ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera...

91
TsAGI — ONERA 13 th SEMINAR CENTRAL AEROHYDRODYNAMIC INSTITUTE NAMED AFTER PR. N.E. ZHUKOVSKY 18th Workshop of the CEAS/X-Noise AIRCRAFT NOISE REDUCTION BY FLOW CONTROL AND ACTIVE/ ADAPTIVE TECHNIQUES 25-26 September 2014 Vilnius Gediminas Technical University, Lithuania X-NOISE EV X -Noise V. F. Kopiev Central Aerohydrodinamic Institute (TsAGI), Moscow ON INSTABILITY WAVE CONTROL IN TURBULENT JETS

Upload: others

Post on 19-Oct-2020

21 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

TsAGI — ONERA

13th SEMINAR

CENTRAL AEROHYDRODYNAMIC INSTITUTE NAMED AFTER PR. N.E. ZHUKOVSKY

18th Workshop of the CEAS/X-Noise AIRCRAFT NOISE REDUCTION BY FLOW CONTROL AND

ACTIVE/ ADAPTIVE TECHNIQUES

25-26 September 2014Vilnius Gediminas

Technical University, Lithuania

X-NOISE EV

X-Noise

V. F. KopievCentral Aerohydrodinamic Institute (TsAGI), Moscow

ON INSTABILITY WAVE CONTROL IN TURBULENT JETS

Page 2: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

In supersonic jet one of the mechanisms of sound radiation is identified and is ready to noise control strategy

formulation. We issue the same mechanism exists in hot high speed subsonic jet.

The Main questions are:

Strategy of excitation?

Original assumptions?

Physical principle for control?

Approaches?

Proposed approach

Page 3: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Possible mechanisms of noise generation

Large-scale structures in the mixing layer of a jet do not directly radiate noise, if they travel with a subsonic speed with respect to the ambient air.

Large-scale structures directly radiate noise.(additional mechanism to pairing, tilting, etc.)

V V

Supersonic jet, wavy wall Subsonic jet, vortex ringLow speed subsonic jet

pairing tilting

Page 4: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Nozzle exit solutions for intensification of lengthwise vorticity for instability wave control

Page 5: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

The main methods of noise control are made on checking some a priory proposed configurations and on experimental search for the optimum. It is obviously, that this optimum substantially depends on the quantity of the models investigated and on the experimenter’s luck.

Nozzle exit solutions for intensification of lengthwise vorticity for instability wave control

Page 6: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Outline

HF DBD actuators for jet noise reduction (OPENAIR)

The

initial

concept. Streamwise vorticity creation.•

Actuator

design

and

characteristics

HF DBD actuator in external flow•

Jet noise control. Test

results.

Control mechanism.

Instability Wave Control by Plasma Actuators (ORINOCO)

To develop plasma actuators technologies dedicated to jet noise reduction:surface barrier corona dischargehigh-current gliding surface dischargehigh frequency dielectric barrier discharge

Demonstration of instability wave control

Page 7: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

HF DBD actuators for jet noise reduction

Page 8: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Vortex pair

Surface HF DBD actuator disposes

on the inner surface of nozzle.

Transversal flow is organized (steady or periodical) to affect the large scale structures in the initial part of jet

shear layer.

This system due to great flexibility in manufacturing and in work (compared chevrons) could be tuning for optimal parameters (in experiment).

Lengthwise vorticity organizing using Surface HF DBD

8

Page 9: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Scheme of plasma actuator

High-frequency power supply parameters

Voltage at discharge

0 -

20 kVPower

up to 5 kW

Carrier frequency

f =30-300 kHzModulation frequency F=1-30 kHz (depending on f),Modulation depth

100%.

9

Page 10: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

&

Two electrodes: creation of normal microjet

flow

No flow along the electrodes

Page 11: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

&

Nozzles with quartz cylinder exit

Page 12: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

&

Nozzles with quartz cylinder exit

Page 13: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

&

0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k[Hz]

40

50

60

70

80[dB/20u Pa]

Cursor valueX: 1.504k HzY: 44.452 dB/2Y: 78.635 dB/2

Autospectrum(Signal 2) - Without discharge (Real) \ FFT AnalyzerAutospectrum(Signal 2) - With discharge (Real) \ FFT Analyzer

Cylindrical nozzle with 6 electrodes; jet velocity is 100 m/s. The red curve corresponds to the absence of the discharge; the blue curve corresponds to the discharge with the modulation frequency of 1500 Hz.

