03_tm51173en02gla01_ofdma

Upload: asturrizaga

Post on 02-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    1/80

    0BOFDMA

    OFDMA

    Contents

    1 FDD and TDD Modes 3

    2

    Basics of OFDM 14

    2.1 Pulse shaping and spectrum 15

    2.2 OFDM Signal 19

    2.3 Challenges for the Air Interface Design 24

    3 OFDM Transmitter 40

    4 OFDM Receiver 43

    5 OFDM Key Parameters for FDD and TDD Modes 46

    6 Data Rate Calculation 53

    7 OFDMA 57

    8 OFDM Transmitter Simulation 61

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    1

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    2/80

    0BOFDMA

    TM5117EN02GLA01

    2010 Nokia Siemens Networks2

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    3/80

    0BOFDMA

    1 FDD and TDD Modes

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    3

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    4/80

    0BOFDMA

    Air Interface Main Issues

    UL

    DL

    UE 1

    UE 2

    UE 3

    Air Interface

    UE

    eNodeB

    1. Duplex

    Transmission2. Multiple

    Access

    eNodeB

    eNodeB

    Fig. 1Air Interface Main Issues

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117EN02GLA01

    2010 Nokia Siemens Networks4

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    5/80

    0BOFDMA

    LTE FDD and TDD Modes

    Uplink Downlink

    Bandwidth

    up to 20MHz

    Duplex Frequency

    f

    t Bandwidth

    up to 20MHz

    Guard

    Period

    f

    t

    Uplink

    Downlink

    Bandwidth

    up to 20MHz

    Fig. 2LTE FDD and TDD Modes

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    5

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    6/80

    0BOFDMA

    In FDD, DL & UL use different bands with the same bandwidth

    => DL throughput = UL throughput

    What happens if throughput requirements are different for DL and UL?

    Potential solution: Use different bandwidth for DL & UL?

    Hard to manage frequency bands in this case

    Simpler solution

    DL & UL are duplexed in time rather than in frequency => TDD (Time DivisionDuplexing)

    DL & UL share the same bandwidth

    DL and UL are active in different subframes

    TM5117EN02GLA01

    2010 Nokia Siemens Networks6

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    7/80

    0BOFDMA

    TDD vs. FDD (2/2)

    Downlink Downlink

    Uplink

    Uplink

    FDD TDD

    Time

    Frequency

    Throughpu

    t

    DL DLUL UL

    Only this is

    needed

    Wasted

    We get what we

    need

    Downlink

    throughput is also

    affected

    Fig. 3TDD vs. FDD

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    7

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    8/80

    0BOFDMA

    RF FDD architecture

    Duplex filters for each Tx and Rx path

    Circulator has the role of separating DL & UL waves

    It must exhibit great isolation properties, so that Tx signal does not

    leak into Rx path

    Power

    amplifier

    Low-

    Noise

    amplifier

    TX

    RX

    TX Duplex Filter

    RX Duplex Filter

    Fig. 4RF FDD architecture

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117EN02GLA01

    2010 Nokia Siemens Networks8

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    9/80

    0BOFDMA

    RF TDD architecture

    Duplexer must switch between Tx and Rx paths

    Switching driving signal must be accurate

    Good timing control of the signal

    Power

    amplifier

    Low-

    Noise

    amplifier

    TX

    RX

    Channel Filter

    Channel Filter

    TX

    RX

    Duplexe

    r

    Fig. 5RF TDD architecture

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    9

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    10/80

    0BOFDMA

    The basic principle for TDD is to use the same frequency band for transmission andreception but to alternate the transmission direction time (UL or DL). Like FDD, TDDsupports bandwidths from 1.4MHz up to 20 MHz but depending on the frequency

    band, the number of supported bandwidths may be less than the full range.Since the bandwidth is shared between UL and DL and the maximum bandwidth is20MHz the maximum data rates are lower in TDD than in FDD mode.

    The TDD system could be implemented on an unpaired band while the FDD systemalways requires a pair of bands with some separation between UL and Dl for theduplex separation.

    In FDD UE implementation requires a duplex filter for the separation of UL and DL.The filter is not required for the TDD mode. The complexity of the duplex filter isincreasing when the UL and DL frequency bands are in close proximity.

    In TDD mode since the UL and DL share the same frequency band the signals in

    these 2 transmission directions can interfere to each other. For uncoordinateddeployment (not synchronized) on the same frequency band, the devices connectedto cells with different timing and/or different UL/DL allocation may cause blocking ofother users. In TDD Mode the base stations need to be synchronized to each other atframe level in the same coverage area to avoid this interference.

    In FDD mode there is no need for base station synchronization.

