01 introduction air quality model

Upload: agung-budi-r

Post on 06-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 01 Introduction Air Quality Model

    1/67

    Air Quality Modeling

  • 8/17/2019 01 Introduction Air Quality Model

    2/67

    Model Vs Measurement

    x

    Model Measurement

  • 8/17/2019 01 Introduction Air Quality Model

    3/67

    Air Quality Modeling

    • Areas that are not incompliance with the AmbientStandards should use modelingto

     – Estimate the efects o growth(and expected controlmeasures) on uture air uality

     – E!aluate alternati!e"additionalmeasures

     – #emonstrate uture compliance

  • 8/17/2019 01 Introduction Air Quality Model

    4/67

    • Modeling eforts or most

    areas include' –scoping study to assess the

    nature and extent o the

    problem and data gaps"needs –collection and analysis o

    meteorological air uality

    emissions and land&use data –development and

    continued refnement o

    modeling databases andca abilities

  • 8/17/2019 01 Introduction Air Quality Model

    5/67

    Typical Air Quality Modeling Process

    onceptual Model #e!elopment

    Select episodes and domains

    *repare"re+ne inputs

    Apply emiss met models

    ompare model results tomeasurements

    *erormance ,-.

    *repare uture&year emissions

    onduct uture&year e!aluations

     /es

    0o

    ModelE!aluation

  • 8/17/2019 01 Introduction Air Quality Model

    6/67

    • 1agrangian employ a coordinatesystem that mo!es with air parcels

    • Eulerian the coordinate system is+xed in space

    • 2ybrid incorporate eatures o1agrangian types into a

    Eulerian ramewor3

    Classifcation o Photochemical Air Quality Simulation Models

  • 8/17/2019 01 Introduction Air Quality Model

    7/67

    Eulerian !s4 1agrangian

    • Eulerian – 5ixed coordinate

     – 5ocus on the statisticalproperties o 6uid

    !elocities – Eulerian statistics are

    readily measurable

     – #irectly applicablewhen there are

    chemical reactions – losure problem 7 no

    generally !alid solutions

    • 1agrangian – Mo!ing coordinate

     – 5ocus on the statisticalproperties o the

    displacements ogroups o particles

     – 0o closure problem – #i8cult to accurately

    determine the reuiredparticle statistics

     – 0ot directly applicableto problems in!ol!ingnonlinear chemicalreactions

  • 8/17/2019 01 Introduction Air Quality Model

    8/67

    Eulerian Model

  • 8/17/2019 01 Introduction Air Quality Model

    9/67

    EulerianModel

  • 8/17/2019 01 Introduction Air Quality Model

    10/67

    Eulerian Model

  • 8/17/2019 01 Introduction Air Quality Model

    11/67

    Scheme 1agrangian Model

  • 8/17/2019 01 Introduction Air Quality Model

    12/67

    1agrangian output15/02/02 12TU 9.5-10.5km

    19/02/02 12TU 8-9km

  • 8/17/2019 01 Introduction Air Quality Model

    13/67

    1agrangian

  • 8/17/2019 01 Introduction Air Quality Model

    14/67

     9op&!iew o distribution o particles 7San #iego harbor

    14

    1 km horizontal resolution 444 m horizontal resolution

     Meteorology: MM5 model;  Dispersion: Lagrangian Random Particle

    Dispersion Model

  • 8/17/2019 01 Introduction Air Quality Model

    15/67

    15

  • 8/17/2019 01 Introduction Air Quality Model

    16/67

    Lagrangian Models

    • Many Simpliying Assumptions – *roduce a simple closed&orm

    analytical expression

    or difusion

     – #o not reuire numerical integration• !n"o#e the Assumption o Air Parcel $oherency

     – :rea3s down uic3ly not ar rom an

    emissions source especially incomplex wind 6ow situations

    • $ost%eecti"e solution at relati"ely close rangesor a relati"ely small num&er o sources

