신재생에너지 공급인증서(rec) 가격 예측 방법론 개발 및 운용

143
KOREA ENERGY ECONOMICS INSTITUTE www.keei.re.kr 이철용 신재생에너지 공급인증서(REC) 가격 예측 방법론 개발 및 운용 기본 연구 보고서 15-12

Upload: nguyennhi

Post on 29-Jan-2017

279 views

Category:

Documents


17 download

TRANSCRIPT

  • KOREA ENERGY ECONOMICS INSTITUTE

    www.keei.re.kr

    (REC)

    15-12

  • :

    :

  • i

    1.

    2013~2040

    37% (IEA, 2014).

    ,

    .

    .

    .

    ,

    , ,

    .

    , 2013 18 TOE

    (IEA, 2015). ( )

    2004 2013 2

    45% (IEA, 2015).

    2012 (Renewable Portfolio

    Standard, RPS) (Renewable

    Energy Certificate, REC)

    . REC

    .

    REC

  • ii

    REC . RPS

    REC

    .

    . , RPS

    REC , /

    .

    .

    ,

    .

    2.

    REC REC

    REC .

    REC

    . REC

    REC

    .

    RPS 80

    .

    REC 2 .

  • iii

    , . REC

    , ,

    , , .

    .

    . 3 . ,

    , RPS

    . , REC REC 5%

    REC REC

    . , RPS , REC

    . 2014 / REC

    , 2016 -

    REC

    .

    REC

    .

    (Levelized cost

    of energy) (experience curve) .

    (SMP)

    REC, LCOE

    . RPS , REC

    REC . RPS

    1.5

    , REC

    . Bayus

  • iv

    . () () ,

    Bayus .

    , 2016 686.6/W 2024

    500.5/W, 1,121.7/W 2024 617

    /W .

    2016 1,808.4/W 2024 1,117.9/W 38%

    . LCOE

    2016 167.06/kWh 2024 106.39/kWh 36%

    .

    2016 1,129.9/W 2024

    1,054.8/W 6.6% .

    1,128

    /W . 2016

    2,257.8/W 2024 2,182.7/W 3.3%

    . LCOE 2016 140.60/kWh 2024

    136.83/kWh .

    SMP 7

    2 .

    (S1) 7 , ,

    ,

    . (S2)

    , , .

    SMP 2016 91/kWh 2024 76.7~84/kWh

    .

  • v

    SMP .

    LCOE SMP REC

    . SMP

    6 . SMP 7

    100% ,

    2 . REC

    15%, 20%, 25%

    . 7

    , REC 2016 71/REC~102/REC

    2024 54/REC~84/REC

    . LCOE REC

    . REC

    REC REC

    .

    ,

    REC .

    7 2

    SMP . REC

    2016 71/REC~102/REC 2024 49/REC~76

    /REC .

    SMP 1

    , REC .

  • vi

    3.

    REC REC

    , REC

    . RPS

    . () RPS

    , RPS .

    RPS REC

    .

    SMP+REC

    . REC 12

    . REC

    SMP

    .

    SMP+REC

    .

    REC , SMP

    PPA

    .

    ,

    SMP+REC

    . SMP REC

    . 2 SMP REC

    .

  • vii

    REC

    .

    . SMP

    .

    FIT .

    REC , ,

    ,

    . ,

    . REC

    RPS .

    REC

    .

  • Abstract i

    ABSTRACT

    1. Research Background and Purpose

    Energy demand has steadily risen worldwide and is expected to

    increase by 37% between 2013 and 2040 (IEA, 2014). A regions

    energy use is bound to increase as its industries and economy

    develop, increasing greenhouse gas emissions. All nations are

    attempting to address climate change, with an increasing focus on

    seeking new and renewable eco-friendly energy sources instead of

    using traditional energy sources. New and renewable energy has

    potentially positive environmental and economic effects, such as

    reducing greenhouse gases, which help address climate change,

    offering alternatives to fossil fuels and driving economic growth

    through industrialization. As a result, the supply of new and

    renewable energy has steadily increased, with the global production

    of new and renewable energy reaching 1.8 billion TOE in 2013

    (IEA, 2015). New and renewable energy usage in the electric power

    sector (including hydroelectricity) roughly doubled from 2004 to the

    end of 2013, and about 45% of the power generation facilities being

    built are for new and renewable energy (IEA, 2015).

    In Korea, Renewable Energy Certificate (REC) prices have been

    attracting interest since the Renewable Portfolio Standard (RPS) was

  • ii

    implemented in 2012. As these prices are related to residents

    electricity bills, the publics burden will increase or decrease along

    with them. Renewable Energy Certificate prices are also important

    because the profits and outcomes of new and renewable energy

    projects will depend on their prospects. Therefore, to reduce future

    uncertainty regarding RPS policy, Researchers are required to

    forecast REC prices.

    This study develops a price prediction model for RECs. We

    analyze the characteristics of the domestic RPS market, develop a

    methodology for predicting REC prices, and apply it to the overall

    solar/non-solar market. Finally this study also suggests measures for

    stabilizing REC prices; a price stabilization policy is needed because

    higher REC price volatility brings higher risk to the government,

    new and renewable energy suppliers, and energy generation

    companies.

    2. Summary

    Studies on REC prices have either analyzed the factors in REC

    price volatility or predicted future REC prices. Despite the

    importance of research predicting REC prices, little research of this

    type has been done either in Korea or abroad. By developing an

    REC price prediction model and applying it to Koreas REC market,

    we seek to contribute to research on new and renewable energy in

    Korea and to foreign research as well. Close to 80 national and state

  • Abstract iii

    governments are implementing RPS, and this study should help

    further the market and policy research on new and renewable energy

    in these countries.

    This study proposes two methodologies for predicting REC prices.

    The first is a Bayesian multivariate normal model that uses past data

    to estimate the models parameters and predict prices. The variables

    explaining REC prices include the required an amount of new and

    renewable energy, the supply of new and renewable energy, the

    system marginal price (SMP), levelized cost, and policy changes. We

    used Gibbs sampling to estimate posterior distribution. The

    estimation found no statistically significant coefficients for any

    variables except for the policy dummy variable. This result had three

    main causes. First, insufficient data were available because Koreas

    RPS market is new. Second, we could not predict REC prices by

    looking only at REC supply because the trading volume of RECs on

    the spot market accounts for only 5% of the total REC market.

    Third, alterations in RPS policy have led to constant changes in the

    REC market mechanism. For example, the former method of

    predicting price based on trends in solar and non-solar REC prices is

    less effective because the exchange of solar RECs for non-solar

    RECs was unofficially permitted in the second half of 2014, and the

    solar and non-solar markets will be unified after 2016. Therefore,

    prediction methods that use past trends cannot be applied to Korea's

    REC market, which should be noted by future researchers.

  • iv

    The second methodology developed by this study is a prediction

    model using the levelized cost of energy and experience curves. This

    methodology is based on the facts that the profit source of new and

    renewable energy is SMP and REC and that their sum exceeds the

    Levelized Cost of Energy (LCOE) reflecting the ideal rate of return.

    We also considered the characteristics of Koreas RPS system to

    derive the standard price for RECs and estimate their maximum

    price. When a company charged with RPS fails to reach a target, it

    is charged a penalty of the current price 1.5; this value is the

    upper limit of REC prices in the spot market. To predict the

    levelized cost of energy, we used estimated experience curves and a

    Bayes model. We used experience curves for the prices of solar

    modules and wind turbines and a Bayes model for non-module

    prices.

    Our estimates indicate that the price of solar modules will fall

    from 686.6 KRW/W in 2016 to 500.5 KRW/W in 2024 and that

    prices in the non-module sector will fall from 1,121.7 KRW/W in

    2016 to 617 KRW/W in 2024. Therefore, we expect the price of

    solar systems to fall by about 38%, from 1,808.4 KRW/W in 2016

    to 1,117.9 KRW/W in 2024. We thus expect solar LCOE to fall by

    about 36%, from 167.06 KRW/kWh in 2016 to 106.39 KRW/kWh in

    2024.