    TM5117EN02GLA01

    2010 Nokia Siemens Networks10

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    11/80

    0BOFDMA

    FDD and TDD Modes Comparison

    FDD and TDD mode included

    together in the same

    specification

    Same radio interface schemes

    for both uplink and downlink

    (OFDM and SC-FDMA)

    Same subframe formats

    Same network architecture

    Same air interface protocols

    Same physical channels

    procedures

    FDD and TDD modes Harmonisation

    (commonalities)

    In LTE there is a high

    degree of harmonisation

    between FDD and TDD

    modes

    1. Spectrum Allocation:

    TDD is using the same frequency bands

    for both UL and DL

    FDD requires a paired spectrum with

    duplex separation in frequency

    TDD requires an unpaired spectrum

    with some guard bands in time to

    separate UL and DL

    2. UE complexity:

    In FDD the UE is requiring an duplex

    filter (for UL DL separation)

    In TDD the filter is not needed

    Lower complexity for TDD terminals

    FDD and TDD modes

    differences regarding the air

    interface

    Fig. 6FDD and TDD Modes Comparison

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    11

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    12/80

    0BOFDMA

    Time

    1 2 3 4 5

    2

    12345

    4 2

    1

    23

    45

    31

    1

    5

    53

    3

    24

    1

    Power

    Frequency

    TDMA

    Time Division

    Multiple

    Access,

    2G e.g. GSM,

    PDC

    FDMA

    Frequency

    Division

    Multiple Access

    1G e.g. AMPS,

    NMT, TACS

    CDMACode Division

    Multiple Access

    3G e.g. UMTS,

    CDMA2000

    1 2 3UE 1 UE 2 UE 3 4 UE 4 UE 55

    OFDMA

    OrthogonalFrequency

    Division

    Multiple Access

    e.g. LTE

    Fig. 7Multiple Access

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117EN02GLA01

    2010 Nokia Siemens Networks12

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    13/80

    0BOFDMA

    In LTE OFDMA = Orthogonal Frequency Division Multiple Access it is used in theDownlink

    In the UL SC-FDMA = Single Carrier Frequency Division Multiple Access Access it isused

    OFDMA and SC-FDMA will be used for both FDD and TDD Modes!

    Approach for the explanation:

    First OFDM as technology will be explained (for single user case)

    Second it is shown how OFDM could be used to separate users

    UL SC-FDMA will be explained in the next chapter

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    13

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    14/80

    0BOFDMA

    2 Basics of OFDM

    TM5117EN02GLA01

    2010 Nokia Siemens Networks14

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    15/80

    0BOFDMA

    2.1 Pulse shaping and spectrum

    RF engineering is a trade off between: required radio spectrum (bandwidth), speed ofdata transmission (bit rates) and complexity of implementation. The pulse form usedto modulate complex data symbols to the radio carrier frequency is the major elementof this story. Over the years several pulse forms and their associated pulse shapingfilters have been studied and used in private and commercial radio systems. GSM forinstance uses GMSK (Gaussian Minimum Shift Keying) filter that produces pulsesthat are close to sin/cosine waveforms with a Gaussian curve as amplitude, WCDMAuses root raised cosine roll off pulse shaping filters.

    Two characteristics are important for a pulse: the time domain presentation and thefrequency domain presentation. In the time domain one can recognize how long the

    symbol pulses on air will be and in the frequency domain the required spectrum interms of bandwidth can be studied. One of the most simple time-domain pulses is therectangular pulse. It simply jumps at time t=0 to its maximum amplitude and after thepulse duration TS it jumps back to 0. This pulse form has two major advantages. Firstit is simple to implement, there is no complex filter system required to detect suchpulses and to generate them. Second the pulse has a clearly defined duration. AfterTS the signal amplitude is zero, this is a major advantage in case of multi-pathpropagation environments as it simplifies handling of inter-symbol interference.Furthermore if the next symbol starts after the first pulse finished, there will be nointer-symbol interference in a non-multi-path environment. For a receiver this means,that there are no complicated and expensive inter-symbol interference cancellationmechanisms required. A disadvantage of the rectangular pulse is, that it allocates aquite huge spectrum.

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    15

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    16/80

    0BOFDMA

    The Rectangular Pulse

    Advantages:

    + Simple to implement: there is no complexfilter system required to detect such pulsesand to generate them.

    + The pulse has a clearly defined duration.This is a major advantage in case of multi-path propagation environments as it simplifieshandling of inter-symbol interference.

    Disadvantage:

    - it allocates a quite huge spectrum. Howeverthe spectral power density has null pointsexactly at multiples of the frequency fs = 1/Ts.This will be important in OFDM.

    time

    amplitude

    Ts f

    s

    1

    Ts

    Time Domain

    frequency f/fs

    spectralpowerdensity Frequency Domain

    fs

    Fourier

    Transform

    Inverse

    Fourier

    Transform

    Fig. 8The Rectangular Pulse

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117EN02GLA01

    2010 Nokia Siemens Networks16

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    17/80

    0BOFDMA

    As a counter example look at the root raised cosine roll off pulse that is used inWCDMA. As one can see this pulse is not clearly located in the time domain.

