1) run settings 2) first results 3) harmonic analysis tools · first results in-situ obs eas1:...

27
Adding tides to EAS5 System.. 1) Run settings 2) First results 3) Harmonic analysis tools

Upload: others

Post on 06-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Adding tides to EAS5 System..

1) Run settings

2) First results

3) Harmonic analysis tools

Page 2: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Run settingsTides RUN (2015-2017)

● key_tide (M2, S2, N2, K1, O1, Q1, K2, P1)

● Modified Bathymetry (Croatian coast)

● Hourly fields: ssh and sea surface velocities

● Timestep: 150s

● NEMO Namelist:!-----------------------------------------------------------------------&namsplit ! time splitting parameters ("key_dynspg_ts")!-----------------------------------------------------------------------ln_bt_fw = .FALSE. !*jc Forward integration of barotropic equationsnn_baro = 50 !*jc Number of iterations of barotropic modenn_bt_flt = 1 !*jc Time filter choice ! = 0 None ! = 1 Boxcar over nn_baro barotropic steps ! = 2 Boxcar over 2*nn_baro !-----------------------------------------------------------------------&nambfr ! bottom friction!-----------------------------------------------------------------------rn_bfeb2 = 0. !*jc bottom turbulent kinetic energy background (m3/s2)

Control RUN (2015-2017)

● Modified Bathymetry (Croatian coast)

● Hourly fields: ssh and sea surface velocities

● Timestep: 240s

● NEMO Namelist:!-----------------------------------------------------------------------&namsplit ! time splitting parameters ("key_dynspg_ts")!-----------------------------------------------------------------------ln_bt_fw = .TRUE. ! Forward integration of barotropic equationsnn_baro = 100 ! Number of iterations of barotropic modenn_bt_flt = 2 ! Time filter choice ! = 0 None ! = 1 Boxcar over nn_baro barotropic steps ! = 2 Boxcar over 2*nn_baro

!-----------------------------------------------------------------------&nambfr ! bottom friction!-----------------------------------------------------------------------rn_bfeb2 = 2.5e-3 !*jc bottom turbulent kinetic energy background (m3/s2)

Page 3: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Run settingsTides RUN (2015-2017)

● key_tide (M2, S2, N2, K1, O1, Q1, K2, P1)

● Modified Bathymetry (Croatian coast)

● Hourly fields: ssh and sea surface velocities

● Timestep: 150s

● NEMO Namelist:!-----------------------------------------------------------------------&namsplit ! time splitting parameters ("key_dynspg_ts")!-----------------------------------------------------------------------ln_bt_fw = .FALSE. !*jc Forward integration of barotropic equationsnn_baro = 50 !*jc Number of iterations of barotropic modenn_bt_flt = 1 !*jc Time filter choice ! = 0 None ! = 1 Boxcar over nn_baro barotropic steps ! = 2 Boxcar over 2*nn_baro !-----------------------------------------------------------------------&nambfr ! bottom friction!-----------------------------------------------------------------------rn_bfeb2 = 0. !*jc bottom turbulent kinetic energy background (m3/s2)

Page 4: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Run settingsTides RUN (2015-2017)

● key_tide (M2, S2, N2, K1, O1, Q1, K2, P1)

● Modified Bathymetry (Croatian coast)

● Hourly fields: ssh and sea surface velocities

● Timestep: 150s

● NEMO Namelist:!-----------------------------------------------------------------------&namsplit ! time splitting parameters ("key_dynspg_ts")!-----------------------------------------------------------------------ln_bt_fw = .FALSE. !*jc Forward integration of barotropic equationsnn_baro = 50 !*jc Number of iterations of barotropic modenn_bt_flt = 1 !*jc Time filter choice ! = 0 None ! = 1 Boxcar over nn_baro barotropic steps ! = 2 Boxcar over 2*nn_baro !-----------------------------------------------------------------------&nambfr ! bottom friction!-----------------------------------------------------------------------rn_bfeb2 = 0. !*jc bottom turbulent kinetic energy background (m3/s2)

Control RUN (2015-2017)

● Modified Bathymetry (Croatian coast)

