1 iii-v mos: record-performance thermally-limited devices, prospects for high-on-current steep...

24
1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS Conference, June 30-July , 2015, UCSB III-V MOS C.-Y. Huang, S. Lee*, A.C. Gossard, V. Chobpattanna, S. Stemmer, B. Thibeault, W. Mitchell : UCSB Low-voltage devices P. Long, E. Wilson, S. Mehrotra, M. Povolotskyi, G. Klimeck: Purdue Now with: *IBM, **Intel

Upload: james-gordon

Post on 04-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

1

III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB

IPRM/ISCS Conference, June 30-July , 2015, UCSB

III-V MOSC.-Y. Huang, S. Lee*, A.C. Gossard, V. Chobpattanna, S. Stemmer, B. Thibeault, W. Mitchell : UCSB

Low-voltage devices P. Long, E. Wilson, S. Mehrotra, M. Povolotskyi, G. Klimeck: Purdue

Now with: *IBM, **Intel

Page 2: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

2

Why III-V MOS ?

III-V vs. Si: Low m*→ higher velocity. Fewer states→ less scattering → higher current. Can then trade for lower voltage or smaller FETs.

Problems: Low m*→ less charge. Low m* → more S/D tunneling.Narrow bandgap→ more band-band tunneling, impact ionization.

Page 3: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

3

Reducing leakage: Vertical spacer, Ultra-thin channel

*Heavy elements look brighterCourtesy of S. Kraemer (UCSB) Lee et al., 2014 VSLI Symposium

Vertical Spacer

N+ S/D

Page 4: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

4

Reducing leakage: Vertical spacer, Ultra-thin channel

10 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

S. Lee, VLSI 2014 J . Lin, IEDM 2013 T. Kim, IEDM 2013 Intel, IEDM 2009 J . Gu, IEDM 2012 D. Kim, IEDM 2012

I on (

mA

/m

)

Gate Length (nm)

VDS

= 0.5 V

Ioff

=100 nA/m

S. Lee et al., VLSI 2014

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.510-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

DIBL = 76 mV/V

VT = -85 mV at 1 A/m

SSmin

~ 72 mV/dec. (at VDS

= 0.1 V)

SSmin

~ 77 mV/dec. (at VDS

= 0.5 V)

Lg = 25 nm

VDS = 0.1 to 0.7 V

0.2 V increment

Cu

rre

nt

De

ns

ity

(mA

/m

)

Gate Bias (V)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.0

0.2

0.4

0.6

0.8

1.0

1.2

Cu

rren

t D

ensi

ty (

mA

/m

)

Drain Bias (V)

Ron

= 303 Ohm-m

at VGS

= 0.7 V

VGS

= -0.4 V to 0.7 V

0.1 V increment

0.01 0.1 160

70

80

90

100

110

120 [2] [4] [3] [7] [1] [6] [5]

Solid: VDS

= 0.5 V

Open: VDS

= 0.1 V

Gate Length (m)

SS

min (

mV

/dec

.)

This work

[1] Lin IEDM 2013,[2] T.-W. Kim IEDM 2013,[3] Chang IEDM 2013,[4] Kim IEDM 2013[5] Lee APL 2013 (UCSB), [6] D. H. Kim IEDM 2012,[7] Gu IEDM 2012,[8] Radosavljevic IEDM 2009

Page 5: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

5

Off-state comparison: 2.5 nm vs. 5.0 nm-thick InAs channel

-0.2 0.0 0.2 0.410-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

IG

SS ~ 60 mV/decat VDS=0.1 V

Cu

rre

nt

De

ns

ity

(mA

/m

)Gate Bias (V)

ID

-0.2 0.0 0.2 0.4

IG

SS ~ 64 mV/decat VDS=0.1 V

Gate Bias (V)

