01101010100101010010111101 011010101001010010100100111 011010101001010100101110...

24
01101010100101010010111101 011010101001010010100100111 011010101001010100101110 0101010010101001011110001 Real Time Collaboration and Sharing 01111100101101010100101010 National Science Foundation Industry/University Cooperative Research Center for e-Design: IT-Enabled Design and Realization of Engineered Products and Systems U niversity ofPittsburgh UM ass Am herst Solving Interval Constraints in Computer-Aided Design Yan Wang Department of Industrial Engineering NSF Center for e-Design University of Pittsburgh

Upload: daisy-wells

Post on 27-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

Real Time Collaboration and Sharing

01111100101101010100101010National Science Foundation Industry/University Cooperative Research Center fore-Design: IT-Enabled Design and Realization of Engineered Products and Systems

University of Pittsburgh UMassAmherst

Solving Interval Constraints in Computer-Aided Design

Yan WangDepartment of Industrial Engineering

NSF Center for e-DesignUniversity of Pittsburgh

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Outline

Parametric geometric modeling Interval geometric modeling Constraint solving

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Parametric Geometric Modeling

Geometric model – Geometry– Topology– Attributes

Constraint solver – Numerical– Symbolic– Graph-based / Constructive– Rule-based reasoning

Visualization

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Fixed-Value Parameter vs. Interval-Value Parameter

Fixed-value parameters may generate inconsistency errors from floating-point arithmetic.

Fixed-value constraints bring up conflicts easily at later design stages.

Fixed-value parameters make the development of Computer-Aided Conceptual Design difficult.

Interval parameters improve robustness of geometry computation.

Interval parameters capture the uncertainty and inexactness. Interval parameters directly represent boundary information

for optimization. Intervals provide a generic representation for geometric

constraints.

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Application of IA in CAD/CAE Computer graphics: rasterizing [Mudur and Koparkar], ray tracing [Toth,

Kalra and Barr], collision detection [Moore and Wilhelms, Von Herzen et al., Duff, Snyder et

al.]. CAD: curve approximation [Sederberg and Farouki, Patrikalakis et al., Chen and Lou,

Lin et al.], shape interrogation [Maekawa and Patrikalakis], robust boundary evaluation [Patrikalakis et al., Wallner et al.]

CAE: finite element formulation [Muhanna and Mullen]

System design: set-based modeling [Finch and Ward], structural analysis [Rao et al.]

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Given that A = [aL, aN, aU], B = [bL, bN, bU],

Nominal Intervals in IGM

Display Interactivity Tolerance

A: B: A ~> B A ~ B A ~< B A ~ B A: B: A = B A := B A B A B A: B: A B A B A B A B *Notation: xL xN xU

equivalence: nominal equivalence: strictly greater than or equal to: strictly greater than: strictly less than or equal to: strictly less than: inclusion:

UULL babaBA

UUNNLL bababaBA :

UL baBA ~

UL baBA ~

LU baBA ~

LU baBA ~

LLUU babaBA

LLUU babaBA

2D Point: 3D Point: p(X, Y) = p([xL, xN, xU],[yL, yN, yU]) p(X, Y, Z) = p([xL, xN, xU],[yL, yN, yU],[zL, zN, zU])

zL zU

zN yL

yN

yU

xL xU xN

yL

yN

yU

xL xU xN

UNLUNLULUNL xxxxxxxxxxxxxX ,,,,],,[

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Sampling Relation between Real Number and Interval Number

strict equivalence: strictly greater than or equal to: strictly greater than: strictly less than or equal to: strictly less than:

yxByAxBA ,,~

yxByAxBA ,,~

yxByAxBA ,,~

yxByAxBA ,,~

yxByAxBA ,,~

Strict relations

Global relations global equivalence: greater than or equal to: greater than: less than or equal to: less than:

yxByAxBA ,,

LL baBA yxByAxBA ,,

LL baBA yxByAxBA ,,

UU baBA yxByAxBA ,,

UU baBA yxByAxBA ,,

yxYyXxYX ,,

yxYyXxYX ,,

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Set vs. Individuals

Global relations are default relations in IA. Global relations ensure the feasibility of interval

arithmetic operations and solutions. Global relations make global solution and

optimization of interval analysis possible.