    For wind energy, we predict that turbine prices will fall by about

    6.6%, from 1,129.9 KRW/W in 2016 to 1,054.8 KRW/W in 2024.

  • Abstract v

    As non-turbine prices consist mostly of construction costs, prices will

    definitely not fall; they will stay at 1,128 KRW/W. Therefore, we

    expect the price of wind systems to fall by about 3.3%, from 2,257.8

    KRW/W in 2016 to 2,182.7 KRW/W in 2024. As a result, we

    predict wind LCOE to fall slightly, from 140.60 KRW/kWh in 2016

    to 136.83 KRW/kWh in 2024.

    We estimated SMP using a model of the electricity market

    assuming two different scenarios to account for uncertainty in the

    Seventh Master Plan for Electricity in Korea. The first scenario (S1)

    assumed that the Plan would achieve its goals in areas such as

    demand prediction, demand management, construction of generators

    and power lines, the generation of new and renewable energy, and

    the diversification of energy sources. The second scenario (S2)

    assumed that the construction of atomic and coal generators would

    be delayed due to uncertainty in supply and that new and renewable

    energy generation goals would not be reached. The estimate

    indicated that SMP will fall from 91 KRW/kWh in 2016 to 76.7-84

    KRW/kWh in 2024. We inferred that SMP would continue to fall

    through the addition of mainstream generation facilities for sources

    such as atomic and coal energy.

    We predicted REC prices based on the estimated LCOE and SMP

    values for solar and wind energy. We created six scenarios to reflect

    uncertainty in the SMP predictions and the share of solar energy. For

    the SMP, we assumed that the Seventh Basic Plan for Electricity

  • vi

    Supply and Demand would be fully implemented or that atomic

    energy and thermal energy construction would be delayed by two

    years. We assumed that the share of solar energy out of the total

    supply of REC would be 15%, 20%, or 25%. Our estimates found

    that, when mainstream generation facilities were built according to

    the Seventh Basic Plan, REC prices in the spot market would fall

    from between 71 and 102 thousand KRW/REC in 2016 to between

    54 and 84 thousand KRW/REC in 2024. This would happen because

    REC prices would fall when new and renewable energy LCOE fell.

    If the REC supply is far below the required amount (as it is at

    present), we predict that the REC spot price will rise and reach the

    maximum level for RECs. However, if more facilities for new and

    renewable energy are built and supply becomes sufficient, the price

    will rest between the maximum and minimum levels; if the supply

    suddenly exceeds the required amount, REC prices may fall below

    the minimum level.

    If construction of the Seventh Basic Plan's mainstream generation

    facilities is delayed by two years, SMP will rise. In this case, the

    REC spot market price will fall from between 71 and 102 thousand

    KRW/REC in 2016 to between 49 and 76 thousand KRW/REC in

    2024. If the generation facilities are completed later than planned,

    SMP will be higher than in scenario 1, and REC prices will fall.

  • Abstract vii

    3. Policy Suggestions

    Renewable Energy Certificate price stabilization policies are needed

    to stabilize the market because REC prices will be volatile due to

    factors such as uncertain REC supply. The first proposal is to

    stimulate energy sale competition and place RPS obligations on

    energy sellers. In other large countries, companies selling energy

    (energy suppliers) carry out RPS duties, whereas Korean generation

    companies carry out RPS duties. As generation companies must

    generate new and renewable energy and carry out RPS duties in

    Korea, there are no forces causing REC prices to fall.

    The second proposal is to guarantee a fixed SMP+REC price

    when contracts are being signed. For small-scale solar energy RECs,

    a 12-year contract is signed, which should reduce price volatility.

    However, because most new and renewable energy RECs and SMPs

    change with time, this is an uncertainty factor for new and

    renewable energy companies. To ease this uncertainty, the

    government should approve the setting of long-term contract prices at

    a level where SMP+REC revenue is reasonable. A similar proposal

    is to fix REC prices in a long-term contract similar to the existing

    method and hedge SMP volatility with a PPA or contract for

    differences with the Korea Electric Power Corporation.

    The third proposal is for financial institutions such as insurance

    companies, reinsurance companies, and banks to create a financial

    product that guarantees generation companies a fixed return from

  • viii

    SMP+REC. The companies would transfer the profit or loss from

    SMP or REC price fluctuations to the financial institutions and pay

    fees for this alternative. Financial institutions could use the secondary

    market to hedge SMP and REC price fluctuations.

    The fourth proposal is to introduce REC futures products similar

    to those in Australia. If futures products might be used, volatility

    risk on spot market price could be hedged. Another proposal is for

    the government to suggest long-term SMPs to eliminate future

    uncertainty. There is also a way to apply FIT to small businesses, as

    happens in England and Australia. A

    We hope that by predicting REC prices this study helps reduce

    uncertainty about the future for governments, companies obligated to

    supply new and renewable energy, new and renewable energy

    generation companies, and consumers. Estimating future costs due to

    the distribution of new and renewable energy will allow governments

    and consumers to prepare more thoroughly. Companies obligated to

    supply new and renewable energy can use REC price prediction data

    to estimate potential RPS penalties and costs. Companies generating

    new and renewable energy can use REC price prediction data to

    examine the feasibility of future projects.

  • i

    1 1

    2 3

    1. RPS REC 3

    2. REC 5

    3 RPS 91. RPS 9

    2. RPS 21

    4 29

    1. 1: 29

    2. 2: (Levelized cost of energy) 32

    5 45

    1. 45

    2. (Levelized cost of energy) 52

  • ii

    6 71

    1. 71

    2. REC 79

    3. REC 90

    7 97

    103

    109

  • iii

    RPS REC 8

    2014 9

    11

    RPS 15

    FIT 17

    RPS 19

    FIT RPS 21

    25

    26

    26

    27

    28

    LCOE 34

    SMP 40

    2016 41

    46

    ( REC) 47

    ( REC) 50

    ( REC) 52

    ( REC) 52

    53

    Bayus 53

  • iv

    54

    55

    56

    6 vs. 7 ( ) 58

    RPS 59

    59

    60

    61

    2016 REC 62

    RPS 73

    MPR: RPS (CEC) 81

    REC 87

    REC ( 1) 109

    REC ( 2) 110

    REC ( 3) 110

    REC ( 4) 111

    REC ( 5) 111

    REC ( 6) 112

  • v

    [ 3-1] RPS 12

    [ 3-2] Bundled REC 13

    [ 3-3] Unbundled REC 13

    [ 3-4] New Jersey Maryland SRECs 14

    [ 3-5] 22

    [ 3-6] 23

    [ 3-7] 23

    [ 3-8] 24

    [ 4-1] 36

    [ 4-2] M-Core 40

    [ 5-1] Quartiles

    ( REC) 48

    [ 5-2] Kernel density

    ( REC) 49

    [ 5-3] Quartiles

    ( REC) 50

    [ 5-4] Kernel density

    ( REC) 51

    [ 5-5] LCOE 55

    [ 5-6] LCOE 57

    [ 5-7] REC ( 1) 63

    [ 5-8] REC ( 2) 64

  • vi

    [ 5-9] REC ( 3) 65

    [ 5-10] REC ( 4) 66

    [ 5-11] REC ( 5) 68

    [ 5-12] REC ( 6) 69

    [ 6-1] 74

    [ 6-2] 75

    [ 6-3] 76

    [ 6-4] 77

    [ 6-5] 78

    [ 6-6] RES () 80

    [ 6-7] Rate Cap 2% Rule 82

    [ 6-8] PV FIT 84

    [ 6-9] FIT-CfD 86

    [ 6-10] REC 89

    [ 6-11] SMP+REC 92

    [ 6-12] REC + SMP 92

    [ 6-13] 93

    [ 6-14] (Futures) 94

  • 1 1

    1

    2013 2040

    37% (IEA, 2014).