    So if we put two such pulses one after another, there will be always someinterference from the first to the second. On the other hand the spectrum of thesepulses is concentrated in a clearly defined frequency band.

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    17

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    18/80

    0BOFDMA

    Fourier Transform

    InverseFourier Transform

    Time Domain

    Frequency Domain

    W 1

    Tc

    Tc

    Fc

    1.3 * W

    Fig. 9: Pulse form and spectrum of root raised cosine roll off filters used in WCDMA.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117EN02GLA01

    2010 Nokia Siemens Networks18

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    19/80

    0BOFDMA

    2.2 OFDM Signal

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    19

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    20/80

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    21/80

    0BOFDMA

    The basic idea for the OFDM Signal is to transmits hundreds or even thousands ofseparately modulated radio signals using orthogonal subcarriers spread across awideband channel

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    21

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    22/80

    0BOFDMA

    OFDM Basics

    Data is sent in parallel across the set of subcarriers, each subcarrier only transports

    a part of the whole transmission

    The throughput is the sum of the data rates of each individual (or used) subcarriers

    while the power is distributed to all used subcarriers

    FFT ( Fast Fourier Transform) is used to create the orthogonal subcarriers. The

    number of subcarriers is determined by the FFT size ( by the bandwidth)Power

    frequency

    bandwidth

    Fig. 11 OFDM Signal

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117EN02GLA01

    2010 Nokia Siemens Networks22

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    23/80

    0BOFDMA

    The OFDM Signal

    Fig. 12 The OFDM Signal

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    23

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    24/80

    0BOFDMA

    2.3 Challenges for the Air Interface Design

    TM5117EN02GLA01

    2010 Nokia Siemens Networks24

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    25/80

    0BOFDMA

    The usage of the pulse leads to other challenges to be solved:

    1. ISI = Intersymbol Interference

    Due to multipath propagation

    2. ACI = Adjacent Carrier Interference

    Due to the fact that FDM = frequency division multiplexing will be used

    3. ICI = Intercarrier Interference

    Losing orthogonality between subcarriers because of effects like e.g. Doppler

    What should be the solutions to these challenges?

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    25

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    26/80

    0BOFDMA

    2.3.1 ISI = Intersymbol Interference

    TM5117EN02GLA01

    2010 Nokia Siemens Networks26

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    27/80

    0BOFDMA

    1. Multi-Path Propagation and Inter-Symbol Interference

    1. Inter Symbol Interference

    BTSBTSTime 0 Ts

    +

    d1(Directpath)

    d3

    d2

    d1

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    28/80

    0BOFDMA

    Multi-Path Propagation and the Guard Period

    2

    time

    TSYMBOL

    Time Domain

    1

    3

    time

    TSYMBOL

    time

    TSYMBOL

    Tg

    1

    2

    3

    Guard Period (GP)

    Guard Period (GP)

    Guard Period (GP)

    (Direct path)

    Fig. 14Multi-Path Propagation and the Guard Period

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117EN02GLA01

    2010 Nokia Siemens Networks28

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    29/80

    0BOFDMA

    Obviously when

    the delay spread

    of the multi-path

    environment is

    greater than theguard period

    duration (Tg),

    then we

    encounter inter-

    symbol

    interference (ISI)

    Propagation Delay Exceeding the Guard Period

    1

    2

    3

    4

    time

    TSYMBOLTime Domain

    time

    time

    Tg

    1

    2

    3

    time

    4

    Fig. 15Propagation Delay Exceeding the Guard Period

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    29

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    30/80

    0BOFDMA

    The Cyclic Prefix

    The guard period after each rectangular pulse carrying the modulated data symbol isa simple and efficient method to deal with multi-path reception.

    The cyclic prefix (CP) simply consists of the last part of the following symbol. Thesize of the cyclic prefix field depends on the system and can even vary within onesystem. Cyclic prefixes are used by all modern OFDM systems and their sizes rangefrom 1/4 to 1/32 of a symbol period. Most receiver structures use the cyclic prefix tomake an initial estimation of time and frequency synchronization (pre-FFTsynchronization, non-data assisted synchronization).

    A receiver typically uses the high correlation between the cyclic prefix and the lastpart of the following symbol to locate the start of the symbol and begin then with

    decoding.