Strict relations exhibit the rigidity of RA. Strict relations specify constraints between variables

directly.

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Preference, Specification, & Interval Constraint

Improve specification interoperability for design life-cycle

Represent soft constraint Capture the uncertainty of design Model incompleteness and

inexactness especially during conceptual design

Model a set of design alternatives Represent tolerance and boundary

information for global optimization Improve robustness of computation

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Under-, Over-, & Well-Constrained ( a ) ( b )

0

0

01120112

01300130

20

201

201

yyyyxxxx

yyyyxxxx

dyyxx

P 0 P 1

P 3 P 2

d 0

L 3 L 1

L 2

L 0

(a) (b)

10

201120112

101300130

23

230

230

22

223

223

21

212

212

20

201

201

10

00

00

0

xx

oyyyyxxxx

oyyyyxxxx

dyyxx

dyyxx

dyyxx

dyyxx

yy

by

ax

P0 P1

P3 P2

d0

L3 L1

L2

L0

d3 d1

d2

h

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Special Considerations of Interval Linear Equations for CAD

Matrix-based methods are not for under- or over-constrained problems

Iteration-based methods (e.g. Jacobi iteration, Gauss-Seidel iteration) are more general and useful in CAD constraint solving

miYXA i

n

jjij ,...2,1

1

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

X

A Y

Extended Gauss-Seidel Method

INPUT: Interval matrix A Interval vector Y OUTPUT: Interval vector X Interval V int i, j, k REPEAT until stop criterion is met FOR each 1 <= i <= m FOR each 1 <= j <= n IF Aij=0 continue next j iteration ENDIF V = 0 FOR each 1<=k<j V = V+Aik*Xk ENDFOR FOR each j+1<=k<=n V = V+Aik*Xk ENDFOR V = (Yi – V)/Aij Xj = Xj V ENDFOR ENDFOR

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Solving Interval Nonlinear Equations based on Linear Enclosure

1. Transform to separable form;

2. Find linear enclosure;

3. Solve linear enclosure equations;

4. Update variable values

5. If stop criteria not satisfied, go to step 2; otherwise stop.

liCF ii ,...2,1XStart

Transform to Separable Form

Stop Criteria Satisfied?

End

Y

N

Find Linear Enclosure

Solve LinearEnclosure Equations

Update Variable Values

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

1. Separable Form Function f(x1, x2, …, xn) is said to be separable iff

f(x1, x2, …, xn) = f1(x1) + f2(x2) + … + fn(xn). Yamamura’s algorithm[Yamamura,1996]: +, , , /, sin, exp, log,

sqrt, ^, etc.

For example:

f = f1 f2 f = (y2 f12 f2

2)/2

y = f1 + f2

f = f1 / f2 f = (y2 f121/ f2

2)/2

y = f1 + 1/f2

f = (f1)f2 f =exp(y1)

y1= (y22 (log(f1))

2 f22)/2

y2 = log(f1) + f2

liCF ii ,...2,1X

miDXfn

jijij ,...,2,1

0

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

2. Linear Enclosure

Let Xj0 = [xL

j, xNj, xU

j]

fij(xj)

xj

Xj0

Xj1

Dij

fijS

fijT

Bij

jLij

Sij xff j

UijT

ij xff

jL

jU

Sij

Tij

ij xx

ffa

0jijijij XxforxaBxE

Linear Enclosure is defined as:

such that 0

jijij XxforxExf

Extending Kolev’s work: miXfn

jjij ,...,2,10

0

miDXfn

jijij ,...,2,1

0

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

3. Solve Linear Enclosure EquationsIf fij(x) is continuous within interval Xj

0, solve

using root isolation [Collins et al.] and Secant method.