    , .

    ,

    . ,

    , ,

    .

    , 2013

    18 TOE (IEA, 2015). ( )

    2004 2013 2

    45%

    (IEA, 2015).

    2012 (Renewable Portfolio

    Standard, RPS) (Renewable

    Energy Certificate, REC) . REC

    .

    REC

    REC . RPS

  • 2

    REC

    .

    . , RPS

    REC /

    .

    .

    ,

    .

    . 2

    . RPS

    REC , RPS

    . 3

    . RPS

    2012 RPS REC

    . 4

    5

    . 6 REC .

    RPS REC

    ,

    REC .

  • 2 3

    2

    RPS REC

    . RPS REC

    .

    REC

    .

    .

    , REC .

    , , CO

    .

    REC

    , .

    1. RPS REC

    ,

    .

    ,

    .

    Eirik et al.(2006) (system of

    banking or storage) . (rational

    expectations simulation model) (Green Certificates,

  • 4

    GCs)

    . GCs

    ,

    .

    (intertemporal)

    . , GCs

    2 ( 1.23/ 0.50) .

    , GC

    (0.72), GC (0.32).

    RPS (Renewable Obligation, RO)

    ROC(Renewable Obligation Certificate)

    (buy-out)

    . Jeff et al.(2013) (ROC

    ) (expected share)

    .

    ROC(-) ROC

    , ROC ROC

    .

    ROC , ,

    .

    , Jacob(2003) TGC(Tradable Green Certificats)

    -

    .

  • 2 5

    2. REC

    RPS REC

    . REC

    .

    (2012) 5

    REC REC .

    (Levelized Generation Cost)

    , REC

    . ( RPS

    ) 13 96.3% 2293.6%

    . REC 1 REC

    13 289 18 247, 22 216.8

    . 2015 9 1 REC

    92.639

    .

    (2014) Eco-System:

    REC . 1) RPS

    .

    (fuzzy logic) REC . REC

    (Fuzzy-based REC Price Prediction, FRPP),

    REC(AVG-based REC Price Prediction, ARPP),

    1) IT

  • 6

    REC (Trend-based REC Price Prediction, TRPP)

    REC FRPP 94.2%

    ARPP 2.2%, TRPP 11.9% . REC

    14(12 12~143)

    FRPP ARPP 80, TRPP 127

    .

    30 RPS 10

    REC SRECs(Solar Renewable Energy Credits)

    . Dawei et al.(2012) SRECs

    4 (SRECs , SRECs , , )

    . -

    (linear optimization)

    SRECs . PJM2) SRECs

    SREC

    , .

    SREC

    . SREC

    , 2028 4.1%

    . SREC $700/MWh

    . REC 2011

    520MW, 2025 7,400MW

    .

    2) DC, 13

  • 2 7

    Michael et al.(2013) SMART-SREC()

    . SREC ,

    . SREC

    .

    (, , )

    ,

    .

    . ,

    SREC ,

    .

    , Christoph et al.(2011) TGC (Tradable

    Green Certificats)

    .

    (Cash-flow model) TGC 2014(

    3 ) 68.34(PLN240)

    . TGC 2009 69 2028 3

    .

  • 8

    RPS REC

    Eirik et al.(2006)* - 1.23, 0.50- 0.72, 0.32

    Jeff et al.(2013)- ROC(-)

    - ROC

    Jacob(2003)- TGC(Tradable Green Certificats) , -

    REC

    (2012)

    - RPS : 13(96.3%)22(93.6%)

    - 1 REC : 13(289)18(247)22(216.8)

    (2014) - REC REC 94.2%

    Dawei et al.(2012)- SREC , ,

    Michael et al.(2013) - SREC

    Christoph et al.(2011)

    - TGC 2014( 3 ) 68.34(PLN240)

    - TGC 2009 69 2028 3

    RPS REC

  • 3 RPS 9

    3 RPS

    1. RPS

    FIT RPS

    .

    (RPS)

    . FIT

    ( , ) 2004 2013 10 3

    RPS ( , ) 2004 10

    7 (REN21, 2015, pp.9). RPS

    RES(Renewable Energy Standards)

    , , , , , , .

    2004

    2013 2014

    48 144 164

    RPS/ // 11 99 98

    FIT // 34 106 108

    (Tendering)// n/a 55 60

    / 10 63 64

    2014

    : REN21, 2015, p.9

  • 10

    .

    1)

    RPS

    . 2008 27 RPS

    RPS

    5 (, 2010).

    RPS , 2015 3

    29 DC 2 RPS .

    8 2 RPG(Renewable porfolio

    goal) .

    RPS 1.0 .

    .

    Colorado, Nevada, Washington

    1.2~2.45 .

    , , 15 3) . ,

    Arizona, New Mexico (Set-aside)

    .

    3) : Connecticut, California, Iowa, Hawaii, Illinois, Massachusetts, Maine, Montana, Minnesota, New Hampshire, New York, New Jersey, Ohio, North Carolina, Pennsylvania, Oregon, Rhode Island, Wisconsin

  • 3 RPS 11

    (state)

    Colorado

    1.25 2015 ( DG )

    1.5

    2.02014 12 31 30MW

    3.0

    ; 2015 7 1

    2016 12 31 .

    Nevada2.0

    2.4

    Washington1.2

    2.0 apprenticeship 2005

    : DSIRE, 2015: Nevada PECs(portfolio energy

    credits)

    2)

    California 2020

    33%, Colorado 2020 30%, Minnesota 2025

    26.5% . 2020

    . New York 2015 29%,

    Maine 2017 40%

    [ 3-1].

  • 12

    [ 3-1] RPS

    : DSIRE, 2015

    California CPUC(California Public

    Utilities Commission) REC

    Bundled REC Unbundled REC

    .

    Bundled REC

    REC (

    3-2 ). Unbundled REC

    REC

    ( 3-3 )(Polsinelli, 2013a).

  • 3 RPS 13

    [ 3-2] Bundled REC

    [ 3-3] Unbundled REC

    Bundled REC

    REC .

    1

    REC

    Bundled . ,

    REC

    Unbundled (Polsinelli, 2013a).

    New Jersey Maryland unbundled ,

    Flett Exchange . 2014 7

  • 14

    2015 9 New Jersey Maryland SRECs

    . [ 3-4]

    Maryland SRECs

    .

    [ 3-4] New Jersey Maryland SRECs

    : Flettexchange , 2015.11.2.

    .

    1)

    .

    2012 80.8%

    .

  • 3 RPS 15

    6

    FIT . , ,

    0.8 ,

    , //(70km) /

    1.8 (, 2014).

    0.8 , ,

    0.9

    1.0 (200kW ),

    1.3 ,

    1.5

    1.8 , , //(70km) /

    RPS

    : , 2014, pp.10

    2)

    2010 10.1%,

    2020 17%. (27) 2010 12.5%,

    2020 20%

    34%, 31% (Kotra(a),

    2014). 2020 26% 2020

    32~35% (

    , 2012).

    RPS REC

  • 16

    (, 2009). 2016

    FIT4) (Norton Rose Fulbright ).

    .

    1)

    (2001 12)

    . FIT

    .

    RPS 2003 4

    .

    (, 2010).

    2011

    . 2012

    92.9% 4%(KOTRA(b), 2014).

    . 2020 30,000MW

    20% (, 2012).

    2003 FIT RPS

    2012 FIT .

    4) FIT

  • 3 RPS 17

    2)

    2012 FIT

    . RPS 2010

    1.35%, 2014 1.63%

    (, 2011). RPS

    FIT FIT .

    FIT .

    : 10kW

    (): 10kW

    () 100% (Surplus electricity)

    40/kWh+

    (534/kWh)

    42/kWh(564/kWh)

    ( ) 20 10

    325,000/kW(436 /kW)

    466,000/kW(625 /kW)

    10,000/kW(134,168/kW)

    4,700/kW(63,059/kW)

    (IRR) 6% 3.2%

    FIT

    : , 2014

    FIT

    FIT (, , ,

    , ) . (Residential)

  • 18

    -(Non-Residential) (

    ) 10kW, 10kW~500kW

    500kW .