  • 8/17/2019 01 Introduction Air Quality Model

    17/67

    Lagrangian Models (continued)

    • $hemical interactions &et'een pus(segments( or particles cannot &e properly

    treated

    • Readily produce source%receptorrelationships

    • Se"ere technical limitations especially or)

     – large numbers o sources – regional&scale transport

    applications

     – photochemically reacti!e

  • 8/17/2019 01 Introduction Air Quality Model

    18/67

    Lagrangian Models (continued)

    *aussian Plume Models

    • +he earliest air models

    •  !n"o#e many simpliying assumptions to o&tain

    closed%orm analytical solutions – Steady&state (i4e4 time in!ariant)

     – Spatially uniorm (homogeneous) dispersion

     – *lume coherency

     – ;nert or +rst&order decay•  *aussian plume models are not capa&le o treating

     photochemistry

  • 8/17/2019 01 Introduction Air Quality Model

    19/67

    Gaussian Plume Model

  • 8/17/2019 01 Introduction Air Quality Model

    20/67

    ,-

    The simplest dispersion modeling – Gaussian approximation for the

     plume spread 

     Not applicable to regional scales – complex terrain con!ecti!e

    conditions and ground"le!el sources#

  • 8/17/2019 01 Introduction Air Quality Model

    21/67

  • 8/17/2019 01 Introduction Air Quality Model

    22/67

    Model Assumptions

    • ind speed direction and difusion

    characteristics o the plume are constant – Mass transer due to bul3 motion in the x&

    direction ar outshadows the contribution due tomass difusion

     – onser!ation o mass i4e4 no chemicaltransormations ta3e place

     – >ind speeds are ?@ m"sec4

     – 1imited to predicting concentrations ? B mdownwind

    5/15/16 22

  • 8/17/2019 01 Introduction Air Quality Model

    23/67

    Atmospheric Stability lasses

    5/15/16 23

    ( )   ( )

      

      

      

    σ−+

    σ−

    σπσ=

    ,

    ,

    ,

    ,

    ,1e5p

    ,((

     $  y $  y

     %  $  yu

    & $  y x' 

    Gaussian Dispersion Equation

  • 8/17/2019 01 Introduction Air Quality Model

    24/67

    Lagrangian Models (continued)

    6amples o *aussian Plume models include)

    • !S$

    •$7MPL62

    • R+DM

    • A6RM7D

  • 8/17/2019 01 Introduction Air Quality Model

    25/67

    Lagrangian Models (continued)

    *aussian Pu Models

    •  .e'er simpliying assumptions

     – employ analytical solutions or each puf but

     – computers are reuired to trac3 the large

    number o pufs

     – still retain the plume coherency assumption

     – a ew ha!e been de!eloped or indi!idual reacti!eplumes

    e4g4 C*M&;V

     –numerical solution methods are needed to sol!echemical

    3inetics euations

  • 8/17/2019 01 Introduction Air Quality Model

    26/67

    Lagrangian Models (continued)

    6amples o *aussian Pu models include)• $ALP8..

    RPM%!9

    • S$!P8..

    • S$!$6M

  • 8/17/2019 01 Introduction Air Quality Model

    27/67

    ulerian (Grid) Model Concept 

  • 8/17/2019 01 Introduction Air Quality Model

    28/67

    Processes Treated in a Grid Model

    • 6missions – Surace emitted sources (on&road and non&road mobile

    area low&le!el point biogenic +res)

     – *oint sources (electrical generation industrial other +res)

    • Ad"ection :+ransport

    • Dispersion :Diusion• $hemical +ransormation

     – V, and 0,x chemistry radical cycle

     – D5or *M aerosol thermodynamics and aueous&phasechemistry

    • Deposition – #ry deposition (gas and particles )

     – >et deposition (rain out and wash out gas and particles)