Broadband noise amplification

Page 14: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

&

0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k[Hz]

40

50

60

70

80[dB/20u Pa]

Cursor valueX: 1.504k HzY: 51.714 dB/2Y: 78.791 dB/2

Autospectrum(Signal 2) - Without discharge (Real) \ FFT AnalyzerAutospectrum(Signal 2) - With discharge (Real) \ FFT Analyzer

Cylindrical nozzle with 6 electrodes; jet velocity is 120 m/s. The red curve corresponds to the absence of the discharge; the blue curve corresponds to the discharge with the modulation frequency of 1500 Hz.

Broadband noise amplification

Page 15: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

&

Conical nozzles with ceramic exit

Page 16: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

&

Conical nozzles with ceramic exit

Page 17: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

&

500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k[Hz]

10

20

30

40

50

60

70

80

[dB/20u Pa]

Cursor valuX: 1.67k HzY: 45.08 dB/2Y: 83.93 dB/2Y: 88.69 dB/2

Autospectrum(Signal 2) - Without discharge1 (Real) \ FFT AnalyzerAutospectrum(Signal 2) - With discharge (Real) \ FFT AnalyzerAutospectrum(Signal 2) - Discharge w/o flow (Real) \ FFT Analyzer

A conical nozzle with 6 electrodes; the jet velocity is 100 m/s.

The red curve corresponds to the jet noise with the absence of the discharge; the blue curve corresponds to

the jet noise with the discharge with the modulation frequency of 1668 Hz; the green curve corresponds to the discharge with the modulation frequency of 1668 Hz without the mean flow.

Conical nozzles with ceramic exit

Page 18: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

PIV measurements

TsAGI

IVTAN

CIAM

&

OPENAIR

Page 19: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

PIV measurements

&

Page 20: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

PIV measurements

&

V

Page 21: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

PIV measurements

2120.10.2014

Page 22: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Acoustic excitation

Page 23: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

&

Plasma excitation

(nozzle with quartz cylinder exit)

Page 24: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Tone excitation of the jet; a) plasma excitation, b) both plasma

and loudspeaker excitationwith close frequencies (beating) just before vortex ring disappearing.

The confirmation of the acoustical nature of the effect was demonstrated by visualization of plasma excited jet and acoustic driver excited jet.

The picture of the vortex rings is similar for these cases.

When the jet is excited both by loudspeaker and by plasma with identical frequencies it is easy to obtain the beating effect, when the picture of the vortex rings exist in one period of time and disappear in the other.

Page 25: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Noise control by high frequency excitation

V=100-200 m/s

f=6-12 kHz

D~5cm (conical)

d~5cm (cylindrical)

l=2-5 cm

&

l

D

Page 26: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

&

0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k[Hz]

40

50

60

70

80[dB/20u Pa]

Cursor valueX: 1.504k HzY: 44.452 dB/2Y: 78.635 dB/2

Autospectrum(Signal 2) - Without discharge (Real) \ FFT AnalyzerAutospectrum(Signal 2) - With discharge (Real) \ FFT Analyzer

Cylindrical nozzle with 6 electrodes; jet velocity is 100 m/s. The red curve corresponds to the absence of the discharge; the blue curve corresponds to the discharge with the modulation frequency of 1500 Hz.

Broadband noise amplification

Page 27: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

delta – 1.3 dB

Conical nozzle, V=150 м/с,Excitation f =10.352

kHz (St=3.46),Electrode location l=5

cm

to nozzle exit, Microphone at the angle 30°

to jet axis at the distance L=2 m.

Noise control by high frequency excitation

&

V=150 m/s, 300

Page 28: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

V=150 m/s

45

50

55

60

65

200 700 1200 1700 2200 2700 3200 3700 4200 4700

30, ref case90, ref case30, plasma90, plasma

Noise control by high frequency excitation

&

Page 29: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

V=200 m/s

40

50

60

70

80

90

100

200 5200 10200 15200 20200

30, ref case30, plasma

V=200 m/s

60

65

70

75

200 700 1200 1700 2200 2700 3200 3700 4200 4700

30, ref case30, plasma

V=200 m/s, 300

Saturation character of the effect of noise suppression

Noise control by high frequency excitation

&

Page 30: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

High frequency control of jet noise(Vlasov-Ginevsky

effect)

St=0.46 ; 3 –

.St=3.4

&

Page 31: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

&

Pproposed

plasma actuator configurations can induce at the nozzle inner surface an electric wind with the speed up to 3-4 m/s in the direction normal to the nozzle surface.

