04nt15406

3
Surfactant-Based Enhanced Oil Recovery Processes and Foam Mobility Control  DE-FC26-03NT15406 Project Goal   The purp os e of t h e r ese ar ch is to de v el op ad vanc ed , sur fa ctan t -b as ed en ha nc ed oi l reco v er y (EOR) pr ocesses based upon tailoring new high-perform ance and cost-effect ive surfact ant m olecules for specific crude oils. The goal will be to develop a methodology for recovery of both light and moderately heavy oils from sandstone and carbonate reservoirs. A secondary focus is foam as a mobility control agent for EOR processes using nitrogen, natu ral gas, and carbon dioxide to create th e foam. The objectives of the proposed research are to 1) develop new cost-effective surfact ants and processes, 2) present a mechan istic understanding of how these processes work, and 3) develop simulation tools to scale-up the processes for field application. Performers  Rice University Houston, TX University of Texas Austin , TX INTERA Austin , TX Project Results A surfactant-polymer formulation is being developed for a West Texas carbonate reservoir that has a pressure too low for CO2 flooding. The formu lation has recovered up to 95% of the oil remaining aft er waterf looding in reservoir formation core material. The project team has met with the operator and partners to plan for a field test. An alkaline-surfactant process is being developed for a fractured, oil-wet, carbonate reservoir in West Texas. The oil-wet character of the crude oil/brine/rock system is such that an oil-saturated core placed under formation brine does not recover any oil by spontaneous imbibit ion. Howev er, when the brine is replaced by an alkaline surfactant solution, oil is spontaneou sly displaced by gravity dr ainage. T he alkaline surfact ant solution both alt ers wett ability and reduces interfacial tension to ultralow values. Thus it overcomes the capillary retardation forces and permits the oil to flow by buoyancy or gravity drainage. The original operator of the field sold the field to another company, and the latter has less interest in surfactant EOR. Benefits   Thi s p ro je ct is de v el op in g su rf ac t ant EOR pro ce sse s f or co mpa ni es t ha t do not ha ve an in -h ouse rese ar ch capability. The oil recovery from laboratory experiments for the surfactant-polymer process is far greater than the best recovery achieved by a vendor cont racted by th e operator. Developing efficient EOR processes and making the knowledge available to the industry will result in increased oil recovery from the mature oil reservoirs that are nearly depleted by conventional waterflooding. This will aid the economy of Texas and reduce the dependency of  the United States on imported crude oil. Background During the 1990s, the members of the project team partnered to develop surfactant-enhanced aquifer remediation processes. The surfactant /foam aquifer rem ediation process recovered all or more DNAPL contam inant t han thou ght t o be present every tim e it was applied. In 1999, Dr. Hirasaki (principal investigator , R ice University ) partnered with Dr. Mukul Sharma (University of Texas) in the DOE project Characterization of Mixed Wettability States and Its Impact on Oil Recovery (DE-AC26-99BC15205). In that project, the benefit of wettability alteration and ultralow interfacial tension for spontaneous oil displacement from fractured, oil-wet, carbonate formations was recognized. The present team partnered to combine the collective experience over the past 30 years in surfactant EOR.

Upload: totongop

Post on 03-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 04NT15406

7/28/2019 04NT15406

http://slidepdf.com/reader/full/04nt15406 1/3

Surfactant-Based Enhanced Oil Recovery Processes and Foam Mobility Control 

DE-FC26-03NT15406 

Project Goal 

 The purpose of the research is to develop advanced, surfactant-based enhanced oil recovery (EOR) processes

based upon tailoring new high-performance and cost-effective surfactant molecules for specific crude oils. Thegoal will be to develop a methodology for recovery of both light and moderately heavy oils from sandstone and

carbonate reservoirs. A secondary focus is foam as a mobility control agent for EOR processes using nitrogen,

natural gas, and carbon dioxide to create the foam. The objectives of the proposed research are to 1) develop new

cost-effective surfactants and processes, 2) present a mechanistic understanding of how these processes work,

and 3) develop simulation tools to scale-up the processes for field application.

Performers 

Rice University

Houston, TX

University of Texas

Austin, TX

INTERA

Austin, TX

Project Results 

A surfactant-polymer formulation is being developed for a West Texas carbonate reservoir that has a pressure too

low for CO2 flooding. The formulation has recovered up to 95% of the oil remaining after waterflooding in reservoir

formation core material. The project team has met with the operator and partners to plan for a field test.

An alkaline-surfactant process is being developed for a fractured, oil-wet, carbonate reservoir in West Texas. The

oil-wet character of the crude oil/brine/rock system is such that an oil-saturated core placed under formation brine

does not recover any oil by spontaneous imbibition. However, when the brine is replaced by an alkaline surfactant

solution, oil is spontaneously displaced by gravity drainage. The alkaline surfactant solution both alters wettabilityand reduces interfacial tension to ultralow values. Thus it overcomes the capillary retardation forces and permits

the oil to flow by buoyancy or gravity drainage. The original operator of the field sold the field to another company,

and the latter has less interest in surfactant EOR.