  • 8/17/2019 01 Introduction Air Quality Model

    29/67

    Photochemical Modeling Concepts

    All Air Models Sol"e Some .orm o theAtmospheric Diusion 6

  • 8/17/2019 01 Introduction Air Quality Model

    30/67

    General !orm o the Species

    Conser"ation (Continuity) #uation$

    Mathematical solution (integration) of generalforms of the diffusion equation is difficult --simplifying assumptions are required

  • 8/17/2019 01 Introduction Air Quality Model

    31/67

    ulerian Grid Cell Processes

  • 8/17/2019 01 Introduction Air Quality Model

    32/67

    Coupling %et&een Grid Cells

  • 8/17/2019 01 Introduction Air Quality Model

    33/67

    ulerian Models

    •*enerally considered to &e technically superior  – allow more comprehensi!e explicit treatment

    o physical processes

     – chemical processes included

     – interactions o numerous sources

    • Re

  • 8/17/2019 01 Introduction Air Quality Model

    34/67

    ulerian Models (continued)

    •Su&grid resolution can &e a limitation – as grid si=e and time step length are reduced

    • accuracy increases but

    • computation time also increases

     – ad!anced grid models employ !ariable gridspacing or nesting

    • impro!es accuracy in critical locations

    • allows cost efecti!e application on urban to regionalscales

    • AMx has 6exi&nesting capability

  • 8/17/2019 01 Introduction Air Quality Model

    35/67

    'yrid (Lagrangianulerian)Models

    • ;ncorporate eatures o 1agrangian modelsinto

    grid model ramewor3

     – o!ercome many o the sub&grid modellimitations

    • ,!ercome many o the prior practicalad!antages o 1agrangian models

    through the de!elopment o' – !ariable (nested) grid resolution

     – source apportionment techniues

    • apitali=e on the a!ailability o low&costhi h s eed com uters

  • 8/17/2019 01 Introduction Air Quality Model

    36/67

    Su*Grid*Scale Plume Concept 

  • 8/17/2019 01 Introduction Air Quality Model

    37/67

    CAM+ G,AS- PiG Concept 

  • 8/17/2019 01 Introduction Air Quality Model

    38/67

    'yrid Models (concluded)

    • 6amples o hy&rid photochemical gridmodels include)

     – M,#E1S&H"MAQ – MAQS;*

     – IAM&V

     – AMx

  • 8/17/2019 01 Introduction Air Quality Model

    39/67

    Modules in a Grid Model

    •6missions Modeling System – E*S$x SM,-E and EMS&$BBH

    • Meteorological Modeling System – MM and CAMS (SA;MM and A1ME9)

    • Preprocessors or 7ther !nputs –  9IV (photolysis Cates)

     – ;nitial oncentrations and :oundary onditions

    • Air Quality Model – AMx"*MAMx Models&H"MAQ (IAM&V MAQS;*)

    • Post%Processors and 9isualization – Model *erormance E!aluation (MA*S AMJtrct Excel

    SIC5EC)

     – *AVE

     – 5lying #ata

  • 8/17/2019 01 Introduction Air Quality Model

    40/67

    General Model Summary 

    Photochemical grid=hy&rid models ha"e e"ol"ed as the preerredmeans o addressing comple and nonlinear processes aecting

    reacti"e air pollutants in the troposphere

    +hese models in"o#e e'er assumptions &ut re

  • 8/17/2019 01 Introduction Air Quality Model

    41/67

    ."er"ie& o the CAM+ ,egionalPhotochemical Model

    • Simulates the physical andchemical processes go!erning

    the ormation and transport oo=one in the troposphere – three&dimensional Eulerian (grid&

    based) model

     – reuires speci+cation ometeorological emissions land&useand other geographic inputs

     – output includes hourly concentrations

  • 8/17/2019 01 Introduction Air Quality Model

    42/67

    CAM+ ."er"ie& (continued)

    Mathematically simulates the ollo'ing processes)

     –emission o o=one precursors

    (anthropogenic and biogenic) –ad!ection and difusion

    (transport)