● Hourly fields: ssh and sea surface velocities

● Timestep: 240s

● NEMO Namelist:!-----------------------------------------------------------------------&namsplit ! time splitting parameters ("key_dynspg_ts")!-----------------------------------------------------------------------ln_bt_fw = .TRUE. ! Forward integration of barotropic equationsnn_baro = 100 ! Number of iterations of barotropic modenn_bt_flt = 2 ! Time filter choice ! = 0 None ! = 1 Boxcar over nn_baro barotropic steps ! = 2 Boxcar over 2*nn_baro

!-----------------------------------------------------------------------&nambfr ! bottom friction!-----------------------------------------------------------------------rn_bfeb2 = 2.5e-3 !*jc bottom turbulent kinetic energy background (m3/s2)

Page 5: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Run settingsTides RUN (2015-2017)

● key_tide (M2, S2, N2, K1, O1, Q1, K2, P1)

● Modified Bathymetry (Croatian coast)

● Daily fields + Hourly fields: ssh and sea surface velocities => TOT ~ 215 G/yr

Control RUN (2015-2017)

● Modified Bathymetry (Croatian coast)

● Daily fields + Hourly fields: ssh and sea surface velocities => TOT ~ 215 G/yr

Page 6: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Run settingsTides RUN (2015-2017)

● key_tide (M2, S2, N2, K1, O1, Q1, K2, P1)

● Modified Bathymetry (Croatian coast)

● Hourly fields: ssh and sea surface velocities

● Timestep: 150s (~5 days/yr)

● NEMO Namelist:!-----------------------------------------------------------------------&namsplit ! time splitting parameters ("key_dynspg_ts")!-----------------------------------------------------------------------ln_bt_fw = .FALSE. !*jc Forward integration of barotropic equationsnn_baro = 50 !*jc Number of iterations of barotropic modenn_bt_flt = 1 !*jc Time filter choice ! = 0 None ! = 1 Boxcar over nn_baro barotropic steps ! = 2 Boxcar over 2*nn_baro !-----------------------------------------------------------------------&nambfr ! bottom friction!-----------------------------------------------------------------------rn_bfeb2 = 0. !*jc bottom turbulent kinetic energy background (m3/s2)

Control RUN (2015-2017)

● Modified Bathymetry (Croatian coast)

● Hourly fields: ssh and sea surface velocities

● Timestep: 240s (~4 days/yr)

● NEMO Namelist:!-----------------------------------------------------------------------&namsplit ! time splitting parameters ("key_dynspg_ts")!-----------------------------------------------------------------------ln_bt_fw = .TRUE. ! Forward integration of barotropic equationsnn_baro = 100 ! Number of iterations of barotropic modenn_bt_flt = 2 ! Time filter choice ! = 0 None ! = 1 Boxcar over nn_baro barotropic steps ! = 2 Boxcar over 2*nn_baro

!-----------------------------------------------------------------------&nambfr ! bottom friction!-----------------------------------------------------------------------rn_bfeb2 = 2.5e-3 ! bottom turbulent kinetic energy background (m3/s2)

Page 7: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Adding tides to EAS5 System..

1) Run settings

2) First results

3) Harmonic analysis tools

Page 8: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

First results● GOOD NEWS: clear tidal signal!

May 2015 – TriesteS

SH

[m]

Page 9: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

First results● GOOD NEWS: clear tidal signal!

May 2015 – TriesteS

SH

[m]

[Effects of tidal motion on the Mediterranean Sea General Circulation, Valentina Agresti, 2018]

Page 10: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

First results● GOOD NEWS: clear tidal signal!● BAD NEWS: Amplitude is too small...

May 2015 – (lat: 36.002183 lon:-5.238527)

SS

H [m

]

Page 11: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

First results

In-situ obsEAS1: RMS=5.83, Bias=-0.01 cmEAS3 : RMS=5.68, Bias=0.01 cm

Tarifa

In-situ obsEAS1: RMS=5.83, Bias=-0.01 cmEAS3 : RMS=5.68, Bias=0.01 cm

Tarifa

● GOOD NEWS: clear tidal signal!● BAD NEWS: Amplitude is too small...