Benefits  

 This project is developing surfactant EOR processes for companies that do not have an in-house research

capability. The oil recovery from laboratory experiments for the surfactant-polymer process is far greater than the

best recovery achieved by a vendor contracted by the operator. Developing efficient EOR processes and making

the knowledge available to the industry will result in increased oil recovery from the mature oil reservoirs that are

nearly depleted by conventional waterflooding. This will aid the economy of Texas and reduce the dependency of 

the United States on imported crude oil.

Background 

During the 1990s, the members of the project team partnered to develop surfactant-enhanced aquifer remediation

processes. The surfactant/foam aquifer remediation process recovered all or more DNAPL contaminant than

thought to be present every time it was applied. In 1999, Dr. Hirasaki (principal investigator, Rice University)

partnered with Dr. Mukul Sharma (University of Texas) in the DOE project Characterization of Mixed Wettability

States and Its Impact on Oil Recovery (DE-AC26-99BC15205). In that project, the benefit of wettability alteration

and ultralow interfacial tension for spontaneous oil displacement from fractured, oil-wet, carbonate formations was

recognized. The present team partnered to combine the collective experience over the past 30 years in surfactant

EOR.

Page 2: 04NT15406

7/28/2019 04NT15406

http://slidepdf.com/reader/full/04nt15406 2/3

Project Summary 

Project researchers have:

Developed surfactant formulations capable of efficient tertiary oil recovery in carbonate formations at low

temperatures.

Recognized that the adsorption of anionic surfactant on carbonate minerals can be significantly reduced

in the presence of sodium carbonate.

Identified the dependence of the optimal salinity of alkali-surfactant formulations on the ratio of the

naphthenic soap/synthetic surfactant.

Described the mechanisms controlling the length of the ultralow interfacial tension region during

displacement of the alkali/surfactant/polymer (ASP) processes.

Demonstrated that the sweep of heterogeneous fracture systems with surfactant solution is much more

efficient when the surfactant solution is injected as foam.

Scheduled a single-well field trial in a West Texas carbonate formation for J anuary 2006. This test will be

evaluated with tracers. This is a surfactant-polymer process with surfactants that are especially tolerant to divalent

ions. Up to 95% of the waterflood residual oil was recovered from reservoir core floods.

Developed a strategy for designing ASP flooding. Recovery of 98% of the water-flooded residual oil in

dolomite is possible with a 0.5 pore volume surfactant slug with only 0.2% surfactant.

A blend of two surfactants was found to form single-phase solutions over a higher salinity or calcium

concentration ranges than either surfactant alone.

Ultra-low interfacial tension (<10-2 mN/m) was found over a much wider range of salinity than expected

for one ASP and crude oil combination.

 The project team is developing surfactant EOR processes for both forced displacement and for spontaneous

displacement by gravity from matrix blocks surrounded by fractures. Surfactants have been selected to have

tolerance to divalent ions such that the systems can be applied in carbonate formations. These have branched

hydrocarbon with an ethoxylated or propoxylated sulfate head group. The low temperature of shallow carbonate

reservoirs often results in surfactants forming liquid crystal phases and gels rather than microemulsion. Addition of 

alcohol aids in formation of microemulsion. However, alcohols increase the minimum interfacial tension at optimal

conditions. Highly branched internal olefin sulfonate cosurfactants are effective in reducing the alcohol

requirement.

Current Status (July 2007) 

 This project has been completed on schedule and all project objectives have been accomplished. The results of 

the investigation have been incorporated into a Final Report.

Project Start: J une 10, 2003

Project End: September 9, 2006

 Anticipated DOE Contribution: $983,910

Performer Contribut ion: $271,165 (22% of total)

Contact Information 

NETL - Daniel Ferguson ([email protected] or 918-699-2047)

Rice University - George J . Hirasaki ([email protected] or 713-348-5416)

Publications 

Final Report is complete and is available by calling NETL at 918-699-2000.

Hirasaki G.J ., and Zhang, D.L., Surface Chemistry of Oil Recovery from Fractured, Oil-Wet, Carbonate

Formations, SPEJ , J une 2004, 151-162.

Page 3: 04NT15406

7/28/2019 04NT15406

http://slidepdf.com/reader/full/04nt15406 3/3

 

There is no spontaneous imbibition oil displacement from a dolomite formation core sample with So=0.68 whenplaced in formation brine (left ). When the core sample is placed in alkaline surfactant solution, oil is

spontaneously displaced by gravity drainage, ER=44% (right).