ID

5.0 nm InAs 2.5 nm InAs

0.01 0.1 160

70

80

90

100

110 5.0 nm InAs 2.5 nm InAs

Open: VDS

= 0.1 V

Solid: VDS

= 0.5 V

Gate Length (m)

SS

min (

mV

/dec

)

Better SS at all gate lengths Better electrostatics (aspect ratio) and reduced BTBT (quantized Eg)

~10:1 reduction in minimum off-state leakage~5:1 increase in gate leakage increased eigenstate

Lg =500 nm Lg =500 nm

Page 6: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

6

On-state comparison: 2.5 nm vs. 5.0 nm-thick InAs channel

0.01 0.1 10.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8InAs channel thickness 2.5 nm 5.0 nm

VDS

= 0.5 V

Gate Length (m)

Pea

k g

m (

mS

/m

)

0 1 2 3 4 5 6 70

200

400

600

800

1000

1200

x 1012

eff (c

m2 /

s-V)

Carrier Density (/cm2)

2.5 nm InAs 5.0 nm InAs

-0.2 0.0 0.2 0.4 0.60.0

0.5

1.0

1.5

2.0

2.5

Cox

= 4.2 F/cm2

EOT= 0.8 nm

W/L= 25m/21 m

Freq: 200kHz

2.5 nm InAs 5.0 nm InAs

Ga

te C

ap

ac

ita

nc

e (F

/cm

2 )

Gate Bias (V)

0

1

2

3

4

5

6

7

x 10

12

Car

rier

Den

sity

(/c

m2 )

0.4

0.2

-0.2

0.0

-0.4

-0.6

0.6

0.8

EF

E1En

erg

y (e

V)

Position (nm)10 20 30

EF

E1

Position (nm)10 20 30

~1.25 nm ~2.5 nm

2.5 nm thick 5 nm thick

1D-Possion Schrodinger solver(coded by W. Frensley, UT Dallas)

Page 7: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

7

ZrO2 vs. HfO2: Peak gm, SS, split-CV, and mobility

0.01 0.1 10.0

0.4

0.8

1.2

1.6

2.0

2.4

0425A1 (30A ZrO2) 0425A2 (30A HfO2) VLSI (30A ZrO2)

VDS

= 0.5 V

Gate Length (m)

Pea

k g

m (

mS

/m

)

0.01 0.1 1

60

65

70

75

80

85

90 VLSI (30A ZrO2) 0425A1 (30A ZrO2) 0425A2 (30A HfO2)

Open: VDS

= 0.1 V

Solid: VDS

= 0.5 V

Gate Length (m)

SS

min (

mV

/dec

)

0.0 0.2 0.4 0.60.0

0.5

1.0

1.5

2.0

2.5W/L= 25m/21 m

Freq: 200kHz

ZrO2 HfO2

Ga

te C

ap

ac

ita

nc

e (F

/cm

2)

Gate Bias (V)

0

1

2

3

4

5

6

7

x 10

12

Car

rier

Den

sity

(/c

m2 )

7(1) ZrO2 higher capacitance than HfO2 , (2) ZrO2 results, low SS, are reproducible

Comparison: two process runs ZrO2 , one run HfO2 , both 2nm (on 1nm Al2O3)

Page 8: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

8

Double-heterojunction MOS: 60 pA/mm leakage

• Minimum Ioff~ 60 pA/μm at VD=0.5V for Lg-30 nm• 100:1 smaller Ioff compared to InGaAs spacer• BTBT leakage suppressedisolation leakage dominates

Lg-30nm

C. Y. Huang et al., IEDM 2014

Lg-30nm

Page 9: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

9

12 nm Lg III-V MOS

N+InGaAs

InP spacer

InAlAs

Barrier

Lg~12nm

~ 8nm

tch~ 2.5 nm(1.5/1 nm InGaAs/InAs)

Top View

Ni

Cross-setion

N+InP

Page 10: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

10

ID-VG and ID-VD curves of 12nm Lg FETs

0.0 0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

gm (m

S/m

)I D (m

A/

m)