    In multi-path propagation environments the delayed versions of the signal arrive witha time offset, so that the start of the symbol of the earliest path falls in the cyclicprefixes of the delayed symbols. As the CP is simply a repetition of the end of thesymbol this is not an inter-symbol interference and can be easily compensated by thefollowing decoding based on discrete Fourier transform.

    Of course cyclic prefixes reduce the number of symbols one can transmit during atime interval. This method to deal with inter-symbol interference from multi-path

    propagation is theoretically sub-optimal. CDMA with RAKE receiver for instanceprovides a much better efficiency. On the other hand non-ideal implementations ofRAKE receivers also degrade system performance drastically but still require a lot ofhardware capacity for the basic implementation. The rectangular pulse with cyclicprefix requires far less hardware, so the free capacity can be used to implement otherperformance optimization techniques like MIMO.

    TM5117EN02GLA01

    2010 Nokia Siemens Networks30

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    31/80

    0BOFDMA

    Cyclic Prefix

    symbolCP

    time

    Tsymb

    1

    2

    3

    1

    2

    3

    Tcp

    symbolCP symbolCP

    symbolCP symbolCP symbolCP

    symbolCP symbolCP symbolCP

    Fig. 16Cyclic Prefix

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    31

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    32/80

    0BOFDMA

    Cyclic Prefix

    T [TS] 160 2048 144 2048 144 2048 144 2048 144 2048 144 2048 144 2048

    T [s] 5,2 66,7 4,7 66,7 4,7 66,7 4,7 66,7 4,7 66,7 4,7 66,7 4,7 66,7

    max. delay [km] 1,6 1,4 1,4 1,4 1,4 1,4 1,4

    T [TS] 512 2048 512 2048 512 2048 512 2048 512 2048 512 2048

    T [s] 16,7 66,7 16,7 66,7 16,7 66,7 16,7 66,7 16,7 66,7 16,7 66,7

    max. delay [km] 5,0 5,0 5,0 5,0 5,0 5,0

    In LTE the slot of 500 s is subdivided in the (useful part of the)

    symbol (grey) and CPs as follows:

    For the extended CP slot structure the overall 500 s is kept but thenumber of symbols is reduced in order to extent the cyclic prefix

    durations:

    Fig. 17Cyclic Prefix

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117EN02GLA01

    2010 Nokia Siemens Networks32

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    33/80

    0BOFDMA

    2.3.2 ACI = Adjacent Carrier Interference

    Conventional multi-carrier operation as it is used for FDM works simply by selecting a

    number of center frequencies - one for each carrier to be used.

    The center frequencies must be spaced. In fact there is a trade-off betweenminimizing interference between different carriers and using the total bandwidthefficiently.

    In other words each carrier uses an upper and lower guard band to protect itself fromits adjacent carriers. Nevertheless, there will always be some interference betweenthe adjacent carriers - known as Adjacent Carrier Interference (ACI)

    Especially for rectangular pulses the guard bands must be quite big, as therectangular pulse has a huge spectrum.

    Otherwise we would have to apply a pulse shaping filter, but this would destroy therectangular form of our pulse and thus complicate inter-symbol interference handling.

    For the rectangular pulse there is a better option possible and it is even easier toimplement.

    The spectrum of a rectangular pulses shows null points exactly at integer multiples ofthe frequency given by the symbol duration. Orthogonally avoids ACI to some extent.

    Thus OFDM simply places the next carrier exactly in the first null point of the previousone.

    With this we dont need any pulse-shaping and between OFDM carriers using thesame symbol duration TS and the same grid of center frequencies no guard bandsare required.

    This allows a tight packing of small carrier -called the sub-carriers or tones- into abigger frequency band. Of course at the edges of this bigger band there might besome guard bands required to protect systems on adjacent bands from out-of-spectrum emissions by the OFDM system.

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    33

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    34/80

    0BOFDMA

    Multi-Carrier Modulation

    The center frequencies must be spaced so that interference between

    different carriers, known as Adjacent Carrier Interference ACI, is

    minimized; but not too much spaced as the total bandwidth will be

    wasted.

    Each carrier uses an upper and lower guard band to protect itself from its

    adjacent carriers. Nevertheless, there will always be some interference

    between the adjacent carriers.

    frequency

    fsubcarrier

    f0 f1 f2 fN-1fN-2

    fsub-used

    2. ACI = Adjacent Carrier Interference

    Fig. 18Multi-Carrier Modulation

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117EN02GLA01

    2010 Nokia Siemens Networks34

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    35/80

    0BOFDMA

    OFDM: Orthogonal Frequency Division Multi-Carrier

    OFDM allows a tight packing of small carrier - called the subcarriers -into a given frequency band.

    No ACI (Adjacent Carrier Interference) in OFDM

    due to the orthogonal subcarriers !