    FIT 6

    (, 2014).

    2013 13.6GW (REN21, 2014, pp.64).

    .

    1)

    2010 MRET(Mandatory Renewable Energy Target,

    ) 2011 RET(Renewable

    Energy Target, ) . RET 2015

    6 23

    33,000GWh( 2 ) .

    2014 45.9% , 30.9% , 15.3%

    , 7.6% .

    76.8% .

    2013 2014 88%

    16%

    (Clean Energy Council ).

    ARENA(Australian Renewable Energy Agency)

  • 3 RPS 19

    . ARENA 25 2022

    .

    .

    .

    2)

    2011 RET

    . RET ,

    .

    50% .

    MRET RET

    Renewable Energy(Electricity) 2000 Renewable Energy Amendment Bill 2009 2000 6 2009 6 9

    () 2002 1 1 2009 6 9 2001~2010(2020) 2010~2020(2030)

    ()

    2001: 400GWh

    2010: 9,500GWh2010: 12,500GWh

    2020: 45,000GWh

    , , , , , , , ,

    , , , MSW(Solar Credit)

    (Solar, ),

    1MWh 1REC 1MWh 5REC 1REC

    MWh 40$ MWh 65$Banking ()

    RPS

  • 20

    RET SRES(Small-scale Renewable Energy Scheme )

    LRET(Large-scale Renewable Energy Target) . SRES

    . LRET

    .

    LRET LGCs(Large-scale Generation Certificates)

    ,

    . , 2020

    33,000GWh .

    LRET SRES

    STCs

    . STCs

    .

    .

    .

    (Australian Government ).

    $140

    .

    .

  • 3 RPS 21

    2. RPS

    . FIT RPS

    01

    11 FIT . 12

    RPS . RPS

    (, 2014).

    RPS FIT .

    2015 5 RPS 11,825 FIT

    6. FIT 2011 10 RPS

    3 5 RPS

    . RPS FIT

    4 .

    RPS 185 FIT(94) 3

    FIT 4.5 2,199MW

    . .

    FIT(2002~2011) RPS(2012~2015 5)

    (MW) () (MW) () 497 1,978 1877 11,825

    489 94 2199 185 986 2,072 4076 12,010

    FIT RPS

    :

  • 22

    [ 3-5] [ 3-8]

    / (MW)

    .

    RPS

    .

    . 45% .

    RPS FIT 3 .

    FIT 0 RPS

    . FIT

    RPS 63 , 47,

    40 .

    [ 3-5]

    (: )

    : , 2014

  • 3 RPS 23

    [ 3-6]

    (: MW)

    : , 2014

    [ 3-7] RPS

    . 2

    3~4 .

    [ 3-7]

    (: )

    : , 2014

  • 24

    [ 3-8]

    . 105

    RPS .

    54, 30 .

    [ 3-8]

    (: MW)

    : , 2014

    RPS /

    .

    .

    RPS

    . (2012) 2.0%, 2024

    10% . 2012

    276GWh 15 1,971GWh

    .

  • 3 RPS 25

    (%)12 2.013 2.514 3.015 3.016 3.517 4.018 4.519 5.020 6.021 7.022 8.023 9.0

    24 10.0

    : , 2014

    RPS 2014 14 2015 17

    3 . 2015 ,

    , , , ,

    , , , , , SK E&S, GS

    EPS, GS , , ,

    .

    .

    0.7 1.5

    0.25 5.5

    ( ).

  • 26

    0.25 IGCC,

    0.5 ,

    1.0 , , , RDF , , ( )

    1.5 , ( 5km )

    2.0 ,

    2.0 ( 5km), , ( )

    1.0~2.5

    5.5

    ESS( )

    15

    5.0 16

    4.2 17

    : , 2014

    1.2

    100kw

    1.0 100kw

    0.7 3000kw

    1.5

    3000kw

    1.0 3000kw

    1.5

    : , 2014

  • 3 RPS 27

    .

    2016

    - .

    .

    2016 . 2014 /

    .

    2015 / REC 9

    /REC .

    2012 2013 2014 2015

    167,218 186,476 106,571 90,793

    64,762 144,338 100,303 92,634

    (: / MWh)

    : , 2015

    .

    .

    , 3MW , 100kW

    60% .

    .

  • 28

    2016~2017 2018~2019

    200MW 250MW

    300MW 350MW

    : , 2015

    2015

    1.5GW .

    .

    .

    REC

    .

    12 .

    (, , )

    .

    / REC

    .

    20% REC 25~30%

    .

    /

    .

    .

    .

  • 4 29

    4

    REC 2

    . .

    , .

    .

    (Levelized cost of energy) (experience curve)

    .

    1. 1:

    REC

    (), (), (),

    () . .

    (1)

    REC

    .

    .

    .

    (2)

  • 30

    4 ,

    , .

    . (likelihood

    function) .

    (3)

    . ,

    (conjugate prior) .

    ,

    . ,

    (4)

    ,

    .

    (Gibbs sampler) .

    . ,

  • 4 31

    .

    (Markov

    chain) .

    ( 2)

    ,

    .

    (5)

    ,

    . , n

    .

    (6)

    ,

    k

    ,

    . .

    10,000 1,000

    . REC

  • 32

    .

    2. 2: (Levelized cost of energy)

    (levelized cost of energy,

    LCOE) (Systmem marginal

    price, SMP) REC .

    SMP REC LCOE

    .

    (7)

    t REC LCOE SMP

    . REC

    , REC

    REC

    .

    (8)

    t REC LCOE SMP

    .

  • 4 33

    .

    ( LCOE) (kWh)

    . LCOE

    ,

    .

    LCOE

    . t LCOE .

    (9)

    t

    . , ,

    , (Balance of plant, BOP), (Engineering

    procurement and construction, EPC), .

    , ,

    . r (discount rate), d (degradation factor),

    (capacity factor),

    . T . LCOE

    .

  • 34

    () () 1 MW 20 kW 1 MW

    CAPEX 18/MW( 15) 20/MW 25/MW

    (%) 14.75% 14.75% 23%

    (Degradation Rate) 0.8% 0.8% 0.3%

    O&M 1,600/ 352,000/ 3,000/

    1,400/ 308,000/ 1,750/WACC 7% 7% 7% 70% 70% 70%

    5%/ 5%/ 5%/ 22% 11% 22%

    LCOE

    .

    15.5% 3

    14.75% . 0.8%,

    5%, 22% .

    11% . WACC(Weighted Average Cost

    of Capital, )

    7% .

    LCOE LCOE

    . (9)

  • 4 35

    .

    . , ,

    EPC, . ,

    .

    . , , ,

    .

    Arrow(1962)

    (experience curve) .

    (IEA, 2000).

    , , ,

    (Bhandari and Stadler, 2009; Nemet, 2006). ,

    , . 1976

    .

    .

    .

    .

  • 36

    [ 4-1]

    : EPI (2013), Mints (2013)

    j (10) .

    (10)

    t j ,

    . t j

    . (10)

    .

    (10) (ordinary least square)

    .

  • 4 37

    ln lnln

    (11)

    (, 2013).

    (learning rate)

    . 2

    . LR .

    (12)

    . () ()

    .

    , .

    Bayus (1993)

    . Bayus (1993) t , ,

    , (13)

    .

    exp

    t j .

  • 38

    .

    , j

    .

    . Bayus

    Cho and Koo (2012), Lee et al.

    (2006) .

    . (SMP)

    SMP .

    ( , 2012).

    (13)

    .

    (14)

  • 4 39

    ,

    : Lagrangian multiplier

    : Lagrangian multiplier

    F:

    t:

    T:

    i:

    N:

    c:

    M:

    :

    P: t i

    : t c

    U: t i

    : t c

    : t

    : t

    : i

    : c .