The effectiveness of actuator decreases if there is a mean flow along the electrode edge

The effect of HF DBD actuator on the jet for the used configuration is related with the acoustic radiation of the discharge and is in many ways

similar to the

Ginevsky-Vlasov

effect:

The jet excitation at St~0.5 results in the broadband amplification of jet noise.

High frequency plasma excitation (St~2-3) leads to low frequency band noise suppression;

However, high frequency broadband extra penalty would be higher the low frequency noise reduction.

Page 32: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

AMCT (Azimuthal

Mode Coupling Technique)

Page 33: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Experiments on jet noise reduction by corrugated nozzles

Experimental conditions:Cold jet, V=240

m/s, Venturi

tube for measuring flow rate

Microphones Bruel&Kjaer

type

4189СR= 2m, 90, 60 deg.

Page 34: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

It is shown that the increase in corrugation amplitude (the area

of the nozzle cross sections being fixed) leads to remarkable decrease in the far field noise levels around the spectral peak (0,1<St<0,7) and weak increase at high frequencies.

The total noise attenuation (in the band 0,16–25,6 kHz) was measured to be 2.3dB

Noise power density spectra, 60 deg.

Page 35: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Modification of jet mean flow for instability wave coupling

1st

stage –

corrugated nozzle 2nd stage –

steady plasma

Page 36: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

0 4k 8k 12k 16k 20k 24k[Hz]

20

30

40

50

60

[dB/20u Pa]

Delta CursorStart: 422.000 HzStop: 3.706k HzWidth: 3.284k HzDelta: 69.7738 dB/20uDelta: 69.0276 dB/20u

Autospectrum(Signal 2) - Without discharge (RAutospectrum(Signal 2) - With discharge (Real)

Quasistationary

plasma actuator based on HF DBD

Noise spectra of jet (100m/s)

Red curve – actuator offBlue curve – actuator on

-0.75dB

Discharge parameters:

High voltage 16 kVOscillation frequency 160 kHzModulation frequency without modulationPower about 1kWt

Page 37: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Direct Instability Wave Control

ORINOCO project

Page 38: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Re ~ 10 5… 106

Vortex sheet at the initial 

part of the shear layer

Instability waves –

suitable objects for active control

Statement: For high speed jets the mechanism of noise generation is related to a considerable degree with Kelvin-Helmholtz instability waves evolving

downstream from the nozzle edge

Page 39: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Sedel’nikov T.K. The frequency spectrum of the noise of a supersonic jet // Phys. Aero. NoiseMoscow: Nauka. 1967. (Trans. 1969. NASA TTF-538. P.71-75.)

Tam C.K.W., Burton D.E. Sound generated by instability waves of supersonic flows // J. Fluid Mech. 1984. V.138. P.249-295.

Crighton D.G., Huerre P. Shear-layer pressure fluctuations and superdirective acoustic sources //J. Fluid Mech. 1990. V.220. P.355-368.Suzuki, T., Colonius, T., “Instability waves in a subsonic round jet detected using a near-field phased icrophone array,” J. Fluid Mech., 2006, Vol. 565, pp. 197-226.Zaitsev M.Yu., Kopiev V.F., Chernyshev S.A. Experimental investigation of the role of instabilitywaves in noise radiation by supersonic jets // Fluid Dynamics. 2009. V.44, N.4, P.587-595.

Morris P.J. The instability of high speed jets // Int. J. Aeroacoustics. 2010. V.9. N.1-2. P.1-50.

Re ~ 10

5…106

Vortex sheet at the initial part of 

the shear layer

Page 40: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Plane wave incidence on the trailing edge

Wiener-Hopf

technique

Kutta-Zhukovsky

condition

Full solution contains the incident wave and diffraction field that along with instability wave satisfy the Kutta

condition near the edge. Therefore the instability

wave initial amplitude is determined by the incident wave properties only.

