02 momentum, impulse and collision

Upload: joyce-cullo

Post on 05-Jul-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 02 Momentum, Impulse and Collision

    1/22

  • 8/16/2019 02 Momentum, Impulse and Collision

    2/22

    Impulse (J) :

      Refers to the product of the force andthe time interval it acts on the body.

     J = F(t2 – t1) = F(Δt)where :F – applied constant force ( in

    Newtons) Δt – time interval (in seconds) J – Impulse ( in Ns)

    F

    m m

    v

    1

    v

    2

    t1  t

    2

  • 8/16/2019 02 Momentum, Impulse and Collision

    3/22

    Mometum (p) :

     Dened as the product of the mass andthe velocity of an object.

    p = mvwhere :m – mass (kg)v – velocity (ms) p – momentum (kg!

    ms)

    F

    m m

    v

    1

    v

    2

    t1  t

    2

  • 8/16/2019 02 Momentum, Impulse and Collision

    4/22

    Both Momentum & Impulse are vector quantities, thus they have

    both horizontal & vertical components. And follow standard signconventions

    X - component

    px = mvx Jx = Fx(t2 – t1) =

    Fx(Δt) Y - component

    py = mvy Jy = Fy(t2 – t1) =

    Fy(Δt)

    p = px2 + py

    2 J = Jx2 + Jy

    2

  • 8/16/2019 02 Momentum, Impulse and Collision

    5/22

    Fm m

    v

    1

    v

    2

    t1  t2

    !el"t#os$#p %etee Mometum & Impulse

     J = ΔpFΔt = mv2 – mv1 

    “The change in momentum at any time intervalequals the impulse of the force applied during thattime interval.”

    F'Δt = mv2' – mv1' 

    FΔt = mv2 – mv1 

  • 8/16/2019 02 Momentum, Impulse and Collision

    6/22

  • 8/16/2019 02 Momentum, Impulse and Collision

    7/22

    2. rob.3)12 4 A bat strikes a 0.15$ kg baseball. ust before impact& the ball istraveling hori6ontally to the right at $0 m%s& and it leaves the bat traveling tothe left at an angle of #07 above the hori6ontal 'ith a speed of 8$m%s. "f theball and bat are in contact for 1.9$ msec& nd the hori6ontal / verticalcomponents of the average force on the ball.

    SAMPLE PR!LEMS

    v1 = 50 m/s

    Fx

    Fy

    F

    30°

    v 2  =  6 5  m 

     /  s 

     "!component  + vectors to the right :!

    F'Δt = m(v2' – v1')F' = m(v2' – v1') / Δt

    ( - 0.15$kg!8(09.m/s)(os;) –

    (-.m/s)< % 0.0019$ s!

    F' = 0 6 N y!component  + vectors going up :!FΔt = m(v2 – v1)

    F = m(v2 – v1) / Δt

    y - 0.15$kg!8(-9.m/s)(s#;) – < %

    0.0019$ s!

    F = -26952*5 N

  • 8/16/2019 02 Momentum, Impulse and Collision

    8/22

    #. rob.3)1 4a! ;hat is the magnitude of the momentum of a 10&000 kg truck 'hose speed

    is 12 m%s<b! ;hat speed 'ould a 2&000 kg =>? have to attain in order to have

    i. @he same momentum as the truck!ii. @he same kinetic energy as the truck!

    SAMPLE PR!LEMS

  • 8/16/2019 02 Momentum, Impulse and Collision

    9/22

    >ONSE!?@TION OF MOMENTUM A When two bodies interact only with each other, their

    total momentum is constant. > In an isolated system one where e!ternal forces are

    absent" the total momentum will be constant.

    Tot"l p%eBo7e = Tot"l p"Bte7m1v1 - m2v2 = m1u1 -

    m2u2'here +v initial velocitiesu nal velocitiesm1 mass of object 1

    m2  mass of object 2

  • 8/16/2019 02 Momentum, Impulse and Collision

    10/22

    1. An open-topped freight car with a mass of 10,000 g is coasting witho!t friction a"ong a "eve" trac. #t

    is raining ver$ hard, and the rain is fa""ing vertica""$ downward. %he car is origina""$ empt$ andmoving with a speed of 3 m/s. &hat is the speed of the car after it has trave"ed "ong eno!gh to

    co""ect 1,000 g of rainwater'

     m1v1 + m2v2 = m1"1+m2"2

    Let# m1 = m$%% o& &'e*t c$' = 1,

    SAMPLE PR!LEMS

    .ven # Re/"'e0 #"c$' 

    m1 - 10&000kg v1 =

    m/s

    m2- 1&000

    kg u1= 3

    m2 = m$%% o& '$n $te' = 1,

     m1v1 + m2v2 = m1"1+m2"2

    (1, )(m3% )+()( m3%) = (1, )"1+(1, )"2, -m3% = (1, )"1+(1, )"2

    By logic u 1 = u 2 , since rain water moving along with the car 

    , -m3% = (1, )"1+(1, )"1, -m3% = "1 (1,+1, )

    , -m3% = "1 (11,)

    (, -m3%)311, = "1

    24525 m3% = "1

    1 2

  • 8/16/2019 02 Momentum, Impulse and Collision

    11/22

     mAvA + m!v! = mA"A+m!"!