VGS

(V)

0.0

0.4

0.8

1.2

1.6

2.0

2.4V

DS = 0.1 to 0.7 V,

0.2 V increment

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.0

0.5

1.0

1.5

I D (m

A/

m)

VDS

(V)

Ron

= 302 Ohm-m

at VGS

= 1.0 V

VGS

= -0.2 V to 1.2 V

0.2 V increment

-0.2 0.0 0.2 0.4 0.6 0.810-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

SS ~ 107.5 mV at V

DS=0.5 V

SS ~ 98.6 mV at V

DS=0.1 V

VDS

= 0.1 to 0.7 V

0.2 V increment

I D, |I G

| (m

A/

m)

VGS

(V)

Ioff~1.3 nA/μm Ion~1.1 mA/μm

Ion/Ioff > 8.3∙105

Lg-12nm

Page 11: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

11

-0.2 0.0 0.2 0.4 0.60.0

0.5

1.0

1.5

2.0

2.5

Cox

= 4.2 F/cm2

EOT= 0.8 nm

W/L= 25m/21 m

Freq: 200kHz

2.5 nm InAs 5.0 nm InAs

Ga

te C

ap

ac

ita

nc

e (F

/cm

2 )

Gate Bias (V)

0

1

2

3

4

5

6

7

x 10

12

Car

rier

Den

sity

(/c

m2 )

Mobility extraction at Lg-25 µm long channel FETs

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Carrier d

ensity (10

12 cm-2)

Cac

c (

F/c

m2 )

VGS

(V)

0

2

4

6

8

10V

DS = 0.1 to 0.7 V

0.2 V increment

0 1 2 3 4 5 60

100

200

300

400

500

Mobility

(cm

2 /Vs

)

Carrier density (cm-2)

VDS

= 25 mV to 50 mV

Mobility~ 250 cm2/V s∙

Mobility~ 280 cm2/V s∙

Freq: 200 kHz

EOT~ 0.9~1 nm

This work InAs channel

1.5/1 nm InGaAs/InAs

1.5/1 nm InGaAs/InAs

m*, RS/D more important!0 1 2 3 4 5 6 7

0

200

400

600

800

1000

1200

x 1012

eff (c

m2 /s-

V)

Carrier Density (/cm2)

2.5 nm InAs 5.0 nm InAs

Page 12: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

12

Steep FETs

Page 13: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

13

Tunnel FETs: truncating the thermal distribution

Source bandgap truncates thermal distribution

J. Appenzeller et al., IEEE TED, Dec. 2005

T-FET

Normal

Must cross bandgap: tunnelingFix (?): broken-gap heterojunction

Page 14: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

14

Tunnel FETs: are prospects good ?

Useful devices must be small

Quantization shifts band edges→ tunnel barrier

Band nonparabolicity increases carrier masses

Electrostatics: bands bend in source & channel

What actual on-current might we expect ?

Page 15: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

15

Tunneling Probability

barrier

barrier

*2 where),2exp(

barrier) square (WKB,y Probabiliton Transmissi

EmTP

barrier thick 4nm afor %1

barrier thick 2nm afor %10

barrier thick 1nm afor %33

:Then

eV 2.0 ,06.0* :Assume 0

P

Emm b

For high Ion, tunnel barrier must be *very* thin.

~3-4nm minimum barrier thickness:P+ doping, body & dielectric thicknesses

Page 16: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

16

T-FET on-currents are low, T-FET logic is slow

-1.5

-1

-0.5

0

0.5

1

1.5

2

5 10 15 20 25

En

ergy

, eV

position, nm10-3 10-2 10-1 100

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Transmission

En

ergy

(eV

)

3.0%

NEMO simulation: GaSb/InAs tunnel finFET: 2nm thick body, 1nm thick dielectric @ er=12, 12nm Lg

10-5

10-4

10-3

10-2

10-1

100

101

102

0 0.1 0.2 0.3 0.4 0.5 0.6

dra

in c

urre

nt,

A/m

gate-source bias, volts

60mV/dec.

