1 fractional dynamics in underground contaminant transport: introduction and applications andrea...

33
1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET Past affiliation: Politecnico di Milano and MIT MOMAS - November 4-5 th 2008

Upload: merryl-chase

Post on 26-Dec-2015

221 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

1

Fractional dynamics in underground

contaminant transport:introduction and

applications

Andrea Zoia

Current affiliation: CEA/SaclayDEN/DM2S/SFME/LSET

Past affiliation: Politecnico di Milano and MIT

MOMAS - November 4-5th 2008

Page 2: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

2

Outline

CTRW: methods and applications

Conclusions

Modeling contaminant migrationin heterogeneous materials

Page 3: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

3

Transport in porous media

Highly complex velocity spectrum

ANOMALOUS (non-Fickian) transport: <x2>~t

Relevance in contaminant migration Early arrival times (): leakage from repositories

Late runoff times (): environmental remediation

Porous media are in general heterogeneous

Multiple scales: grain size, water content, preferential flow streams, …

Page 4: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

4

[Kirchner et al., Nature 2000] Chloride transport in catchments.

Unexpectedly long retention times

Cause: complex (fractal) streams

An example

Page 5: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

5

Continuous Time Random Walk

t

xx0

Main assumption: particles follow stochastic trajectories in {x,t} Waiting times distributed as w(t) Jump lengths distributed as (x)

Berkowitz et al., Rev. Geophysics 2006.

Page 6: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

6

CTRW transport equation P(x,t) = probability of finding a particle in x at time t =

= normalized contaminant particle concentration

P depends on w(t) and (x): flow & material properties

)()(1

)()(1),( 0

kuw

kP

u

uwukP

Probability/mass balance (Chapman-Kolmogorov equation) Fourier and Laplace transformed spaces: xk, tu, P(x,t)P(k,u)

Assume: (x) with finite std and mean

‘Typical’ scale for space displacements

Page 7: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

7

CTRW transport equation

')',(2

)'(),(2

22

dttxPxx

ttMtxPt

Rewrite in direct {x,t} space (FPK):

Heterogeneous materials: broad flow spectrum multiple time scales w(t) ~ t , 0<<2, power-law decay

M(t-t’) ~ 1/(t-t’): dependence on the past history

Homogeneous materials: narrow flow spectrum single time scale w(t) ~ exp(-t/) M(t-t’) ~ (t-t’) : memoryless = ADE

)(1

)()(

uw

uuwuM

Memory kernel M(u): w(t) ?

Page 8: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

8

Asymptotic behavior

),(2

),(2

221 txP

xxtxP

t t

Fractional Advection-Dispersion Equation (FADE) Fractional derivative in time ‘Fractional dynamics’

The asymptotic transport equation becomes:

Analytical contaminant concentration profile P(x,t)

)(1)()( 11 uoucucuwttw

Long time behavior: u0

Page 9: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

9

Long jumps

(x)~|x| , 0<<2, power law decay

),(),( txPx

txPt

The asymptotic equation is

Fractional derivative in space

Physical meaning: large displacements Application: fracture networks?

Page 10: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

10

Monte Carlo simulation

CTRW: stochastic framework for particle transport Natural environment for Monte Carlo method

Simulate “random walkers” sampling from w(t) and (x) Rules of particle dynamics

Describe both normal and anomalous transport

Advantage: Understanding microscopic dynamics link with macroscopic

equations

Page 11: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

11

Developments

Advection and radioactive decay

Macroscopic interfaces

Asymptotic equations

Breakthrough curves

CTRW Monte Carlo

Page 12: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

12

1. Asymptotic equations Fractional ADE allow for analytical solutions However, FADE require approximations Questions:

How relevant are approximations? What about pre-asymptotic regime (close to the

source)?

FADE good approximation of CTRW Asymptotic regime rapidly attained

Quantitative assessment via Monte Carlo

Exact CTRW .

Asymptotic FADE _

P(x,t)

x

Page 13: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

13

If 1 (time) or 2 (space): FADE bad approximation

1. Asymptotic equations

Exact

CTRW .Asymptotic FADE _

P(x,t)

x

FADE* _

P(x,t)

x

New transport equations including higher-order corrections: FADE* Monte Carlo validation of FADE*

Page 14: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

14

2. Advection

How to model advection within CTRW? x x+vt (Galilei invariance) <(x)>= (bias: preferential jump direction)

Water flow: main source of hazard in contaminant migration

Fickian diffusion: equivalent approaches (v = /<t>) Center of mass: (t) ~ t

Spread: (t) ~ t

0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(t)~t

x

P(x,t)

2(t)~t

Page 15: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

15

2. Advection

Even simple physical mechanisms must be reconsidered in presence of anomalous diffusion

Anomalous diffusion (FADE): intrinsically distinct approaches

x x+vt

<(x)>=

P(x,t)

xx

P(x,t)

Contaminant migration

2(t)~t

(t)~t

2(t)~t2

(t)~t

Page 16: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

16

2. Radioactive decay

Coupling advection-dispersion with radioactive decay

),(),(2

2

txPx

vx

DtxPt

Normal

diffusion:Advection-dispersion

),(1

),(),(2

2

txPtxPx

vx

DtxPt

… & decay

),(),(2

21 txP

xv

xDtxP

t t

Anomalou

s diffusion:Advection-dispersion

),(1

),(),(2

2/1/ txPtxP

xv

xDeetxP

tt

tt

… & decay

/),(),( tetxPtxP

Page 17: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

17

3. Walking across an interface Multiple traversed materials, different physical properties

{,,}1 {,,}2

Set of properties {1}

Set of properties {2}

Two-layered medium

Stepwise changes

Interface

What happens to particles when crossing the interface?