     –*hotochemistry

     –deposition

  • 8/17/2019 01 Introduction Air Quality Model

    43/67

    +ample o a Multiply /ested CAM+-omain$ -en"er 0*hr AC Study 

    %&3m grid

    @4H&3m grid

    HK&3m grid

    @$&3m grid

  • 8/17/2019 01 Introduction Air Quality Model

    44/67

    CAM+ Model !ormulation 

    ( ) ( ) ( )   

      

      ++−= $ 

    (c

     y

    !c

     x

    uc

    c iiii

    δ 

    δ 

    δ 

    δ 

    δ 

    δ 

    δ 

    δ 

    hange inoncentration

    > Ad!ection by >inds

     9urbulent#ifusion

    ? Ci ? Si ? 1ihemicalCeaction

    Emissions SuraceCemo!al"#eposition

       

      +  

     

      

     + 

      

      +

     $ 

    c ) 

     $  y

    c ) 

     y x

    c ) 

     x

    i* 

    i % 

    i % 

    δ 

    δ 

    δ 

    δ 

    δ 

    δ 

    δ 

    δ 

    δ 

    δ 

    δ 

    δ 

    CAM+ Modeling System

  • 8/17/2019 01 Introduction Air Quality Model

    45/67

    CAM+ Modeling System!eatures

    • $ar&on%@ond%!9 chemical mechanism 'ithenhanced isoprene and toics chemistry

    • +'o%'ay interacti"e nested%gridcapa&ilities

    •Plume%in%grid :P%i%* treatment

    • Accepts output rom a "ariety o dynamicmeteorological models

  • 8/17/2019 01 Introduction Air Quality Model

    46/67

    CAM+ 1nput ,e#uirements

    •Meteorological !nputs – 9hree&dimensional winds

     – 9hree&dimensional temperatures

     – 9hree&dimensional water&!apor concentration

     –Surace pressure

     – 9hree&dimensional !ertical difusi!ity (efecti!emixing height)

     – 9wo&dimensional co!er

     – Cainall rate

  • 8/17/2019 01 Introduction Air Quality Model

    47/67

    CAM+ 1nputs (continued)

    • Emissions ;nputs – 1ow&le!el anthropogenic emissions

    • *oint sources

    • Area sources

    • ,n&road motor !ehicles

    • 0on&road sources

     – Ele!ated point source emissions

     – :iogenic emission estimates

  • 8/17/2019 01 Introduction Air Quality Model

    48/67

    CAM+ 1nputs (continued)

    • Air

  • 8/17/2019 01 Introduction Air Quality Model

    49/67

    ,egional Scale .2one Tile Plots

     

    Daily Maimum %hr 7zone $oncentrations :pp& on B1 Culy ,--1

    7"er the 6astern 8nited States) B #m $AM *rid Domain

  • 8/17/2019 01 Introduction Air Quality Model

    50/67

    Local Scale .2one Tile Plots

     

    Daily Maimum %hr 7zone $oncentrations :pp& on B Aug ,--- 7"er

    +he San Cuan @asin=.our $orners Region) 4 #m $AM *rid Domain

  • 8/17/2019 01 Introduction Air Quality Model

    51/67

    .2one Time Series Plots

     

    ourly 7zone $oncentrations :pp& on at Mesa 9erde Eational Par# 

    .or B1 Culy F 4 August ,--- 7"er the San Cuan @asin=.our $orners Region

  • 8/17/2019 01 Introduction Air Quality Model

    52/67

    .2one Time Series Plots

     

    ourly 7zone $oncentrations :pp& on at Su&station .or B1 Culy to

    4 August ,--- 7"er the San Cuan @asin=.our $orners Region) 4 #m *rid

  • 8/17/2019 01 Introduction Air Quality Model

    53/67

    'ourly .2one Scatter Pots

     

    Scatterplot o ourly 7zone $oncentrations :pp& on ,, Cune ,--1

    7"er Lo'er La#e Michigan) 4 #m $AM *rid Domain

  • 8/17/2019 01 Introduction Air Quality Model

    54/67

    Quartile*Quartile .2one Plots

     