    SUDP(Single Unit Dynamic

    Programming) . SUDP

  • 40

    LR(Lagrangian Relaxation) DP(Dynamic Programming)

    , LR

    , DP

    . SMP

    .

    [ 4-2] M-Core

    :

    (/) ,

    GT/ST

    (// ) ( ) , HVDC

    , , (* ) , , HVDC SMP (, , , ) // (CP,

    SEP, CON, COFF)

    SMP

    :

  • 4 41

    . REC

    LCOE SMP .

    REC

    . 2016 REC

    .

    (+)

    Q0 QR QS

    P0 PR PS

    min(Px,Py,P0) min(Px,Py,PM,P0,PR) (12)

    2016

    (: /REC)

    : (Px,Py) 2

    REC , ,

    , .

    .

    2(, 1)

    .

    (12 ) .

    ,

    .

  • 42

    REC 85% ,

    . REC

    .

    REC RPS 1.5

    , REC

    .

    REC

    . REC

    . -

    REC .

    REC 1.5 .

    RPS REC 1.5

    REC .

    REC

    REC .

    REC 12

    REC .

    REC

    . , REC LCOE SMP .

    (15)

    LCOE SMP REC

    .

  • 4 43

    REC .

    /

    .

    / .

    REC .

    ,

    .

    / .

  • 5 45

    5

    1.

    .

    , REC , SMP, LCOE,

    , REC .

    RPS 2002 40

    .

    REC

    ,

    5) . REC SMP

    .

    RPS

    . LCOE BNEF(2015) . 2013

    REC

    . REC

    RPS REC .

    REC ,

    . .

    5) : http://rec.kpx.info/index.jsp

  • 46

    Y - REC

    CONS. -

    DEMAND

    SUPPLY REC

    SMP

    LCOE BNEF (2015)

    DUMMY

    .

    WinBugs .

    10,000 , 1,000 .

    .

    .

    RPS REC

    (DEMAND-SUPPLY)

    .

    ARIMA, VAR

    .

  • 5 47

    2.50% 97.50%

    CONS. 254.8 1811 -1700 2183

    DEMAND -0.04554 0.1305 -0.3043 0.2082

    SUPPLY -0.04611 0.4529 -0.9476 0.832

    SMP 23.57 927.3 -1822 1868

    LCOE -2.506 999.6 -1945 1969

    DUMMY 6.22 1112 -1955 1961

    ( REC)

    3 .

    . RPS

    RPS , LCOE

    .

    .

    , REC REC 5%

    . REC ,

    , . REC

    REC REC

    .

    , REC .

    . , REC

    , 2014

    . REC

    REC . RPS

  • 48

    REC

    . 2016

    - REC

    .

    ,

    REC .

    .

    (Quartile)

    . REC , , SMP, LCOE

    .

    [ 5-1] Quartiles ( REC)

  • 5 49

    (kernel density)

    . , 0

    .

    [ 5-2] Kernel density ( REC)

    . .

    . .

  • 50

    2.50% 97.50% Cons. 298.7 994.4 -1666 2238

    Demand 8.78E-04 0.008807 -0.0166 0.01818Supply 0.3151 0.8045 -1.272 1.899SMP 36.35 801.9 -1548 1631

    LCOE -145.1 997.2 -2104 1812Dummy 34.93 1004 -1927 1993

    ( REC)

    Quartile

    . 0 REC

    .

    [ 5-3] Quartiles ( REC)

  • 5 51

    (kernel density)

    . 0

    .

    [ 5-4] Kernel density ( REC)

    .

    .

    . ,

    REC

    .

  • 52

    P-

    Cons. -240667.809 890200.664 0.7886

    Demand 0.035 0.177 0.8433

    Supply -0.040 0.068 0.5532

    SMP 307.964 349.864 0.3853

    LCOE 1255.689 2938.594 0.6720

    Dummy* 49431.854 10727.882 0.0001

    ( REC)

    *: 5%

    P-

    Cons. 471192.364 445913.372 0.2983

    Demand* 0.006 0.003 0.0227

    Supply 0.103 0.221 0.6438

    SMP 22.102 375.732 0.9534

    LCOE -3189.912 3064.873 0.3055

    Dummy* 102116.722 16425.304 0.0000

    ( REC)

    *: 5%

    2. (Levelized cost of energy)

    .

    .

    10 . 0.3223

    , 1% .

    () 20% .

  • 5 53

    2 20%

    .

    p-value

    ** 0.3223 0.0040 3.52E-44

    0.9942

    **: 1%

    (, , EPC ) Bayus

    .

    ,

    . 1%

    .

    p-value

    ** 12.2203 0.5938 0.0000

    ** 0.1207 0.0179 0.0003

    0.8661

    Bayus

    **: 1%

    Bayus

    ,

    . 2016 686.6/W

  • 54

    2024 500.5/W 27% .

    2016 1,121.7/W 2024 617/W 45%

    . 2016 1,808.4/W

    2024 1,117.9/W 38% .

    Year (A) (B) (A+B)

    2016 686.6 1,121.7 1,808.4 2017 668.8 1,037.3 1,706.1 2018 649.2 973.9 1,623.1 2019 625.5 929.0 1,554.4 2020 595.8 900.6 1,496.4 2021 567.9 836.8 1,404.7 2022 542.8 786.0 1,328.7 2023 520.3 696.6 1,216.9 2024 500.5 617.4 1,117.9

    (: /W)

    LCOE . LCOE

    2016 167.06/kWh 2024 106.39/kWh

    . 36% ,

    5.8% . LCOE

    95.26/kWh 463.71/kWh .

    157.15/kWh (BNEF, 2015).

    LCOE .

    ,

  • 5 55

    LCOE .

    [ 5-5] LCOE

    .

    0.1221 , 1%

    . () 8.11

    . 2 8.11%

    . 20%

    ,

    .

    p-value

    ** 0.1221 0.0056 9.26E-21

    0.9368

    **: 1%

  • 56

    1,128/W .

    . 2016 1,129.9/W 2024

    1,054.8/W 6.6% .

    2016 2,257.8/W 2024 2,182.7/W 3.3%

    .

    .

    Year

    2016 1,129.9 2,257.8 2017 1,111.4 2,239.3 2018 1,099.7 2,227.7 2019 1,089.0 2,216.9 2020 1,079.0 2,206.9 2021 1,072.4 2,200.3 2022 1,067.2 2,195.1 2023 1,061.2 2,189.2 2024 1,054.8 2,182.7

    (: /W)

    LCOE . LCOE 2016 140.60

    /kWh 2024 136.83/kWh

    . 2.7% .

    LCOE 49.03/kWh 307.45

    /kWh . 90.16/kWh

  • 5 57

    (BNEF, 2015). LCOE

    50% .

    ,

    .

    LCOE

    .

    [ 5-6] LCOE

    . SMP

    7 ,

    2016~2024 SMP .6) 7

    6) SUDP M-Core( ) .

  • 58

    2

    . (S1) 7 , ,

    ,

    . (S2)

    , ,

    .

    2014 2027 , 6 7

    2,276MW 2,236MW

    .

    7 2020

    2 .

    (6) (7) (6) (7) 2014 24,516 20,716 3,800 25,149 25,149 02015 24,516 21,716 2,800 27,169 26,169 1,0002016 24,516 23,116 1,400 34,929 33,873 1,0562017 25,916 25,329 587 35,929 34,873 1,0562018 27,316 26,729 587 38,299 34,873 3,4262019 28,716 26,729 1,987 43,669 35,873 7,7962020 30,116 26,729 3,387 43,669 36,913 6,7562021 31,516 28,129 3,387 44,669 42,713 1,9562022 32,916 30,929 1,987 44,669 43,293 1,3762023 34,416 32,329 2,087 44,669 43,293 1,3762024 35,916 32,329 3,587 44,669 43,293 1,376 2,327 2.470

    6 vs. 7 ( )

    (: MW)

    :

  • 5 59

    RPS 2012 64.7%

    2013 67.2%, 2014 78.1% .