?

x

Page 18: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

18

3. Walking across an interface

“Physics-based” Monte Carlo sampling rules

Linking Monte Carlo parameters with equations coefficients

Case study: normal and anomalous diffusion (no advection)

Analytical boundary conditions at the interface

),(),()(),()(2

)(),(

0),()0,(),(

uxPuxMxuxMxx

xuxJ

uxJx

xPuxuP

Page 19: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

19

3. Walking across an interface

Fickian diffusion

layer1 layer2

P(x,t)

x Interface

Anomalous

Interface

P(x,t)

xExperimental

results

Key feature: local particle velocity

layer1 layer2

Page 20: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

20

4. Breakthrough curves Transport in finite regions

A

Injection

x0

0 1 2 3 4 5 6 7 8 9 10

x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Breakthrough curve (t)

t

Outflow

The properties of (t) depend on the eigenvalues/eigenfunctions of the transport operator in the region [A,B]

Physical relevance: delay between leakage and contamination

Experimentally accessible

B

Page 21: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

21

4. Breakthrough curves Time-fractional dynamics: transport operator = Laplacian

)()(2

2

xxx

2

2

x

Well-known formalism

Space-fractional: transport operator = Fractional Laplacian

)()( xxx

|| x

Open problem…

Numerical and analytical characterization of eigenvalues/eigenfunctions

x

x

(t)

Page 22: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

22

Conclusions

Current and future work:

link between model and experiments (BEETI: DPC, CEA/Saclay)

Transport of dense contaminant plumes: interacting particles.

Nonlinear CTRW?

Strongly heterogeneous and/or unsaturated media:

comparison with other models: MIM, MRTM…

Sorption/desorption within CTRW: different time scales?

Contaminant migration within CTRW model

Page 23: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

23

Fractional derivatives

ttt )1(

)1(,0

Definition in direct (t) space:

Definition in Laplace transformed (u) space:

Example: fractional derivative of a power

Page 24: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

24

Generalized lattice Master Equation

''

),'()',(),(),'(),(ss

tsCssrtsCssrtsCt

' 0' 0

')','()','(')',()','(),(s

t

s

t

dttspttssdttspttsstspt

sus

usuus

),(1

),(),(

Master Equation

Normalized particle concentration

Transition ratesMass conservation at each lattice site

s

Ensemble average on possible rates realizations:

),( ts Stochastic description of traversed medium

Assumptions:

lattice continuum )()(),( stwts

Page 25: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

25

Chapman-Kolmogorov Equation

P(x,t) = normalized concentration (pdf “being” in x at time t)

Source terms

(t) = probability of not having moved

p(x,t) = pdf “just arriving” in x at time t

Contributions from the past history

Page 26: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

26

Higher-order corrections to FDE

)(1)()( 11 uoucucuwttw

)(1)()( 222

1kokckckxx

FDE: u0

FDE: k0

),(),(),( 12

21 txP

tqtxP

xtxP

t tt

),(),(),(2

2

txPx

qtxPx

txPt

Fourier and Laplace transforms, including second order contributions

Transport equations in direct space, including second order contributions

FDE

FDE

Page 27: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

27

Standard vs. linear CTRW

t

x

(x): how far

w(t): how long

Linear CTRW

Page 28: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

28

3. Walking across an interface

“Physics-based” Monte Carlo sampling rules

Sample a random jump:

t~w(t) and x~(x)

Start in a given layer

The walker lands in the same layer

The walker crosses the interface

“Reuse” the remaining portion of the jump in the other layer

Page 29: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

29

Re-sampling at the interface

xx’,t’ v’=x’/t’

t=x/v’

x’ = -1(Rx), t’ = W-1(Rt) Rx = (x), Rt = W(t)

1 2

x = -1(Rx) - -1(Rx), t = W-1(Rt) - W-

1(Rt)

,w ,w

x,t

v’

v’’

Page 30: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

30

3. Walking across an interface

Analytical boundary conditions at the interface

),(),()(),()(2

)(),(

0),()0,(),(

uxPuxMxuxMxx

xuxJ

uxJx

xPuxuP

JJ Mass conservation:

Concentration ratio at the interface: PuMPuM )()( P(x,u)

Page 31: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

31

Local particle velocity

Normal diffusion: M(u)=1/

Equal velocities: ()+=()-

Anomalous diffusion: M(u)=u1-/

Equal velocities: ()+=()- and +=-

(x/t)-

(x/t)+

Different concentrations at the

interface

Equal concentrations at

the interface

(x/t)-

(x/t)+Monte Carlo simulation:

Local velocity: v=x/t

PuMPuM )()(

Boundary conditions

Page 32: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

32

5. Fractured porous media

Experimental NMR measures [Kimmich, 2002] Fractal streams (preferential water flow)

Anomalous transport

Develop a physical model Geometry of paths

df

Schramm-Loewner Evolution

Page 33: 1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET

33

5. Fractured porous media

Compare our model to analogous CTRW approach [Berkowitz et al., 1998] Identical spread <x2>~t( depending on df)

Discrepancies in the breakthrough curves

Anomalous diffusion is not universal There exist many possible realizations and descriptions

0 5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Both behaviors observed in different physical contexts

(t)

t

CTRW

Our model