Page 41: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

( , , ) ( , , ) exp( )y k x y k i x dx

2 2, ( ) 0k k k M

2 2k

(1 ) (1 )M k M k

Governing Eqs

for 2D problem

~ exp i x ikct

2 0, 0I Ik y 2

0, 0II IIik M yx

~ exp y ~ exp y

Roots of this Eq. are the singularities of Ф

( , , ) ( , , )ikct i x

C

x y t A e y k e d

Page 42: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

1 2( , ) ( , ) ( , ) 0h x t h x t h x t We require the instability waves to suppress each other

Internal disturbance

Control action

1 1 1exp cos sini i iA ikct ik x ik y

2 22

2 2

cos sinexp

1 cos 1 cosi i

ii i

k kB ikct i x i y

M M

Governing Eqs

for 2D problem

Page 43: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

TsAGI — ONERA

13th SEMINAR

CENTRAL AEROHYDRODYNAMIC INSTITUTE NAMED AFTER PR. N.E. ZHUKOVSKY

shear layer

Jet

( , ) ( , )i t i xinner inner

C

p r t B e f y e d

loop around the root (residual input)

0

integration over the entire path along the axis Re

Page 44: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

TsAGI — ONERA

13th SEMINAR

CENTRAL AEROHYDRODYNAMIC INSTITUTE NAMED AFTER PR. N.E. ZHUKOVSKY

shear layer

Jet

Re

Im

0

( , ) ( , )i t i xinner innerp r t B e f y e d

Acoustic part

0 02

ˆ( , ) i t i x yiw innerp r t B f e

Hydrodynamic  part

( , ) ( , )i t i xinner inner

C

p r t B e f y e d

Page 45: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

TsAGI — ONERA

13th SEMINAR

CENTRAL AEROHYDRODYNAMIC INSTITUTE NAMED AFTER PR. N.E. ZHUKOVSKY

shear layer

Jet

Re

Im

0

( , ) ( , )i t i xouter outerp r t A e f y e d

Acoustic part

0 01

ˆ( , ) i t i x yiw outerp r t A f e

Hydrodynamic  part

( , ) ( , )i t i xinner inner

C

p r t A e f y e d

Page 46: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

TsAGI — ONERA

13th SEMINAR

CENTRAL AEROHYDRODYNAMIC INSTITUTE NAMED AFTER PR. N.E. ZHUKOVSKY

shear layer

Jet

Re

Im

0

( , ) ( , ) ( , )i t i xouter innerp r t e A f y B f y e d

Acoustic part

0 0ˆ ˆ( , ) i t i x yiw outer innerp r t A f B f e

Hydrodynamic  part

Page 47: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

TsAGI — ONERA

13th SEMINAR

CENTRAL AEROHYDRODYNAMIC INSTITUTE NAMED AFTER PR. N.E. ZHUKOVSKY

shear layer

Jet

( , ) ( , ) ( , )i t i xouter innerp r t e A f y B f y e d

Acoustic part ≠

0

Re

Im

0

ˆ ˆ( , ) 0, /iw inner outerp r t A B f f

Hydrodynamic  part = 0

Page 48: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Theory for the axisymmetric jet (3D)

Page 49: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Relation between the control action and internal disturbance parameters 

0

01 1

1 ( )1 ( )k k

M M

H k k BM H

0

0

002

( )

( )lim H

icH k kA h

k

1 2( , ) ( , ) ( , ) 0h x t h x t h x t We require the instability waves to suppress each other

Internal disturbance

Control action

1 expi A ikct kx

2 exp1i

kB ikct i xM

Theory for the axisymmetric jet (3D)

Page 50: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Measurement setup:  one excitation and two excitations

Page 51: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Control of artificially excited jetSketch of the experiment

Page 52: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Experimental setup

Acoustic concentrator

Nozzle

PIV camera

Near field microphones

Hot‐wire probe

Outer loudspeaker

Hotwire probe 

Dantec

55P01Near field microphones

¼’’

4935 Bruel&Kjaer

Far field microphone  ½’’

4189C Bruel&Kjaer

TR PIV

FlowMaster

HS‐PIV by LaVision©

Page 53: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Azimuthal structure of the field produced by the external sources 

This system of external excitation  provided azimuthal uniformity of the 

near field with the error about ±0.9dB 

Page 54: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Hot-wire measurements

V=50 m/s, at f=1kHz V=280 m/s, at f=2.5kHz

Dantec

55P01 Dantec

55R01

Page 55: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

~

Filtered hot‐wire signalFrequency band 790…810Hz

Velocity spectrum

Main frequency

Subharmonic

hump

Hot-wire measurements

Page 56: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

160 m/s 200 m/s 280 m/s

ADT measurements: axisymmetrical

mode in local frequency band near tone

Page 57: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

PIV measurements , fexc

=fsamp

=1kHz

TsAGI anechoic chamber AC‐2 

Page 58: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Average Vx (a) and Vy (b) velocity fields for the unforced jet