May 2015 – Tarifa

SS

H [m

]

Page 12: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

First results

In-situ obsEAS1: RMS=5.83, Bias=-0.01 cmEAS3 : RMS=5.68, Bias=0.01 cm

Tarifa

In-situ obsEAS1: RMS=5.83, Bias=-0.01 cmEAS3 : RMS=5.68, Bias=0.01 cm

Tarifa

● GOOD NEWS: clear tidal signal!● BAD NEWS: Amplitude is too small...

May 2015 - Tarifa

SS

H [m

]

Page 13: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

First results

In-situ obsEAS1: RMS=5.83, Bias=-0.01 cmEAS3 : RMS=5.68, Bias=0.01 cm

Tarifa

In-situ obsEAS1: RMS=5.83, Bias=-0.01 cmEAS3 : RMS=5.68, Bias=0.01 cm

● GOOD NEWS: clear tidal signal!● BAD NEWS: Amplitude is too small...

Algeciras

May 2015 - Algeciras

SS

H [m

]

Page 14: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

First results

In-situ obsEAS1: RMS=5.83, Bias=-0.01 cmEAS3 : RMS=5.68, Bias=0.01 cm

Tarifa

In-situ obsEAS1: RMS=5.83, Bias=-0.01 cmEAS3 : RMS=5.68, Bias=0.01 cm

● GOOD NEWS: clear tidal signal!● BAD NEWS: Amplitude is too small...

Algeciras

May 2015 - Algeciras

SS

H [m

]

May 2015 - Algeciras

SS

H [m

]

Page 15: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

First results● GOOD NEWS: clear tidal signal!● BAD NEWS: Amplitude is too small...

HP: - Boundary conditions (Atlantic tides)

- Time interval (hourly mean Vs hourly snapshot )

Page 16: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Adding tides to EAS5 System..

1) Run settings

2) First results

3) Harmonic analysis tools

Page 17: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Harmonic analysis● key_diaharm (NEMO Harmonic analysis of tidal constituents)

X Restart capability NOT implemented X Problems with output rebuild

Page 18: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Harmonic analysis● Python Tools for Tidal Analysis (Salish Sea MEOPAR Project)

....# function for fitting 8 frequenciesdef octuple(x, M2amp, M2pha, K1amp, K1pha, O1amp, O1pha, S2amp, S2pha, P1amp, P1pha, N2amp, N2pha, Q1amp, Q1pha, K2amp, K2pha): return (M2amp*np.cos(M2freq*x-M2pha*np.pi/180.)+ K1amp*np.cos(K1freq*x-K1pha*np.pi/180.)+ O1amp*np.cos(O1freq*x-O1pha*np.pi/180.)+ S2amp*np.cos(S2freq*x-S2pha*np.pi/180.)+ P1amp*np.cos(P1freq*x-P1pha*np.pi/180.)+ N2amp*np.cos(N2freq*x-N2pha*np.pi/180.)+ Q1amp*np.cos(Q1freq*x-Q1pha*np.pi/180.)+ K2amp*np.cos(K2freq*x-K2pha*np.pi/180.))....fitted, cov = curve_fit(octuple,time[ts:te],ssh[ts:te])

X Nodal corrections required..(found in ocean.output)if fitted[0] < 0: fitted[0] = -fitted[0] fitted[1] = fitted[1]+180 M2_amp.append(fitted[0]*M2ft) pha = fitted[1]+M2uvt if pha > 360: pha=pha-360 elif pha < 0: pha = pha+360 M2_pha.append(pha)

Page 19: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Harmonic analysis● TUGO-m Tidal ToolBox (Allain 2016)

X Installation problems ?

Page 20: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

● V. Agresti (2018). “Effects of tidal motion on the Mediterranean Sea General Circulation”.

● Tsimplis, MN, R Proctor, and RA Flather (1995). “A two-dimensional tidal model for the Mediterranean Sea”. Journal of Geophysical Research: Oceans 100.C8, pp. 16223–16239.