    , 7

    RPS 78.1% .

    2012 2013 2014

    (REC) 6,420 10,897 12,905

    (REC) 4,154 7,324 10,078

    (%) 64.7 67.2 78.1

    RPS

    :

    SMP .

    S1 7

    S2

    2 (#5, 6, 7, 8, #3, 4, #1, 2)

    2 (#1, 2, NSP#1, 2, #1, G#1, 2, #1, 2)

    RPS 78.1%

    7

    SMP 2016 90.6/kWh 2024 76.7/kWh

    15.3% . 7

  • 60

    ( ) SMP

    .

    SMP 2016 91.5/kWh 2024 84.0/kWh

    8.2%

    .

    .

    S1 S2

    2016 90.6 91.5

    2017 88.1 88.9

    2018 86.9 88.3

    2019 87.7 90.1

    2020 88.3 91.4

    2021 85.3 91.1

    2022 79.7 91.9

    2023 77.7 89.7

    2024 76.7 84.0

    (: /kWh)

    . REC

    REC .

  • 5 61

    SMP - REC

    REC .

    SMP

    . SMP 7

    100% , 2

    . REC

    15%, 20%, 25% .

    . REC

    REC .

    SMP ( 100% ) SMP ( 2 )

    (15%)

    (20%)

    (25%)

    (15%)

    (20%)

    (25%)

    1 2 3 4 5 6

    REC .

    LCOE SMP

    . REC

    REC

    . REC

    . REC

    1.5 . REC

    , , ,

  • 62

    . REC

    . REC

    / .

    (+)

    (REC) 921 887 963 159 3,681 6,537 13,390

    7% 7% 7% 1% 27% 49% 100%

    (/REC) 91.58 70.70 107.00 107.00 49.06 49.06 57.38

    () 86.08

    () 70.7

    2016 REC

    REC

    [ 5-7] [ 5-12] . 1

    7 , SMP

    , 15% .

    1 REC 2016 71/REC

    2024 54/REC .

    LCOE REC

    . 2021 51/REC

    SMP LCOE

    REC .

  • 5 63

    REC 2016 86/REC 2024 82/REC

    .

    REC

    . REC

    REC

    REC .

    .

    REC

    .

    [ 5-7] REC ( 1)

    :

  • 64

    2 7 ,

    SMP , 5% 20%

    . 2 REC

    2016 71/REC 2024 54/REC 1

    . SMP

    REC , REC

    . REC /

    REC SMP

    .

    [ 5-8] REC ( 2)

    :

  • 5 65

    REC 2016 94/REC 2024 83/REC

    1 .

    , REC

    .

    ,

    . 1 REC

    REC REC

    .

    [ 5-9] REC ( 3)

    :

  • 66

    3 7 ,

    10% 25% . 3

    REC 2 3

    . REC 2016 102/REC 2024 84/REC

    1 2 .

    .

    4 7 2

    SMP , 15%

    . 4 REC

    2016 71/REC 2024 49/REC 1

    [ 5-10] REC ( 4)

    :

  • 5 67

    .

    SMP 1

    , REC . REC

    SMP , SMP

    REC , SMP REC

    .

    REC 2016 89/REC 2024 75

    /REC 1 .

    5 7 2

    , 5% 20%

    . 5 REC 2016 71

    /REC 2024 49/REC 4

    . 2 SMP REC

    .

    REC 2016 94/REC 2024 75/REC

    4 . SMP

    , REC . 2

    ,

    .

  • 68

    [ 5-11] REC ( 5)

    :

    6 7 2

    , 10% 25%

    . 6 5 REC

    2016 71/REC 2024 49/REC

    .

    REC 2016 102/REC 2024 76/REC

    5 .

    REC .

  • 5 69

    [ 5-12] REC ( 6)

    :

  • 6 71

    6

    RPS

    SMP REC .

    REC SMP

    . 2014 12 SMP

    143.7/kW 2015 9 SMP 85.7/kW

    40% .

    . LCOE=SMP+REC

    (LCOE)

    SMP REC .

    SMP REC

    .

    .

    RPS REC

    , .

    1.

    .

    .

    REC

  • 72

    RPS .

    .

    REC

    . REC RPS

    REC

    .

    RPS .

    REC

    . RPS

    .

    (Cap) REC

    .

    16

    RPS

    . REC

    REC .

    -

    RPS .

    REC .

    , ,

    . REC ,

    REC .

  • 6 73

    (CA) (NY) (NJ)

    CPUC PSC ORER NFPAS

    RAM - - - -

    RFP RFP

    (Flett Exchange)

    (LGC Market)

    (e-ROC)

    20MW - - -

    1,000MW (SBC)

    - - -

    (, )

    (PG&E, SEC, SD&E)

    NYSERDA(

    )

    (, )

    ()

    Pay as Bid Pay as Bid

    ()

    RenewableAttribute

    SREC( )

    LGC ROC

    Bundle Unbundle Unbundle Unbundle Unbundle

    10 10 2() 2015 2037

    RPS

    : , 2011

  • 74

    6( )

    6(GS Power, , , SK ENS, MPC

    , ) .

    .

    [ 6-1]

    : , (2005)

    () (CP: Capacity Payment,

    ) (SMP, System Margun Price, ) .

    (Capability)

    .

    ( )

    (SMP) . SMP

    SMP

    . SMP .

    50 () . 2010 9

  • 6 75

    ,

    16 7)

    (Vertically Integrated

    Utilities) .

    , (Deregulated)

    ISO-NE (NH) .

    .

    .

    [ 6-2]

    : Energy in New Hanpshire

    1998 , 2001

    7) , , , , , , , , , , , , , , , D.C 16

  • 76

    (Black-out) .

    IOU(Investor Owned Utility,

    ) 3 60%

    . ISO

    CAISO (Deregulation) ,

    . REC

    ACP(Alternative Compliance Payment)8) RPS

    (Climate Policy Initiative, 2012).

    [ 6-3]

    : Electric Load Serving Entities in CA, CEC ENERGY ALMANAC

    . IOU 2

    8) ACP RPS

  • 6 77

    60%

    . (Vertically Integrated)

    .

    (Retail Price Cap)

    REC (Climate

    Policy Initiative, 2012).

    [ 6-4]

    : EIA(2010.9 )

    1990

    .

    .

    (, 2013).

    38 , 9 , 8

  • 78

    .

    [ 6-5]

    : KOTRA, 2013

    1990

    ,

    . 4

    , 2/3

    . , VICTORIA

    SOUTH AUSTRALIA

    AGL ENERGY, TRUENERGY . , QUEENSLAND STANWELL

    CS ENERGY, 66% . TASMANIA

    HYDRO TASAMANIA .(AER, 2014)

  • 6 79

    2. REC

    .

    1)

    CEC(California Energy Committee) MPR(Marginal Price Referent)

    , RPS REC ,

    9) . MPR

    CCGT( ) ,

    NPV(Net Present Value)

    . CEC MPR

    , O&M ,

    , .10)

    (EPA) MPR

    2010 RES

    .

    9) REC (, 2013)

    10) (SB 1078, 107) MPR 500MW CCGT(Combined Cycle Gas Turbine) ,

  • 80

    [ 6-6] RES ()

    : EPA, 2010

    RPS

    , MPR TOD factor, Location, Lost Salary, Lost Tax

    Rev. REC . TOD factor

    Location , Lost Salary

    , Lost Tax (Tax Revenue) .

    CEC MPR

    RPS

    .