Average Vx and Vy velocity fields for the acoustically forced jetExcitation frequency 3000 Hz; sampling rate is also 3000 fps

280m/s

280m/s

Page 59: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 5 10 15 20

x / R

delta

V /

Vm

ax-80

-60

-40

-20

0

20

40

60

80

0 5 10 15 20

x / R

re(Amp) im(Amp)

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 5 10 15 20

x / R

re(Amp) im(Amp)

PIV measurements

Wave pocket

Tam inviscid Wave pocket

Tam viscous

Time resolved PIV

measurements of turbulent disturbances

Page 60: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Vy

velocity field for the jet acoustically forced at the frequency 3000 Hz, jet velocities are: (a) 150 m/s, (b)

200 m/s, (c) 250 m/s.

150 m/s (blue), 200 m/s (magenta), 250 m/s (green), 300 m/s (orange)normalized Vx and Vy, 150 m/s

Page 61: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Demonstration of instability wave control: hot‐wire

Page 62: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Hot‐wire measurements, fexc

=1kHz

Page 63: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Hot‐wire measurements, fexc

=1kHz

Page 64: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

~ Po

wer sp

ectral den

sity

Variation of phase shift

~ Po

wer sp

ectral den

sity

Hot‐wire measurements, fexc

=1kHz

Page 65: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

~ Po

wer sp

ectral den

sity

Variation of phase shift

~ Po

wer sp

ectral den

sity

Hot‐wire measurements, fexc

=1kHz

Page 66: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Evolution of hot-wire measured spectrum with variation of signals phase shift

Variation of harmonic peak intensity for hot-wire and far field microphone (direction 300

to jet axis) with phase shift, each peak value being normalized to the corresponding maximum value.

Jet velocity 280 m/s

Hot-wire measurements, fexc

=2.5kHz

Page 67: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Demonstration of instability wave control: PIV

Page 68: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

TsAGI — ONERA

13th SEMINAR

CENTRAL AEROHYDRODYNAMIC INSTITUTE NAMED AFTER PR. N.E. ZHUKOVSKY

Pure jet

PIV measurements , fexc

=fsamp

=1kHz

Vy

‐<Vy

>

Page 69: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Inner source

PIV measurements , fexc

=fsamp

=1kHz

Vy

‐<Vy

>

Page 70: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Outer source

PIV measurements , fexc

=fsamp

=1kHz

Vy

‐<Vy

>

Page 71: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

∆φ

= ‐600

PIV measurements , fexc

=fsamp

=1kHzVy

‐<Vy

>

Page 72: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

TsAGI — ONERA

13th SEMINAR

CENTRAL AEROHYDRODYNAMIC INSTITUTE NAMED AFTER PR. N.E. ZHUKOVSKY

Profile of Vy

-<Vy

> along the lip-line

PIV measurements, fexc

=fsamp

=1kHz

Page 73: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Radial velocity field for the phase shift corresponding to maximal amplification (left, phase shift 900) (right, phase shift 2700).

Profile of Vy -<Vy > along the lip-line

Jet velocity 280 m/s

Page 74: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

IW generated by an acoustic sound driver located in the stilling chamber, and by plasma actuators in jet shear layer.

Page 75: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Witoszynski

ceramic nozzles

Page 76: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Plasma Actuators

Page 77: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Plasma actuator IW suppression

xo

Artificial acoustic excitation characterized by amplitude and

phase at given frequency

xo

Artificial exciting by plasma actuators

xo

Instability wave disappear

Artificial acoustic excitation

Closed-loop system

Artificial exciting by plasma actuators

7720.10.2014

Page 78: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

HF DBD actuator

Carrying frequency

f  100‐400kHz

Modulation frequency Fm

1‐3kHzTypical power consumption

100‐500W

Ceramic layer‐ 1‐4mm

7820.10.2014

MHz

Page 79: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Images of a closed barrier corona actuators

Scheme and photo of barrier corona actuator.