    Pow

    erDensity

    Pow

    erDensity

    Frequency (f/fs) Frequency (f/fs)

    Saved

    Bandwidth

    Fig. 19OFDM: Orthogonal Frequency Division Multi-Carrier

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    35

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    36/80

    0BOFDMA

    2.3.3 ICI = Intercarrier Interference

    The price for the optimum subcarrier spacing is the sensitivity of OFDM to frequency

    errors. If the receivers frequency is some fractions of the subcarrier spacing(subcarrier bandwidth) then we encounter not only interference between adjacentcarriers, but in principle between all carriers. This is known as Inter-CarrierInterference (ICI) and sometimes also referred to as Leakage Effect in the theory ofdiscrete Fourier transform.

    The effect is illustrated on the following figure. It shows the spectral power density ofan OFDM system with five subcarriers. If we have an exact match between receiverand transmitter frequency and we would like to get the symbol transmitted insubcarrier 2, then there is no interference from the other subcarriers. This is due tothe fact, that at the center frequency of subcarrier 2 all other subcarriers have a null

    point of their power spectrum.But if we have a little frequency drift between transmitter and receiver, then wedecode the symbol of subcarrier 2 a little bit offset from its true center frequency. Butnow two effects begin to work. First subcarrier 2 has no longer its power densitymaximum here - so we loose some signal energy. Second the other subcarriers 0, 1,3 and 4 have no longer a null point here. So we get some noise from each othersubcarrier. The result is a lower signal to noise ratio by a decreased signal level andan increased noise level. This is the inter-carrier interference effect for OFDM. Asone can see this strongly depends on the ratio between absolute frequency offsetbetween transmitter and receiver and the subcarrier spacing.

    To limit the influence of the ICI on OFDM systems completely by hardware we wouldhave to have receivers and transmitters with under 0.1 ppm frequency stability. Thiswould drastically increase the cost and complexity of hardware. Thus quite a big partof the OFDM software in the receiver deals with frequency correction using the cyclicprefix, but also reference or pilot signals sent with the signal.

    TM5117EN02GLA01

    2010 Nokia Siemens Networks36

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    37/80

    0BOFDMA

    Inter-Carrier Interference (ICI) in OFDM

    The price for the optimum subcarrier spacing is the sensitivity of OFDM to frequencyerrors.If the receivers frequency slips some fractions from the subcarriers centerfrequencies, then we encounter not only interference between adjacent carriers, butin principle between all carriers.This is known as Inter-Carrier Interference (ICI) and sometimes also referred to asLeakage Effect in the theory of discrete Fourier transform. One possible cause that introduces frequency errors is a fast moving Transmitter orReceiver (Doppler effect).

    Fig. 20 Inter-Carrier Interference (ICI) in OFDM

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    37

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    38/80

    0BOFDMA

    f0 f1 f2 f3 f4

    P

    I3

    I1I4I0

    3.ICI=Inter-CarrierInterference

    Leakage Effect due to Frequency Drift: ICI

    Two effects begin to work:

    1.-Subcarrier 2 has no longer itspower density maximum here -so we loose some signal energy.

    2.-The rest of subcarriers (0, 1, 3and 4) have no longer a nullpoint here. So we get somenoise from the other subcarrier.

    Fig. 21 Leakage Effect due to Frequency Drift: ICI

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117EN02GLA01

    2010 Nokia Siemens Networks38

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    39/80

    0BOFDMA

    Challenges for the Air Interface Design

    The usage of the pulse leads to other challenges to be solved:

    1. ISI = Intersymbol Interference

    Due to multipath propagation solution: use cyclic prefix

    2. ACI = Adjacent Carrier Interference

    Due to the fact that FDM = frequency division multiplexing

    will be used

    solution: orthogonal subcarriers

    3. ICI = Intercarrier Interference

    Losing orthogonality between subcarriers because of effects

    like e.g. Doppler

    solution: use reference signals will be explained in

    chapter 7

    Fig. 22 Challenges for the Air Interface Design

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    39

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    40/80

    0BOFDMA

    3 OFDM Transmitter

    TM5117EN02GLA01

    2010 Nokia Siemens Networks40

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    41/80

    0BOFDMA

    A typical OFDM transmitter is shown on the following figure. To reduce the amount ofRF hardware required for OFDM the modulation process is split into two parts. A first

    part uses the inverse discrete Fourier transform (IDFT) or one of its more efficient butequivalent implementations known as Inverse Fast Fourier Transformto modulateall the OFDM subcarriers in the baseband around the center frequency 0. In thesecond step the signal is then modulated to higher frequencies for transmission overair.