  • 6 81

    2011 Market Price Referent() -

    10 15 20 25

    2012 0.07688 0.08352 0.08956 0.09274

    2013 0.08103 0.08755 0.09375 0.09695

    2014 0.08454 0.09151 0.09756 0.10081

    2015 0.08804 0.09520 0.10132 0.10464

    2016 0.09156 0.09883 0.10509 0.10848

    2017 0.09488 0.10223 0.10859 0.11206

    2018 0.09831 0.10570 0.11218 0.11572

    2019 0.10186 0.10928 0.11587 0.11946

    2020 0.10550 0.11296 0.11965 0.12326

    2021 0.10916 0.11675 0.12354 0.12712

    2022 0.11299 0.12067 0.12752 0.13105

    2023 0.11691 0.12469 0.13160 0.13504

    MPR: RPS (CEC)

    : CA PUC Energy Division, Resolution E-4442(2011)

    REC RPS

    1REC USD 50 (Cap)

    (Climate Policy Initiative, 2012). REC

    (Polsinelli, 2013b).

  • 82

    2)

    RPS RPS

    REC Rate Cap

    . Rate Cap REC

    . , ,

    (Polsinelli, 2013b).

    [ 6-7] Rate Cap 2% Rule

    : RM Group, 2013

    Rate Cap 2% Rule .

    RES RES 2%

    , . REC

    Cap RES

  • 6 83

    RES .

    3) REC

    : (Contract Price Cap) RPS REC Bundled

    REC (Cap) .

    15%

    .

    : RPS (Auction) RPS RPS

    . RPS

    REC .

    : (Sales Revenue Cap) RPS .

    REC

    REC .

    , , , (Climate Policy

    Initiative, 2012).

  • 84

    .

    1) FIT rate

    FIT

    , RPS(RO, Renewable Obligation) FIT

    . FIT

    . Ofgem(The office of gas and electricity markets)

    (PV) (Non-PV) FIT rate

    , FIT

    . FIT

    .(Ofgem e-serve, 2014)

    [ 6-8] PV FIT

    : FIT Quarterly Statistics Ofgem data : 50kW 100kW PV, middle rate

  • 6 85

    , lower rate

    , middle rate

    FIT 25 .

    lower rate middle rate higher rate

    . stand alone

    . FIT

    .

    2) FIT with CfD(Contract for Difference)

    2012 FIT (with CfD) . FIT

    with CfD

    .

    .

    .

    2012 11.3% 2020 30%

    (, 2013).

    FIT RO

    . RO 2017 FIT

    with CfD 2017

    .

  • 86

    FIT with CfD (Strike price)

    (Reference Price) .

    .

    ,

    .

    ,

    .

    11),

    (

    , 2013). , ,

    2019 (, 2013).

    [ 6-8] FIT-CfD

    : , , 2013

    11) 2013 (/MWh): : 155, : 100, : 125, : 95, : 105

  • 6 87

    .

    1,000 (REC)

    (large scale generation certificates)

    1 5

    EO

    REC ,

    AUD $0.05 AUD $50.00 ( 1,000 )

    3

    15

    9:00 am~4:00 pm

    Deliverable

    Designated Registry , (CER)

    REC

    :

    ASX REC REC

    . REC

    ,

    Exchange For Physical(EFP)

  • 88

    . ,

    , ASX , , ,

    .

    ,

    (ASX, 2011).

    REC

    . REC

    , REC

    . REC

    ((Large-Scale

    Generation Certificates, LGC) ,

    (Small-Scale Technology Certificates, STC) .

    REC , 15

    REC .

    3 ,

    . , REC

    delivery ASX

    , REC delivery ASX .

    REC .(ASX, 2011).

  • 6 89

    [ 6-10] REC

    : ASX, 2011

  • 90

    3. REC

    . REC

    , RPS

    . RPS

    REC .

    REC .

    RPS REC

    .

    REC .

    SMP

    .

    .

    SMP REC

    (Risk Premium) .

    RPS REC

    .

    RPS MPR

    , RPS (Cap)

    . FIT FIT

    . REC REC

    .

  • 6 91

    . REC

    1) RPS

    () RPS

    , RPS .

    RPS

    REC .

    RPS .

    .

    RPS

    REC .

    2) SMP+REC

    REC 12

    REC

    . SMP

    . SMP+REC

    . SMP+REC

    SMP

    .

  • 92

    [ 6-11] SMP+REC

    3) REC() + SMP()

    REC

    . PPA

    SMP .

    [ 6-12] REC + SMP

    SMP

    .

    RPS MPR

  • 6 93

    MPR .

    RPS SMP

    RPS

    .

    4)

    SMP+REC

    ,

    SMP+REC .

    SMP REC

    . 2

    SMP REC

    .12)

    . [ 6-13]

    : The Transfer of the Weather risk faced with the challenges of the future, SCOR Focus publication, 2012

    12) SCOR Focus publication(2012) The Transfer of the Weather risk faced with the challenges of the future

  • 94

    REC (Futures Market)

    REC .

    ()

    . (Forward) (Clearing

    House) RPS REC

    .

    [ 6-14] (Futures)

    . (

    REC) .

  • 6 95

    SMP

    REC

    .

    .

    REC

    .

    FIT

    RPS

    .

    FIT .

  • 7 97

    7

    2012 RPS REC

    REC .

    REC

    REC . RPS

    RPS , REC

    . REC

    REC

    . RPS

    REC .

    REC REC

    REC .

    REC

    . REC

    REC

    .

    RPS 80

    .

    REC 2 .

  • 98

    , . REC

    , ,

    , , .

    .

    . 3 . ,

    , RPS .

    , REC REC 5%

    REC REC . ,

    RPS REC .

    2014 / REC

    , 2016 -

    REC

    .

    REC

    .

    (Levelized cost

    of energy) (experience curve) .

    SMP REC,

    LCOE .

    RPS , REC

    REC . RPS

    1.5 ,

    REC .

    Bayus . ()

  • 7 99

    () , Bayus

    .

    , 2016 686.6/W 2024

    500.5/W, 1,121.7/W 2024 617

    /W .

    2016 1,808.4/W 2024 1,117.9/W 38%

    . LCOE

    2016 167.06/kWh 2024 106.39/kWh 36%

    .

    2016 1,129.9/W 2024 1,054.8

    /W 6.6% .

    1,128/W

    . 2016 2,257.8

    /W 2024 2,182.7/W 3.3% .

    LCOE 2016 140.60/kWh 2024 136.83

    /kWh .

    SMP 7

    2 .

    7 , , ,

    . (S2) ,

    , .

    SMP 2016 91/kWh 2024 76.7~84/kWh

    .

    SMP .

  • 100

    LCOE SMP REC

    . SMP

    6 . SMP 7

    100% ,

    2 . SMP

    REC 15%,

    20%, 25% . 7

    , REC 2016 71

    /REC~102/REC 2024 54/REC~84/REC

    . LCOE

    REC .

    REC REC

    REC .

    ,

    REC

    .

    7 2

    SMP . REC

    2016 71/REC~102/REC 2024 49/REC~76

    /REC .

    SMP 1

    , REC .

    REC

    , REC .

  • 7 101

    RPS

    . () RPS ,

    RPS .

    RPS

    REC .

    SMP+REC

    . REC 12

    . REC

    SMP

    .

    SMP+REC

    .

    REC , SMP

    PPA

    .

    ,

    SMP+REC

    . SMP REC

    . 2 SMP REC

    .

    REC

    .

    . SMP

    .

  • 102

    FIT .

    .

    REC , ,

    ,

    . ,

    . REC

    RPS .

    REC

    .

  • 103

    , , 2011, RPS ,

    22 1, pp.143-165

    , 2004, ,

    , , , , , , 2012, SUDP

    SMP , 2012

    , pp.424-425.

    , 2013, , ,

    pp.43-52.

    , 2014a, 2014

    , 2014b, 7

    , 2014, ,

    , 2013, .

    13-13.

    , 2013,

    , ,

    , 2013

    .

    , 2002, .

    , 2015, LNG ,

  • 104

    , 2014, RPS , Current

    Photovoltaic Research 2 4, pp.182-188.

    , 2010, (RPS)

    , 59(12): pp.22-27

    , 2014, M-Core()

    , 2007,

    __________, 2010, (RPS)

    , 2010.