    Q%Q Plot o ourly 7zone $oncentrations :pp& on ,4 Cune ,--1

    7"er Lo'er La#e Michigan) 4 #m $AM *rid Domain

  • 8/17/2019 01 Introduction Air Quality Model

    55/67

    CAM+ 3*- Animation

  • 8/17/2019 01 Introduction Air Quality Model

    56/67

    ase Study' La3arta city ;ndonesia

    Asep Soyan( +0 Gitada( and0 *0 Gurata( umeri!al "tud# o$ %& and "%& 

    D#nami!s under 'and/"ea (ree)es in Dr# "eason in *akarta+ ,ndonesia(

     +ournal of Global ,n!ironment ,ngineering 9olume 1B( ,--( pp0 H%H0

    Gitada +0( Asep Soyan( and Gurata *0:,-- umeri!al simulation o$ air

    pollution transport under sea/land ree)e situation in *akarta+ ,ndonesia in

    dr# season. ir ollution Modelin and its ppli!ation ,( $0 @orrego and

    A0C0 Miranda :eds0( ,4B%,51( Springer0

    Asep Soyan( +0 Gitada( and0 *0 Gurata( Di$$eren!e o$ "ea (ree)e in *akarta

    (eteen Dr# and 3et "easons4 ,mpli!ation in %2 and "%2 Distriution in

    *akarta( +ournal of Global ,n!ironment ,ngineering 9olume 1,( ,--/( pp0

    B%50

    Pu&lications)

  • 8/17/2019 01 Introduction Air Quality Model

    57/67

  • 8/17/2019 01 Introduction Air Quality Model

    58/67

  • 8/17/2019 01 Introduction Air Quality Model

    59/67

  • 8/17/2019 01 Introduction Air Quality Model

    60/67

  • 8/17/2019 01 Introduction Air Quality Model

    61/67

  • 8/17/2019 01 Introduction Air Quality Model

    62/67

  • 8/17/2019 01 Introduction Air Quality Model

    63/67

    :ac3 9raectory 9echniues in Air *ollution

     9raectories' the paths o in+nitesimally smallparticles o air as they mo!e through timeand space4

    Such 6uid particles Nmar3edO at a certainpoint in space at a gi!en time can be tracedorward or bac3ward in time along theirtraectory4 :ac3ward (bac3) traectories'

    indicate the past path o a particle

    5orward traectories' indicate the uture path o a particle

     

  • 8/17/2019 01 Introduction Air Quality Model

    64/67

    re!ept

    or

    6ample @ac# +raIectory

    /%day @ac# traIectories rom the ship

    :receptor ha"e &een calculated using

    the 3SPL!+ 4 model :3&rid

    Single%Particle Lagrangian !ntegrated

    traIectory0

  • 8/17/2019 01 Introduction Air Quality Model

    65/67

    Applications o :ac3 9raectories

    Synoptic meteorology ;n!estigate air mass 6ow around mountains 

    (Steinac3er @P%)

    limatology

    ;dentiy pathways o water !apor transport(#OAbreton and 9yson @PPK) or desert dust(hiapello et al4 @PPR)

    En!ironmental Sciences Establish source&receptor relationships o air

    pollutants (Stohl @PPKa) 1aw Enorcement

    ombine with pollen measurements to +nd possiblelocations o mariuana culti!ation (abe=udo etal4@PPR)

  • 8/17/2019 01 Introduction Air Quality Model

    66/67

    5/15/16 66

    Air Quality Research

  • 8/17/2019 01 Introduction Air Quality Model

    67/67

    Air Quality Research

     –#ata collection' Emissionin!entory

     –Management' Scenario and

    policy or transportationindustry orest +re

     –limate change' co&bene+t

     –;mpact' 2ealth *lant –Measurement' gas

    particulateblac3 carbon