    The binary data sequence is put into the bit distribution where each bit is assigned toa subcarrier. This function is highly specific to the system using OFDM. In EUTRANfor instance the scheduler has great influence to this step. For each subcarrier amodulation mapper takes a number of bits from the assigned stream and maps themto a single complex valued data symbol. How many bits will be mapped in one

    symbol period depends on the selected modulation scheme (e.g. 1 bit of OOK, BPSK;2 bits for QPSK, 4 bits for 16QAM and 6 bits for 64QAM). Note that each subcarriercan use a different modulation scheme at the same time.

    Then the complex valued data symbols from the modulation mappers are interpretedas frequency domain signal for one symbol period. They are fed into the IFFTalgorithm which transforms the frequency domain vector into the corresponding timesequence. The number of time symbols (also complex of course) is typically equal tonumber of carriers. Note also that some subcarriers before the IFFT step beginsmight be inserted without data symbol (so called virtual subcarriers). They are usuallyused as guard bands to protect from interference of adjacent radio systems.

    The time sequence of complex valued samples is next brought to the OFDM symbolgenerator, which inserts cyclic prefix and if required cyclic suffix. This is simply donebe taking some bits from the end of the symbol and placing them as cyclic prefix infront of the symbol. Similar is the mechanism for cyclic suffixes. This step isequivalent to the insertion of cyclic prefix and suffix for each subcarrier, but it requireslower number of arithmetical operations.

    Optionally an up-conversion unit can increase the sampling rate now before we go tothe DAC. The up-conversion can be used to reduce the amount of hardware requiredfor the anti-aliasing filter after the DAC which translates the signal into an analogwaveform such that the digital sampling values before corresponds to voltage orcurrent afterwards. Because a DAC generates a signal that contains the original

    spectrum again in mirrored versions in higher bands, a low pass (anti-aliasing filter)filter is required to suppress the unwanted spectrum.

    The last step is to modulate the signal onto the radio carrier. This is done using aclassical I/Q modulator where the real part of the complex samples goes to thecosine and the imaginary part of the complex samples goes on the sine of the carrierfrequency. Then we fed the signal to some spectral filter (to suppress out-of-bandemissions) and to the RF amplifier.

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    41

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    42/80

    0BOFDMA

    LowPass

    LowPass

    cos(2fct)

    -sin(2fct)

    I

    Q

    ModulationMapper

    ModulationMapper

    IFFTIFFT

    a0

    ModulationMapper

    ModulationMapper

    a1

    ModulationMapper

    Modulation

    Mapper

    aN-1

    b10 ,b11,

    BitDistrib.

    BitDistrib.

    b20 ,b21,

    bN-1 0

    BinaryCoded

    Data.

    .

    .

    D

    A

    D

    As0, s1, , sT-1

    Up-conversion

    Up-conversion

    IQSplit

    IQSplit

    LowPass

    LowPass

    D

    A

    D

    A

    RF

    OFDM Transmitter

    freq.f1 f2f0 fN-1

    complex

    a0

    a1 aN-1a2

    FrequencyDomain

    b0

    BPSK

    b0 b1

    QPSK

    Im

    Re01

    00

    11

    10

    b0 b1b2b3

    16QAM

    Im

    Re

    0000

    1111

    Im

    Re

    64QAM

    b0 b1b2b3 b4 b5

    timet1 t2t0 tT-1

    complex

    s0s1

    sT-1

    s2

    Time

    DomainCP/Guard

    Generation

    CP/Guard

    Generation

    Symbols0,..sN-1

    CPsl,,sN-1

    time

    I

    Q

    Im

    Re

    0

    1

    Fig. 23: Basic functional architecture of an OFDM transmitter.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117EN02GLA01

    2010 Nokia Siemens Networks42

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    43/80

    0BOFDMA

    4 OFDM Receiver

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    43

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    44/80

    0BOFDMA

    The receiver is like in any other radio system the more complicated part. In radiosystems and of course also OFDM there are two special points a receiver has to pay

    attention to: time/phase and frequency synchronization. Both are crucial for theperformance of the receiver.

    A receiver gets its input from the antenna (or antennas) and the attached low noiseamplifier. A band pass suppresses signals out of the spectrum. The demodulatorconverts the signal back into the baseband and with this recovers the complex valueddata signal. At this step we have the time domain representation of the signal.

    The time signal is now given to the De-rotator which applies to each time sample aphase offset to compensate frequency drifts and global phase offsets. A special unitin the receiver is responsible to determine and track the frequency and phase driftsand calculate the associated correction value for each sample. This is a quite critical

    task, as errors made here, apply as additional (receiver intrinsic) noise to all datasymbols. The frequency and time synchronization unit uses typically as input theautocorrelation of the input time sequence (especially cyclic prefix) and reference (orpilot) symbol interleaved with the data at predefined positions.