    __________, 2011, RPS REC , 2011.

    __________, 2013, CAISO, .

    , 2005,

    __________, 2010, ,

    , 2009,

    __________, 2012,

    , 2012, ,

    ,

    , 2013,

    ,

    , 2014, Eco-System: REC

    , 23(4): pp.1-8

    , 2013, 6

    , 2012, .

    , 2015, -

    , 2014, 14

  • 105

    , pp.9-10

    , 2005,

    , 2013,

    (I),

    , 2013,

    , p.7

    , , , , , 2012,

    (RPS) REC ,

    , 2012 , pp.19-20

    Advisory Committee, 2013, Overview of Colorados Renewable

    Energy Standard(CRS 40-2-124).

    AER, 2014, State of the Energy Market.

    ASX, 2011, Renewable Energy Certificate (REC) Futures,

    .

    Australian Gov, 2014, Renewable Energy Target Review, Climate

    Change Authority

    Bhandari, R. and Stadler, I. 2009, Grid Parity Analysis of Solar

    Photovoltaic Systems in Germany Using Experience Curve,

    Solar Energy 83: pp.1634-1644

    BNEF, 2015, H1 2015 Global levelized cost of electricity update

    Cho, Y., Koo, Y., 2012. Investigation of the effect of secondary

    market on the diffusion of innovation. Technological

    Forecasting and Social Change, 79, pp.1362-1371

    Climate Policy Initiative, 2012, Limiting the Cost of Renewables:

    Lesson for California; CPI Working Paper

  • 106

    Christoph H., Thomas W., 2011, Economic functioning and

    politically pragmatic justification of tradable green certificates

    in Poland, Environmental Economics and Policy Studies 13(2):

    pp.157-175

    Dawei Z., Daniel R. B., Navigant, Inc., Solar renewable energy

    credits(SRECs) price forecast

    DOER. 2011. Renewable Energy Portfolio Standard Guideline

    _____. 2014. Massachusetts RPS & APS Annual Compliance Report

    for 2012

    DORA PUC. 2013. What does the Renewable Energy Standard(RES)

    require?

    DSIRE, 2015, Renewable Portfolio Standard Policies.

    Eirik S. Amundsen, Fridrik M. Baldursson and Jorgen B. M., 2006,

    Price Volatility and Banking in Green Certificate Markets,

    Environmental and Resource Economics 35(4): pp.259-287

    Farrokh Albuyeh et al. Implementation of the California

    Independent System Operator. IEEE: 2

    Gov. Energy Office. 2010. Colorados 30% Renewable Energy

    Standard: Policy Design and New Markets

    IEA, 2000, Experience Curves for Energy Technology Policy

    ____, 2014, World Energy Outlook

    ____, 2015, Medium-Term Market Report 2015

    Jacob L., 2003, Financial risks for green electricity investors,

    Denmark Energy Policy 31(1): pp.21-32

    Jeff Bryan et al., Estimating the Pricce of ROCs, 2013, Stirling

  • 107

    Economics Discussion Paper, University of Stirling, Stirling

    Management School

    KOTRA, 2014a 1

    _____, 2014b,

    Lee, J., Cho, Y., Lee, J.-D., Lee, C.-Y., 2006. Forecasting future

    demand for large-screen television sets using conjoint analysis

    with diffusion model. Technological Forecasting and Social

    Change 73: pp.362-376.

    Michael C., Javad K., and W.B. Piwell., 2015, Smart-srec: A

    Stochastic Model of the New Jersey solar Renewable Energy

    Certificate market, Journal of Environmental Economics and

    Management 73: pp.13-31

    Navigant Consulting, 2010. 2010 Colorado Utility Report: 4

    Nemet, G. 2006, Beyond the learnig curve: Factors influencing cost

    reductions in photovoltaics, Energy Policy 34: pp.3218-3232

    Ofgem e-serve 2014, Feed-in-Tariff: Annual Report(2013-14)

    Polsinelli Law Firm. 2013a. All RECs are mot created equal:

    Bundling and Geographic Sourcing; Renewable Energy Las

    Insider

    ___________________. 2013b. All RECs are mot created equal:

    Rate Caps and Shelf-Life, Renewable Energy Law Insider

    REN21, 2014, Renewables 2015 Global Status Report: p.64.

    ______, 2015, Renewables 2015 Global Status Report: p.9

    RM Group, LLC. 2013. Analysis of the Rate Impact of Colorados

  • 108

    Renewable Energy Standard

    Scor. 2012. The transfer of weather risk faced with the challenges

    of the future. Technical Newsletter pp.1-8SEIA, RPS Solar Carve Out Colorado

    http://www.cpuc.ca.gov/PUC/energy/Renewables/mpr

    http://www.shaktifoundation.in

    http://www.ferc.gov/industries/electric/indus-act/rto.asp

    http://www.energyalmanac.ca.gov/electricity

    http://www.energy.ca.gov

    http://www.gov.uk/government/organisations/department-of-energy-clima

    te-change

    http://www.asx.com.au/products/energy-derivatives/renewable-energy-cer

    tificates.htm

    http://www.nortonrosefulbright.com/knowledge/publications/66177/europ

    ean-renewable-energy-incentive-guide-italy(Norton Rosefulbright

    )

    http://rec.kpx.info/index( )

    http://markets.flettexchange.com/new-jersey-class-i-rec/(

    flettexchange )

    http://www.knrec.or.kr( )

  • 109

    1. REC

    2016 70.7 86.1

    2017 70.0 85.5

    2018 63.9 84.6

    2019 57.1 83.4

    2020 51.4 82.2

    2021 50.5 81.3

    2022 51.7 81.9

    2023 52.7 82.1

    2024 53.7 82.1

    REC ( 1)

    (: /REC)

    :

  • 110

    2016 70.7 94.1

    2017 70.0 89.8

    2018 63.9 88.1

    2019 57.1 86.6

    2020 51.4 85.1

    2021 50.4 83.6

    2022 51.6 83.6

    2023 52.7 83.3

    2024 53.7 82.9

    REC ( 2)

    (: /REC)

    :

    2016 70.7 102.1

    2017 70.0 94.0

    2018 63.9 91.5

    2019 57.1 89.7

    2020 51.4 87.9

    2021 50.4 85.9

    2022 51.5 85.4

    2023 52.6 84.6

    2024 53.6 83.7

    REC ( 3)

    (: /REC)

    :

  • 111

    2016 70.7 89.0

    2017 69.1 86.5

    2018 62.5 85.0

    2019 54.7 83.3

    2020 49.2 81.6

    2021 48.8 79.1

    2022 48.3 76.7

    2023 48.2 74.8

    2024 48.8 74.6

    REC ( 4)

    (: /REC)

    :

    2016 70.7 94.1

    2017 69.1 89.5

    2018 62.5 87.4

    2019 54.7 85.5

    2020 49.2 83.5

    2021 48.8 80.7

    2022 48.2 77.9

    2023 48.1 75.8

    2024 48.8 75.0

    REC ( 5)

    (: /REC)

    :

  • 112

    2016 70.7 102.1

    2017 69.1 93.8

    2018 62.5 90.9

    2019 54.7 88.7

    2020 49.1 86.4

    2021 48.7 83.0

    2022 48.2 79.7

    2023 48.1 77.1

    2024 48.7 75.8

    REC ( 6)

    (: /REC)

    :

  • (PA) , , 2014.

    Forecasting Demand for a Newly Introduced Product Using Reservation Price Data and Bayesian Updating, Technological Forecasting and Social Change, 2012, 79 (7), 1280-1291.

    Diffusion of Renewable Energy Technologies in South Korea on Incorporating Their Competitive Interrelationships, Energy Policy, 69, 248-257

    2015-12

    (REC)

    2015 12 30 2015 12 31

    44543, 405-11 : (052)714-2114() : (052)422-2028

    1992 12 7 7 (02)2273-1775

    2015 ISBN 978-89-5504-549-9 93320

    * .

  • 115