>> designing complex frontend modules for ka-band and wigig … · 2015-10-05 ·...

27
>> Designing complex Frontend Modules for Ka-Band and WiGig communication using XPU-Technology Contact: W. Simon E-Mail:[email protected]

Upload: others

Post on 12-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

>> Designing complex Frontend Modules for Ka-Band and WiGig communication using XPU-Technology

Contact:

W. Simon

E-Mail:[email protected]

Page 2: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

Introduction

XPU Technology

• Overview

• Algorithmic enhancements for FDTD

• Benchmark results

Application examples

• 30 GHz KA Band Frontend

• WiGig Frontend

• Automotive Radar antennas

Conclusion

Outline

© IMST GmbH - All rights reserved

Page 3: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

Advanced Numerical Modeling Today’s Design Challenges:

• Design Complexity • Tight Coupling with other electronics • Effects of advanced packages • Varying dimensions/aspect ratios • User interaction/ environment • . . .

• Accurate and powerful tools for numerical EM modeling needed

XPU FDTD technology

Full 3D FDTD modeling Memory and CPU time efficient

© IMST GmbH - All rights reserved

Page 4: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

Specific assembler code created for each simulation to fit CPU architecture and simulation model

Individual code adaptation for latest CPU’s (AVX, AVX2,…)

Speed not limited by RAM access time due to efficient last level cache usage (multiple time step principle)

Ability to access the complete RAM of PC (> 512 GB today)

High simulation speed for all simulation model sizes

Multiple PC’s using the XPU technique can be efficiently clustered

Efficient simulation option by swapping on hard disk (simulation size of more then 1 TB possible)

IMST invented software acceleration technique for

FDTD simulation on modern CPU‘s

XPU Technology

© IMST GmbH - All rights reserved

Page 5: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

2 x Intel Xeon E5-2687 W, 3.1 GHz, 16 cores

Evaluation of algorithmic components and resulting

performance

Multi Thread

Multi Time

Stepping

E&H AVX Speed Mcells/s

x x x x 108 x x x √ 183 x x √ √ 295 x √ √ √ 468 √ √ √ √ 5600

1 core

16 cores

Optimized FDTD code

EMPIRE XPU

XPU Technology

© IMST GmbH - All rights reserved

Page 6: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

Cost- & Energy- efficient computing I7-4770 PC ~ 700 € I7-5960x PC ~ 1800 € Dual Xeon workstation ~ 7000 € Workstation + GPU ~ 9000 €

XPU technology surpasses simulation speed of GPU cards for FDTD simulations

XPU Technology vs. GPU

© IMST GmbH - All rights reserved

Page 7: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

Complete Mobile Phone: PA analysis

• Frequency DC - 5 GHz • Resolution: 25 µm • 32 ports • Simulation time: 1 min/port

(3 Mcells, 150 MByte RAM) • 3D EM simulation includes all

couplings

Complete HPA module for GSM and XCS

1 2 3 40 5

-40

-30

-20

-10

-50

0

freq, GHz

Photo of PA

Output matching GSM:simulation vs. measurement

Apr-15 © IMST GmbH - All rights reserved

Page 8: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

KA-Band / 5G DBF frontend module 8

High complexity High flexibility

Flexible modular concept

Apr-15 © IMST GmbH - All rights reserved

Page 9: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

9

Apr-15 © IMST GmbH - All rights reserved

KA-Band / 5G DFB TX frontend module

Page 10: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

10 LTCC frontend: Main functional layers

Apr-15 © IMST GmbH - All rights reserved

Page 11: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

11

back view, completely assembled

LTCC frontend: RF circuitry architecture

Apr-15 © IMST GmbH - All rights reserved

Page 12: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

• mixer combines 870 MHz IF and 30.6 GHz LO

• PA Output power ~ 10 dBm

LTCC frontend: RF chipset 12

bond wires included in simulation

Apr-15 © IMST GmbH - All rights reserved

Page 13: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

30 GHz KA Band frontend

© IMST GmbH - All rights reserved

Page 14: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

RF Frontend incl. 8x8 array antenna

simulation on dual Xeon E5-2697 600 Million cells (1664x1650x225) grid: 10 µm < ∆ < 215 µm 56000 objects memory usage: Field 16 GB simulation Speed: ~ 5800 Mcells/s simulation Time: < 2h *

30 GHz KA Band frontend

-30

-25

-20

-15

-10

-5

0

25 26 27 28 29 30 31 32 33 34 3

freq[GHz]

Sij [

dB]

S5151S1414Sim Port 22

operating frequency band

s1414_t1 s1414_t2 simulation

Measurement and simulation results

* simulation on Dual Xeon E5-2697 workstation © IMST GmbH - All rights reserved

Page 15: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

Size: 80 mm x 170 mm 60 GHz Substrate Integrated Waveguide Array Antenna in LTCC Operating frequency: 57-63 GHz (10 %) Max. scanning range: ± 30° in one plane Total array gain: 18-20 dBi