    The corrected signal is now fed into the Fast Fourier Transform (FFT)whichimplements a fast and efficient algorithm for the discrete Fourier transform to bringthe signal back into the frequency domain representation. In other words the FFTdecodes the complex valued data symbols for each subcarrier. Of course before theFFT is applied, the cyclic prefix has to be removed.

    The recovered subcarrier data symbols are not useful yet, as there might be stilldistortion from phase offsets and from the channel propagation (multi-pathpropagation) on it. Thus the next step is to correct the data according to the knownchannel response. The channel estimation uses the pilot and reference signals thatare interleaved with the normal data at predefined positions to estimate andpermanently correct the channel state information. A nice thing of the frequencydomain representation is, that a distortion coming from channel propagation and timeoffset are in first order simple correction factors to each subcarrier, so that nocomplex filtering is required here.

    After we have corrected our data symbols for each subcarrier, the symbol de-mapping can take place. Here we recover the original bit sequence either as harddecided bits or as soft decided bits. (Soft bits have some advantages in the further

    processing, namely in the channel decoding.)

    TM5117EN02GLA01

    2010 Nokia Siemens Networks44

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    45/80

    0BOFDMA

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    45

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    ChannelCorrection

    ChannelCorrection

    Demodulator

    Demodulator

    (Soft)

    Bit Mapping

    (Soft)

    Bit Mapping

    j

    I

    Q

    A

    D

    A

    D

    ChannelEstimation

    ChannelEstimation

    RF

    Low

    NoiseAmp.

    +Bandpass

    Low

    NoiseAmp.

    +Bandpass

    A

    D

    A

    D

    AGCAutomatic

    Gain Control

    AGCAutomatic

    Gain Control

    De-

    rotator

    signalstrength

    LNA gain

    Windowing

    +FFT

    Windowing

    +FFT

    Frequency And Timing SyncFrequency And Timing Sync

    signalautocorr

    eation

    phasecorrection

    timee

    adjust

    .

    .

    .

    a0

    a1

    aN-1

    reference(pilot)

    channel

    response

    a0

    (Soft)Bit Mapping

    (Soft)Bit Mapping

    a1

    (Soft)Bit Mapping

    (Soft)Bit Mapping

    aN-1

    .

    .

    .

    .

    .

    .

    .

    .

    .

    B10 ,B11,

    B20 ,B21,

    BN-1 0

    BitDistribution

    BitDistribution

    Soft BitCoded

    Data

    OFDM Receiver (Principle Architecture Concept)

    freq.f1 f2f0 fN-1

    complex a0

    a1 aN-1a2

    Frequency Domain

    Time Domain

    timet1 t2t0 tT-1

    complex

    y0y1

    yT-1

    x2

    QPSK

    Im

    Re

    01

    00

    11

    10

    skd11

    d10

    Fig. 24 Basic functional architecture of an OFDM receiver.

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    46/80

    0BOFDMA

    5 OFDM Key Parameters for FDD and TDD

    Modes

    TM5117EN02GLA01

    2010 Nokia Siemens Networks46

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    47/80

    0BOFDMA

    OFDM Key Parameters

    2. Subcarrier Spacing (

    f = 15 KHz)

    The Symbol time is

    Tsymbol = 1/

    f = 66,7

    s

    f

    A compromise needed between:

    f as small as possibile so that

    the symbol time Tsymbol is as large

    as possibile.

    This is beneficial to solve

    Intersymbol Interference in time

    domain

    A too small subcarrier spacing it

    is increasing the ICI = Intercarrier

    Interference due to Doppler effect

    TSYMBOL

    TCP SYMBOL

    TCP

    TS

    Frequency

    Time

    Power

    density

    Amplitude

    1. Variable Bandwidth (BW)Bandwidth options: 1.4, 3, 5, 10, 15 and 20 MHzBandwidth options: 1.4, 3, 5, 10, 15 and 20 MHz

    Frequency

    A higher Bandwidth is better

    because a higher peak data rate

    could be achived and also bigger

    capacity. Also the physical layer

    overhead is lower for higher

    bandwidth

    Fig. 25 OFDM Key Parameters

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    47

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    48/80

    0BOFDMA

    OFDM Key Parameters

    3. The number of Subcarriers Nc Nc x f = BW

    In LTE not all the available channel bandwidth (e.g. 20 MHz) will be used. For the

    transmission bandwidth typically 10% guard band is considered (to avoid the out band

    emissions).

    If BW = 20MHz Transmission BW = 20MHz 2MHz = 18 MHz

    the number of subcarriers Nc = 18MHz/15KHz = 1200 subcarriers

    Transmission

    Bandwidth [RB]

    Transmission Bandwidth Configuration [RB]

    Channel Bandwidth [MHz]

    Resourceblock

    Channeledge

    Channeledge

    DC carrier (downlink only)Active Resource Blocks

    Fig. 26 OFDM Key Parameters

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117EN02GLA01

    2010 Nokia Siemens Networks48

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    49/80

    0BOFDMA

    4. Fast Fourier Transform Size Nfft

    The FFT/ IFFT (Inverse Fast Fourier Transform) it is used for the generation of thesubcarriers.