10 mA/mm

Experimental: InGaAs heterojunction HFET;Dewey et al, 2011 IEDM,2012 VLSI Symp.

~15 mA/mm @0.7V

Low current→ slow logic

Page 17: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

17

Resonant-enhanced tunnel FETAvci & Young, (Intel) 2013 IEDM

2nd barrier: bound state

dI/dV peaks as state aligns with source

improved subthreshold swing.

Can we also increase the on-current ?

Page 18: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

18

Electron anti-reflection coatings

Tunnel barrier:transmission coefficient < 100%reflection coefficient > 0%want: 100% transmission, zero reflectionfamiliar problem

Optical coatingsreflection from lens surfacequarter-wave coating, appropriate nreflections cancel

Microwave impedance-matchingreflection from loadquarter-wave impedance-matchno reflectionSmith chart.

Page 19: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

19

T-FET: single-reflector AR coating

Peak transmission approaches 100%

Narrow transmission peak; limits on-current

10-3 10-2 10-1 100-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

TransmissionE

ner

gy(e

V)

TFETTFET+ one barrier

10-5

10-4

10-3

10-2

10-1

100

101

102

0 0.1 0.2 0.3 0.4 0.5

dra

in c

urre

nt,

A/m

gate-source bias, volts

60mV/dec.

TFET+one barrier

Can we do better ?

Page 20: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

20

Limits to impedance-matching bandwidth

-7

-6

-5

-4

-3

-2

-1

0

1

0 5 10 15 20

Tra

nsm

issi

on,

dB

Frequency, GHz

1, 2, 3 sectionsMicrowave matching:More sections→ more bandwidthIs there a limit ?

Bode-Fano limitsR. M. Fano, J. Franklin Inst., Jan. 1960

Bound bandwidth for high transmissionexample: bound for RC parallel load→Do electron waves have similar limits ?

0

2||||

1ln

RCd

Yes ! Schrödinger's equation is isomorphic to E&M plane wave.Khondker, Khan, Anwar, JAP, May 1988

T-FET design→ microwave impedance-matching problemFano: limits energy range of high transmissionDesign T-FETs using Smith chart, optimize using filter theoryWorking on this: for now design by random search

)/*)(/()( wherepower,currenty probabilit , , , / xjmxIVfhE *

Page 21: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

21

T-FET with 3-layer antireflection coating

-1.5

-1

-0.5

0

0.5

1

1.5

2

5 10 15 20 25 30 35

En

ergy

, eV

position, nm10-3 10-2 10-1 100

0.1

0.15

0.2

0.25

Transmission

En

ergy

(eV

) 3-layer0-layer

10-5

10-4

10-3

10-2

10-1

100

101

102

0 0.1 0.2 0.3 0.4 0.5 0.6dr

ain

curr

ent,

A/m

gate-source bias, volts

P-GaSb/N-InAs tunnel FET

single layer

triple layer60mV/dec.

Interim result; still working on design

Simulation

Page 22: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

22

Source superlattice: truncates thermal distribution

Gnani, 2010 ESSDERC

M. Bjoerk et al., U.S. Patent 8,129,763, 2012. E. Gnani et al., 2010 ESSDERCProposed 1D/nanowire device:

Gnani, 2010 ESSDERC: simulation

Page 23: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

23

Planar (vs. nanowire) superlattice steep FETLong et al., EDL, Dec. 2014

Planar superlattice FETsuperlattice by ALE regrowtheasier to build than nanowire (?)

Performance (simulations):~100% transmission in miniband.0.4 mA/mm Ion , 0.1mA/mm Ioff ,0.2V

Ease of fabrication ?Tolerances in SL growth ?Effect of scattering ?

simulation

Page 24: 1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS

24

(backup slides follow)