

P / cav

-For 10 cm ultra-high-finesse cavity, shot noise contributes ~10-16 with 10 W optical power.

(Thermal noise)

Page 4: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

h/L0

L

(h)/

L0

Vibrational Sensitivity

-Low frequency: Cavity subject to uniform acceleration.

Chen et. al. PRA 74, (2006)

Fractional displacementVs. height

-Fractional length change scales linearly with length!

h

L/L

0

Page 5: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

4 nm

-4 nm

0.8 nm/div aHorizontaldeflection

per g0

Mounting geometry

Chen et. al. PRA 74, (2006)

-Finite element analysis aids in determining vibrational sensitivity.

-Eg. for 10cm ULE Cavity, sensitivity is at best 80 kHz/m/s2 @ 698nm.

Vibrational Sensitivity:

Page 6: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

Mid-plane Mounting:

M. Notcutt et. al. Optics Letters 30, (2005).

-ULE vertical acceleration sensitivity: 30 kHz/m/s2 @ 698 nm.

-Differential motion minimized.

Mounting geometryVibrational Sensitivity:

-Short cavity vibrational insensitivity.

Verticaldeflection

per g

21 nm

25 nm

0.5 nm/div

Page 7: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

The JILA Sr clock laser

-Finesse = 250,000

-Spacer length = 7cm

-Spacer and substrate material: ULE *

-Linear drift: <1 Hz/sec

-System occupies < 1 m3

*Notcutt et. al PRA 73, (2006).

-Vibrational contribution: .1 Hz/rtHz @ 1 Hz.

Page 8: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

-Mirror technology:

- 40 layers of Ta2O5 and SiO2 ¼ wave

dielectric stacks *.

-Deposited via ion beam sputtering.

-Surface flatness and reflectivity support finesse of 250,000.

The JILA Sr clock laser

*Numata et. al. PRL 93, 2004.

-Substrate and coating thermal noise limited.

Page 9: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

Thermal noise-With internal dissipation comes thermally driven fluctuations.

(in 1 Hz BW)

-Generalized coordinate—Gaussian-weighted surface displacement:

A. Gillespie and F. Raab, PRD (1995)

-Most significant thermal contributions typically from mirror substrate and coating, not cavity spacer.

Y. Levin. Physical Review D 57, 659 (1997).

Callen and Greene. PR 86 (1952)

-Thermoelastic noise small for low CTE materials.

Page 10: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

Mirror Thermal noise

K. Numata et. al. PRL 93, (2004).G. M. Harry et. al. Class. Quant. Grav. 19, (2002).

N. Nakagawa et. al. PRD 65, (2002).

Complex (lossy) Young’s modulus:

-ULE cavity has 1.5 times more substrate noise than coating noise.

-Fractional change scales inversely with length!

Page 11: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

Long-term coherence (>1 s) across the visible spectrum

Hz

Notcutt et al., Opt. Lett. 30, (2005).Ludlow et al., PRL 96, (2006).

Laser 2

Cavity 2 Cavity 1

Laser 1

Beat between two independent lasers

Page 12: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

Frequency fluctuations from thermal noise in Fabry-Perot cavities

Loss angle

Zerodur 3e-4

Fused Silica 1e-6

Coating 4e-4

6

10-14

2

4

6

10-13

2

4

Alla

n d

evi

atio

n

0.001 0.01 0.1 1 10 100

Integration time [s]

35 mm zerodur spcr/ FS mirrors 35 mm zerodur spcr/ zerodur mirrors 10 mm zerodur spcr/ zerodur mirrors

300 K=1/Q

FP Cavity Thermal reservoir

FS mirrors -> Zerodur mirrors

35mm -> 10mm long spacer

Measured/calculated ~ 1.8-2.6K Numata, PRL 93, 250602 (2004)

Notcutt et. al PRA 73, (2006).

Page 13: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

Comparison of results & theory

CaseCalculatedAllan-dev.

MeasuredLowest Point

A-dev

RatioMeasured/Calc

MeasuredDisplacement

Noise

(m/rtHz)

FS Subs 2.8×10-15 5.0×10-15 1.8

Zerodur Subs 1.3×10-14 2.0×10-14 1.6 1.0×10-15

698 nm cavity 9.4×10-15 2.5×10-14 2.7 1.2×10-15

10 mm w/ Zer 3.8×0-14 1.0×10-13 2.7 1.0×10-15

10mm w/ FS 7.1×10-15 3.0×10-14 4.2 2.7×10-16

Page 14: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

JILA Clock laser frequency noise

A. D. Ludlow et. al. Opt. Lett. 32, 641 (2007).

Cavity 1 Cavity 2

Data (dotted) and chirped sine fit (solid)

Page 15: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

Frequency noise S.D.

Measurementnoise floor

Thermal noisetheory

Measured freq. noise

Vibrationalcontribution

Ludlow et al., Opt. Lett. 32, 641 (2007)

Page 16: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

Thermal Noise

-Can relate fractional frequency stability (Allan Deviation) to frequency noise spectral density with 1/f behavior:

ThermalNoise:

Page 17: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

Record high precision and stability

Boyd et al., Science 314, 1430 (2006)

• Single trace without averaging

• Estimated instability /102~)( 15

FWHM:2.1 Hz

Ludlow et al., Opt. Lett. 32, 641 (2007)

Q ~ 2.5 x 1014Sr – Yb standards

Jan. 2008

Ludlow et al., Science in press (2008)

Quantum projectionnoise

Page 18: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

QPN on the horizon

-To reach the quantum projection potential we must overcome the dominant thermal noise.

-Higher substrate Q

-Lower temperature

-For the future: Si cavity-- Thermal coefficient = 0 @ 120 K- 150 GPa Young’s modulus

1.5 micron light

Page 19: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

Conclusions

-Thermal noise in substrate/coatings is currently largest noise source.

-Higher Q substrate can reduce this contribution.-Possible coating noise cancellation schemes? (Jeff Kimble)-Lower temperatures help, but only as

-Designs trade off between vibrational and thermal sensitivity.

-Longer cavities better thermal insensitivity, greater vibrational sensitivity.

.T

-New Silicon design will improve both vibrational insensitivity and increase material Q.

Page 20: -Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:

Rainbow from comb

-Andrew Ludlow-Martin Boyd

-Gretchen Campbell

-Sebastian Blatt

-Jan Thomsen

- Matt Swallows

-Travis Nicholson

The Sr team:

Group leader: Jun Ye

New approaches: Jeff Kimble, Caltech

Mirror coatings: Ramin Lalezari, Advanced Thin Films

PTB collaborators: Uwe Sterr, Fritz Riehle