Suppose xjp (p=1, 2, …, P) is the pth solution of the above

equation, and xj0=xLj. Let Bij=[bL

ij, bNij, bU

ij], where

0jijij Xxforaxf

Ppxaxfb jpijjpijp

ijU ,...,2,1,0,max

00 jijjijijN xaxfb

Ppxaxfb jpijjpijp

ijL ,...,2,1,0,min

miforDXaB i

n

jjijij ,...,2,1

1

miDXfn

jijij ,...,2,1

0

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

4. Update Variable Values

Suppose Yj is the jth variable solution of linear

enclosure equations in the kth iteration, update Xj for

(k+1)th iteration by

If an empty interval is derived, the original system has no solution within the given initial intervals.

If the stop criterion is not met, iterate.

njforYXX jk

jk

j ,...,2,1)()1(

11

)(

1

)1( )(wid)(wid

n

j

kj

n

j

kj XX 2

1

)( )(wid

n

j

kjX

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Solving Interval Inequalities

Adding slack variables to translate inequalities into equalities.

Solving linear/nonlinear equations with previous methods.

liCF ii ,...2,1X

liCSF iii ,...2,1X

liCF ii ,...2,1X

liCSF iii ,...2,1X

liSi ,...2,1],0,0[ liSi ,...2,1]0,0,[

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Interval Subdivision

Subpaving divides a hyper-cube into multiple smaller hyper-cubes recursively

Implemented as order elevation of power interval

P(m, n) = [X1, X2, …, Xm]

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Constraint Re-Specification

Need to differentiate active and inactive constraints. For a constraint set p = {f(X) = Y and g(X) = Z}, the subset f(X) = Y with respect to a solution D X is inactive if f(D) Y and g(D) Z.

(a)

(b)

(c)

S1

S2

D1 S1 D2

D2 S2 D1

x-space

f Z Y

z-space y-space

g

D1 S1

x-space

f Z Y

z-space y-space

g D2

S2

x-space

f Z Y

z-space y-space

g

(a) f – inactive, g – active

(b) f – active, g – active

(c) f – active, g – inactive

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

An Example (a) (b)

10

201120112

101300130

23

230

230

22

223

223

21

212

212

20

201

201

10

00

00

0

xx

oyyyyxxxx

oyyyyxxxx

dyyxx

dyyxx

dyyxx

dyyxx

yy

by

ax

P0 P1

P3 P2

d0

L3 L1

L2

L0

d3 d1

d2

h

0

0

0

0

0

0

332

22

23

23

221

221

21

22

22

110

110

20

21

21

10

00

00

uxx

dvu

vyy

uxx

dvu

vyy

uxx

dvu

yy

by

ax

cxx

wvv

wuu

owwvuvu

wvv

wuu

owwvuvu

vyy

uxx

dvu

vyy

10

421

321

224

23

22

22

21

21

241

141

122

21

24

24

21

21

430

430

23

24

24

332

0

0

222222

0

0

222222

0

0

0

Convergence of intervals

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25Iterations

X0Y0X1Y1X2Y2X3Y3

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Refinement - subdivision subdivide up to Level 3, and some sub-regions

are eliminated.

(a) original solution (b) level 1 elevation

(c) level 2 elevation (d) level 3 elevation

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

What can interval provide for design?

The decisions to fix values of parameters can be postponed to later design stages.

Variation and uncertain are inherent in the process of design.

Soft constraint-driven geometry modeling Support under- and over-constrained problem Integrated linear, nonlinear equations, and inequality

solving

01101010100101010010111101011010101001010010100100111

0110101010010101001011100101010010101001011110001

01111100101101010100101010

C E

N T

E R

F

O R

e –

D E

S I G

N National Science Foundation Industry/University Cooperative Research Center for e-Design

University of Pittsburgh UMassAmherst

Thank you!