1 -

High-Voltage pin electrodes typical for corona discharge; 2 -

dielectric plate (dielectric barrier); 3 -

surface streamers; 4 -

grounded electrode; 5 -

insulation; 6 –

ballast resistor

Plasma actuators based on surface barrier corona

The image of the surface corona discharge actuator with a single

disk

at operating condition

7920.10.2014

Page 80: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

8020.10.2014

Principle electric scheme of actuator. 1-

dielectric ring; 2-

electrodes; 3-lumped capacities; 4-high-

voltage pulse

Multispark

Actuator Based on the High-Current Gliding Surface Discharge

Electrical parameters of discharge : High voltage 15 kVCurrent pulse 150A Pulse duration ~1μsRepetition frequency 1 kHzMean power < 200 Wt

Equivalent electric scheme of discharger

C2i >> C1i

Page 81: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

8120.10.2014

Surface barrier corona actuator

Gliding surface discharge actuator

HF dielectric barrier discharge actuator

Unforced jet

Average radial velocity field for 100 m/s velocity

jetPIV measurements , fexc

=fsamp

=1kHz

Instability waves excitation by plasma actuators

Page 82: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Control of instability waves in excited jet

Sketch of the experimental system for instability wave control with plasma actuators

Acousticexciting

Plasma actuatorsexciting

Cold subsonic jet:Dnozzle

= 50mmUjet

= 100-200m/s

Flow

Nozzle

Gen1

fexc

=1-2kHz (St=0.5)

Gen2

1.5m

Microphonein the far field

Page 83: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

36001200

900

600

300

00

2700

2400

2100

1800

1500

3300

3000

Plasma actuators based on high frequencydielectric barrier discharge

Average radial velocity component fieldin the jet (200 m/s) for different phase shift

Instability waves suppression by plasma actuator

8320.10.2014

Page 84: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

8420.10.2014

Phase-locked PIV measurements showed that plasma actuator excitation lead to instability waves/vortex rings formation in the jet shear layer for all elaborated types of plasma actuators.

The variation of the phase shift between the adjusted acoustical

and plasma excited sources leads to maximal amplification or maximal attenuation (shifted by 1800) of the coherent structures.

The proposed system of actuators allows effective controlling of

artificial instability waves (AIW) in the whole shear layer of the jet.

Page 85: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

4k 8k 12k 16k 20k 24k[Hz]

50

60

70

80

90

[dB/20u Pa]Cursor valuesX: 1.240k HzY: 86.963 dB/20u PaaverageNumber : 384Delta CursorStart: 830.000 HzStop: 1.698k HzCenter: 1.264k HzWidth: 868.000 HzDelta: 108.0328 dB/20u Pa

Autospectrum(Signal 7) - Current (Real) \ FFTRound jet: V=240 m/s, Micr. 40 deg.

4k 8k 12k 16k 20k 24k[Hz]

40

50

60

70

80

90[dB/20u Pa]

Autospectrum(Signal 2) - V240eps0 (Real) \ FFT Analyzer

Possible design of closed-loop control system

for SNIW

Round jet: V=280 m/s, Micr. 40 deg.

V=240 m/s

f=900Hz

V=280 m/s

f=600Hz

P(t, f)

t

Page 86: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Prospects

Page 87: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

In supersonic jet one of the mechanisms of sound radiation is identified and is ready to noise control strategy

formulation. We issue the same mechanism exists in hot high speed subsonic jet.

The Main questions are:

Strategy of excitation?

Original assumptions?

Physical principle for control?

Approaches?

Proposed approach

Page 88: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

SAIW

SNIW

AMCT

SAIW sound-

soundrealizability

demonstration of IW existence

Corrugated nozzle

Corrugated by plasma

demonstration of principle realizability

SAIW plasma-

soundrealizability

Closed-loop system

Plasma actuators for jet noise control

Page 89: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Formulation of active control strategy is realized with two steps:

(i)

suppression of artificially excited instability wave (SAIW);

(ii) on this base the formulation of control strategy for natural instability waves (SNIW) developing downstream in free high speed jet (suppression of natural instability wave);

Experimental system SAIW is designed and manufactured.

This system contains closed-loop system.

SAIW and SNIW

Page 90: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

AMCT (azimuthal

mode coupling technique):

(i) demonstration of principle realization AMCT on the base of corrugated nozzle;

(ii) demonstration of principle realization AMCT on the base of plasma-actuator.

AMCT

Page 91: ОБ УПРАВЛЕНИИ ВОЛНАМИ НЕУСТОЙЧИВОСТИ В … · tsagi — onera 13th seminar central aerohydrodynamic institute named after pr. n.e. zhukovsky 18th

Acknowledgements:

This work was carried out partly under:

-

EU FP7 Project Openair, -

Coordinated EU-RF FP7 Project ORINOCO,

- Ministry of Industry and Trade of Russian Federation,- Russian Foundation for Basic Research