0.1m 10 m 1 km roughness layer surface layer planetary boundary layer troposphere stratosphere...

16
0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Tropospher e Stratosphe re h e i g h t The Atmospheric (or Planetary) Boundary Layer is formed as a consequence of the interactions between the atmosphere and the underlying surface over time scales of a few hours to about one day (Arya) Surface Layer. About 1/10 of PBL. Intense small scale turbulence generated by surface roughness and convection. Effects of Earth Rotation negligible. Significant exchanges of momentum, heat, mass. Layer in which human beings, animal and vegetation live. (Arya and Oke) Roughness Layer. Flow highly irregular strongly affected by the nature of the individual roughness features (grass, trees, buildings). (Oke)

Post on 20-Dec-2015

229 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

0.1m

10 m

1 km

Roughness Layer

Surface Layer

Planetary Boundary Layer

Troposphere

Stratosphereheight

The Atmospheric (or Planetary) Boundary Layer is formed as a consequence of the interactions between the atmosphere and the underlying surface over time scales of a few hours to about one

day (Arya)

Surface Layer. About 1/10 of PBL. Intense small scale turbulence generated by surface roughness and convection. Effects of Earth Rotation negligible. Significant exchanges of momentum, heat, mass. Layer in which human beings, animal and vegetation live.

(Arya and Oke)

Roughness Layer. Flow highly irregular strongly affected by the nature of the individual roughness features (grass, trees,

buildings). (Oke)

Page 2: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

Neutral surface boundary Layer

Neglecting Buoyancy forces.Turbulent case (High Reynolds number)

Page 3: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

The sink of momentum at the surface can also be seen as an horizontal force exerted by the flow on the surface (drag force) in the direction of the mean flow. The opposing force exerted by the surface on the fluid retards the flow.

At the surface there is a sink of momentum. The momentum flux density (or the force per unit area) is called surface shear stress (). (Units N/m2, or Pa).

Page 4: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

The shear stress is generated within the lowest layers and transmitted downwards as a vertical flux of horizontal momentum.

Since velocity is zero at the surface (no-zero boundary condition), there is a vertical gradient of momentum.

Page 5: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

Computation of the vertical wind profile for a horizontally homogeneous neutral surface boundary layer, by similarity arguments (Landau, 1944).

....p,v,u, x

0z

x

The flow is parallel to the surface

Lev Landau, 1908-1968, Russia

Page 6: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

For turbulent flows, (very large Reynolds numbers), we suppose that the vertical gradient of horizontal mean wind will not explicitly involve fluid viscosity.

The value of the velocity gradient (dU/dx) at any distance from the surface must be determined by the parameters surface shear stress), (air density) and the distance itself (z).

1Re

z

Page 7: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

or,

z,,fz

U

speed windhorizontal MEANthe is U

The simplest possibility is

zz

U

How to determine ?Dimensional analysis.

Lz

ML

TML

TL

LT

z

U

3

21

11

TimeT

Length L

Mass M

:dimensions lFundamenta

Page 8: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

LMLTMLT 3211

30

0

21

12

1

2

1 ,,

zz

U 1

As a consequence

Page 9: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

z*u

z

U

2*u if

friction velocity

Integrating

oz

zln

k*u

)z(U

0

40

)oU(z

constant Karman von .k

Similarly, it is possible to show that turbulent fluxes are constant in the surface layer.

Page 10: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

oz

Below zo viscous (or laminar) sublayer

Viscosity is important, Re of the order of unity

Page 11: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

An alternative way to derive wind vertical profile in the neutral layer. Mixing length approach (Prandtl, 1925)

lz

z U(z)

)lU(z

Ludwig Prandtl (1875-1953), Germany

The downward flux of momentum is accomplished by random vertical motions.

Page 12: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

lz

z U(z)

)lU(z

Molecular analogy. Eddies break away from the main body of the fluid and travel a certain distance, called the mixing length (analogous to the mean free path in kinetic theory of gases)

If a “blob” of fluid moves from level z+l to level z,

it brings its momentum.

zz

UlU(z)-l)U(z(z)ul)U(zu(z)

nfluctuatio(z)u

z level atvelocity meanU(z)

z level atvelocity sistantaneuu(z)

if ,So

Page 13: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

The turbulent vertical flux of momentum is

lz

z U(z)

)lU(z

zz

Ulwwu

Assuming that in a turbulent flow velocity fluctuations are of the same order in all the directions

zz

Uluw

Negative since we’re considering the case of a fluid moving from z+l to z

Page 14: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

2

zz

Ulwu

In a surface layer turbulent fluxes are (nearly) constants with height.

2*uwu

l*u

z

U

We have

Defining the friction velocity as:

Page 15: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

Close to the ground the size of the eddies is influenced by the distance from the ground

kzl

kz*u

z

U

integrating

oz

zln

k*u

)z(U

Page 16: 0.1m 10 m 1 km Roughness Layer Surface Layer Planetary Boundary Layer Troposphere Stratosphere height The Atmospheric (or Planetary) Boundary Layer is

It works !

Wind speed

Moreover, atmospheric measurements show that the variations of turbulent fluxes in the surface layer are less than 10% (nearly constant with height)