Apr-15 © IMST GmbH - All rights reserved

60 GHz WiGiG Frontend Module

SiGe chip design

Antenna

Page 16: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

Antenna Element Realization Technique

Periodic metallic posts (via fences)

Cavity for element matching to free space

E- plane

(SIW) Substrate Integrated Waveguide in Low Temperature Co-fired Ceramic (LTCC)

Metallization between the layers

High number of layers Large number of vias

High εr Leakage through via gaps Band stop structure

Apr-15 © IMST GmbH - All rights reserved

Page 17: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

Electric field @ 60 GHz

size: 80 mm x 170 mm mesh: 35 Million cells resolution 25 µm < d < 250 µm memory usage: 1.5 GB simulation speed: 5200 Mcells/s simulation time: 1 min*

60 GHz WiGig Frontend Module

* simulation on Dual Xeon E5-2697 workstation © IMST GmbH - All rights reserved

Page 18: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

Reflection Coefficient

-30

-25

-20

-15

-10

-5

0

50 55 60 65 70

freq[GHz]

S11

[dB

]

MeasuermentSimulation

60 GHz WiGiG Frontend Module

© IMST GmbH - All rights reserved

Page 19: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

4 x 12 element array

Backside microstrip feed network with Wilkinson dividers

Accurate 3D EM simulation of antenna, feed network and backside casing

24 GHz radar antenna (TX)

20 GHz – 28 GHz 53 Million cells, ~ 2 GB simulation speed: 7000 Mcells/s simulation time: ~8 min*

© IMST GmbH - All rights reserved * simulation on Dual Xeon E5-2697 workstation incl. metal & dielectric loss

Page 20: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

TX antenna measurements

Gai

n[dB

i]

Azimuth angle [deg]

Gai

n[dB

i]

Elevation angle [deg]

Excellent agreement between measurement and simulation

Gain, SLL and elevation as required

Apr-15 © IMST GmbH - All rights reserved

24 GHz radar antenna (TX)

Page 21: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

10 antenna rows with 14 series fed patch elements in each row

Eight sub arrays with 3 rows each used for RX azimuth beamforming

Dual use of antenna rows with innovative backside feed network

20 GHz – 28 GHz 216 Million cells, ~ 6.8 GB Simulation time: ~ 25 min

Apr-15 © IMST GmbH - All rights reserved

24 GHz radar antenna (RX)

Page 22: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

Gain RX azimuth antenna 1-8 – Excellent agreement between

measurement and simulation – Excellent element match – Wide azimuth diagram for DBF – Good uniform linear array

Gai

n[dB

i]

Azimuth angle [deg]

Gai

n[dB

i]

Elevation angle [deg]

Apr-15 © IMST GmbH - All rights reserved

24 GHz radar antenna (RX)

Page 23: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

Manufacturing on Rogers 4350

1st shot successful

Apr-15 © IMST GmbH - All rights reserved

24 GHz radar TX/RX module

Page 24: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

24 GHz Automotive TX/RX radar antenna

size: 80 mm x 170 mm dielectric thickness ~ 1mm, 4 metal layers 0201 SMD resistors for Wilkinson dividers and antenna rows end load 7 x 24 patches for TX & RX mesh 1112 x 1300 x 55 cells (108 Million cells) resolution 25 µm < d < 500 µm memory usage 3.14 GB simulation time 7 min (Dual Xeon workstation) ; speed 5850 Mcells/s

Backside feed network with housing Antenna with near field at 24 GHz

Apr-15 © IMST GmbH - All rights reserved

Page 25: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

-30

-25

-20

-15

-10

-5

0

23.6 24.1 24.6

f /GHz

S11

/dB

24 GHz ISM band simulation

measurement

Nearfield – comparison simulation/measurement simulation measurement

Return loss

good agreement between measurement and simulation

Apr-15 © IMST GmbH - All rights reserved

24 GHz Automotive TX/RX radar antenna

Page 26: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

Farfield & Electric field strengths at f = 77 GHz

frequency: DC - 77 GHz all parts metal except windscreen, bumper and tire (dielectric) results: s11, 2D & 3D farfield, nearfield in cutplanes size: 400 Million FDTD cells, 10 GB memory simulation speed: 6200 Million cells/s Simulation time: 20 min*

77 GHz radar antenna

Apr-15 © IMST GmbH - All rights reserved * simulation on Dual Xeon E5-2697 workstation

Page 27: >> Designing complex Frontend Modules for Ka-Band and WiGig … · 2015-10-05 · Introduction XPU Technology • Overview • Algorithmic enhancements for FDTD • Benchmark results

Conclusion

Innovative FDTD coding utilizing XPU technology enables

fast parallel computation on multicore and multi CPU

workstations in a memory efficient way

The XPU technique can utilize the full memory of the PC to

simulate large & complex EM-models

Empire shows accurate simulation results within

very short simulation time for complex frontend designs

The high accuracy of the simulation results enables shorter

prototype cycles and hence development costs are reduced

Apr-15 © IMST GmbH - All rights reserved