    SAMPLE PR!LEMS

    24 .ven # Re/"'e0 #"A

    (1)( m3%)+(2)( m3%) = (1)"A+(2)(46 m3%)

    "A = 147 m3% to t*e 8e&t

    12

    A

    m A= 1g m( = 2 g

    ! A

    ! A = ' !( = 0.)0 m/s

     

    !

    = (1)"A+147-m3%

    - 147 -m3% = (1)"A(- 147 -m3%)31 = "A

    - 147 m3% = "A

  • 8/16/2019 02 Momentum, Impulse and Collision

    12/22

    *+A%# #*+A%# ++##

  • 8/16/2019 02 Momentum, Impulse and Collision

    13/22

    *+A%# #*+A%# ++##

    BC"="CE=

    ! #e$ned as a kind of interaction %etween two%odies wherein there is a strong interactionthat last for a relatively short time&

    ! 'sually treated as an isolated system %ecausethe interactive forces are greater than thee"ternal forces (i&e& friction)&

  • 8/16/2019 02 Momentum, Impulse and Collision

    14/22

    *+A%# #*+A%# ++##

     @FG= C BC"="CE=

    1. erfectly Glastic Bollision

     A(

     A(

    v A

    !(

    ! A

    v(

    Hefore and DuringBollision

    After Bollision

  • 8/16/2019 02 Momentum, Impulse and Collision

    15/22

    *+A%# #*+A%# ++##

     @FG= C BC"="CE=

    1. erfectly Glastic Bollision

     fter collision the colliding %odies move inseparate direction with respective velocities&

    *lastic collisions conserve kinetic energy as wellas total momentum %efore and after collision&

    m v   + m,v , - m u  + m,u, 

    .elocity relationship in a straight line elasticcollision:

    u, – u   - v   – v ,

  • 8/16/2019 02 Momentum, Impulse and Collision

    16/22

    *+A%# #*+A%# ++##

     @FG= C BC"="CE=

    2. erfectly "nelasticBollision

     A(

     A(

    v A

    !

    v(

    Hefore and DuringBollision

    After Bollision

  • 8/16/2019 02 Momentum, Impulse and Collision

    17/22

    *+A%# #*+A%# ++##

     @FG= C BC"="CE=

    2. erfectly "nelasticBollision fter collision the colliding %odies merge and

    move in one direction at with a common velocity&

    Inelastic collisions don/t conserve kinetic energy%ut total momentum %efore and after collision isconserved& 0inetic energy after collision is lessthan that %efore collision&

    m v   + m,v , - u (m  + m, ) 

  • 8/16/2019 02 Momentum, Impulse and Collision

    18/22

    *amp"es

    1 12 g mar%le rolls to the left with a velocity of magnitude 2&3 mson a smooth level surface and makes a head on collision with alarger 42 g mar%le rolling to the right with a velocity of magnitude of2&1 ms& If the collision is perfectly elastic $nd the velocity of eachmar%le after the collision& (5ince the collision is head on all themotion is along a line)&

    6iven : 7e8uired :u  9 u,

    30g

    30g

    v A = 0. m/s

    v( = 0.1 m/s

    !( = '

    ! A = '

    (efore

     After

    10g

    10g

  • 8/16/2019 02 Momentum, Impulse and Collision

    19/22

  • 8/16/2019 02 Momentum, Impulse and Collision

    20/22

    *amp"es

    4& 222 kg automo%ile going eastward on ?rtigas ve at ;2 kmhrcollides with a 3222 kg truck which is going northward across?rtigas ve at 2 kmhr& If they %ecome coupled on collision what isthe magnitude and direction of their velocity immediately aftercollision> (Friction forces %etween the cars 9 the road can %eneglected during the collision)&

    6iven : 7e8uired :u

    vcar = 50 m/hr 

    vtr = 20 m/hr 

    ! = '

    (efore  After

  • 8/16/2019 02 Momentum, Impulse and Collision

    21/22

    *+A%# #*+A%# ++##

    BoeIcient of RestitutionJ!  fractional value representing the ratio of velocities

    %efore and after an impact& @his determines the %ounce8uality of an o%Aect practical e"amples are %alls used ingolf 9 tennis&

    from *lastic Bollision :u, – u   - v   – v ,

    C - (u, – u  ) (v   – v , )

    C - 1 (for Derfectly *lastic Bollision)C - 2 (for Derfectly Inelastic Bollision)

  • 8/16/2019 02 Momentum, Impulse and Collision

    22/22

    *+A%# #*+A%# ++##

    BoeIcient of RestitutionJ!If one side is stationary, say the floor or wall. 

    C - (Eu) (v)

    v !

    h1

    h2

    h3

    h

    "sing bounce heights

    C - h h1

    C - h4 

     h

    C - h3 

     h4