    Input for the FFT/ IFFT are the modulation symbols.

    FFT/ IFFT could be seen as a kind of operation acting on a Nfft discrete points of theinput signal

    Therefore the terminology is naming the FFT/ IFFT sampling.

    Nfft size:

    The number of samples Nfft on which FFT/ IFFT is applied should be big enoughto satisfy the sampling theorem (giving the minimum number of samples)

    From this: Nfft > Nc number of the input subcarriers

    FFT/IFFT operation requires that input length must be a power of 2. This isbecause in this way the operation is much faster than ordinary DFT (Discrete FourierTransform).

    Example:

    For a bandwidth BW = 20 MHz there are 1200 subcarriers -> the length of the IFFTinput is a signal with 1200 symbols

    1200 is not a power of 2 so that the IFFT operation requires zero padding-> Nextpower of 2 is 2048

    The rest of input: 2048 - 1200 = 848 will padded with zeros

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    49

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    50/80

    0BOFDMA

    OFDM Key Parameters

    4. FFT (Fast Fourier Transform) size Nfft

    Nfft should be chosen so that:

    1.Nfft > Nc number of subcarriers (sampling theorem)

    2.Should be a power of 2 (to speed-up the FFT operation)

    Therefore for a bandwidth BW = 20 MHz Nc = 1200 subcarriers not a power

    of 2

    The next power of 2 is 2048 the rest 2048 -1200 = 848 padded with zeros

    5. Sampling rate fs

    This parameter indicates what is the sampling frequency:

    fs = Nfft x f

    Example: for a bandwidth BW = 5 MHz (with 10% guard band)

    The number of subcarriers Nc = 4.5 MHz/ 15 KHz = 300

    300 is not a power of 2 next power of 2 is 512 Nfft = 512

    Fs = 512 x 15 KHz = 7,68 MHz fs = 2 x 3,84 MHz which is the chip rate in

    UMTS!! The sampling rate is a multiple of the chip rate

    from UMTS/ HSPA. This was acomplished because the

    subcarriers spacing is 15 KHz. This means UMTS and LTE

    have the same clock timing!

    Fig. 27 OFDM Key Parameters

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117EN02GLA01

    2010 Nokia Siemens Networks50

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    51/80

    0BOFDMA

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    51

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Resource Block and Resource Element

    12 subcarriers in frequency domain x 1 slot period in time

    domain.

    0 1 2 3 4 5 6 0 1 2 3 4 5 6Subcarrier1

    Subcarrier12

    18

    0KHz

    1 slot 1 slot

    1 mssubframe

    R

    B

    Capacity allocation is basedon Resource Blocks

    Resource Element ( RE):

    1 subcarrier x 1 symbolperiod

    Theoretical minimum

    capacity allocation unit. 1 RE is the equivalent of 1

    modulation symbol on asubcarrier, i.e. 2 bits forQPSK, 4 bits for 16QAM and6 bits for 64QAM.

    ResourceElement

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    6. Physical Resource Block or Resource Block (PRB or RB)

    Fig. 28 Resource Block and Resource Element

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    52/80

    0BOFDMA

    OFDM Key Parameters for FDD and TDD Modes

    Fig. 29 OFDM Key Parameters for FDD and TDD Modes

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TM5117EN02GLA01

    2010 Nokia Siemens Networks52

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    53/80

    0BOFDMA

    6 Data Rate Calculation

    TM5117 LTE AIR INTERFACE 2010 Nokia Siemens Networks

    53

  • 8/10/2019 03_TM51173EN02GLA01_OFDMA

    54/80

    0BOFDMA

    Data Rate Calculation

    1. Maximum channel data rate

    The maximum channel data rate is calculated taking into account the total number of the

    available resource blocks in 1 TTI = 1ms

    Max Data Rate = Number of Resource Blocks x 12 subcarriers x (14 symbols/ 1ms)

    = Number of Resouce Blocks x (168 symbols/1ms)

    2. Impact of the Channel Bandwith: 5, 10, 20 MHz

    For BW = 5MHz -> there are 25 Resource Blocks

    -> Max Data Rate = 25 x (168 symbols/1ms) = 4,2 * Msymbols/s

    BW = 10MHz -> 50 Resource Blocks -> Max Data Rate = 8,2 Msymbols/sBW = 20MHz -> 100 Resource Blocks -> Max Data Rate =16,4 Msymbols/s

    3. Impact