● Gurvan Madec and the NEMO team (2016), “NEMO Ocean Engine v3.6”.

● Python Tools for Tidal Analysis (Salish Sea MEOPAR Project):

https://nbviewer.jupyter.org/urls/bitbucket.org/salishsea/analysis/raw/tip/compare_tides/Analysis8Components.ipynb

https://salishsea-meopar-docs.readthedocs.io/en/latest/tidalcurrents/tidal_current_tools.html#python-tools-for-tidal-analysis

● Damien J. Allain (2019), “TUGOm Tidal ToolBox”

References

Page 21: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,
Page 22: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Run settings● Tides RUN (2015-2017)

● NEMO Namelist:

!-----------------------------------------------------------------------&namsplit ! time splitting parameters ("key_dynspg_ts")!----------------------------------------------------------------------- ln_bt_fw = .FALSE. !*jc Forward integration of barotropic equations ln_bt_av = .TRUE. ! Time filtering of barotropic variables ln_bt_nn_auto = .FALSE. ! Set nn_baro automatically to be just below ! a user defined maximum courant number (rn_bt_cmax) nn_baro = 50 !*jc Number of iterations of barotropic mode ! during rn_rdt seconds. Only used if ln_bt_nn_auto=F rn_bt_cmax = 0.8 ! Maximum courant number allowed if ln_bt_nn_auto=T nn_bt_flt = 1 !*jc Time filter choice ! = 0 None ! = 1 Boxcar over nn_baro barotropic steps ! = 2 Boxcar over 2*nn_baro " "/

Control RUN (2015-2017)

● NEMO Namelist:

!-----------------------------------------------------------------------&namsplit ! time splitting parameters ("key_dynspg_ts")!----------------------------------------------------------------------- ln_bt_fw = .TRUE. ! Forward integration of barotropic equations ln_bt_av = .TRUE. ! Time filtering of barotropic variables ln_bt_nn_auto = .FALSE. ! Set nn_baro automatically to be just below ! a user defined maximum courant number (rn_bt_cmax) nn_baro = 100 ! Number of iterations of barotropic mode ! during rn_rdt seconds. Only used if ln_bt_nn_auto=F rn_bt_cmax = 0.8 ! Maximum courant number allowed if ln_bt_nn_auto=T nn_bt_flt = 2 ! Time filter choice ! = 0 None ! = 1 Boxcar over nn_baro barotropic steps ! = 2 Boxcar over 2*nn_baro " "/

Page 23: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Run settings● Tides RUN (2015-2017)

● NEMO Namelist: !-----------------------------------------------------------------------&nambfr ! bottom friction!-----------------------------------------------------------------------

nn_bfr = 2 ! type of bottom friction : = 0 : free slip, = 1 : linear friction ! = 2 : nonlinear friction rn_bfri1 = 4.e-4 ! bottom drag coefficient (linear case) rn_bfri2 = 1.e-5 ! bottom drag coefficient (non linear case). Minimum coeft if ln_loglayer=T rn_bfri2_max = 1.e-1 ! max. bottom drag coefficient (non linear case and ln_loglayer=T) rn_bfeb2 = 0. !*jc bottom turbulent kinetic energy background (m3/s2) rn_bfrz0 = 1.e-2 ! bottom roughness [m] if ln_loglayer=T ln_bfr2d = .false. ! horizontal variation of the bottom friction coef (read a 2D mask file ) rn_bfrien = 50. ! local multiplying factor of bfr (ln_bfr2d=T) rn_tfri1 = 4.e-4 ! top drag coefficient (linear case) rn_tfri2 = 2.5e-3 ! top drag coefficient (non linear case). Minimum coeft if ln_loglayer=T rn_tfri2_max = 1.e-1 ! max. top drag coefficient (non linear case and ln_loglayer=T) rn_tfeb2 = 0.0 ! top turbulent kinetic energy background (m2/s2) rn_tfrz0 = 3.e-3 ! top roughness [m] if ln_loglayer=T ln_tfr2d = .false. ! horizontal variation of the top friction coef (read a 2D mask file ) rn_tfrien = 50. ! local multiplying factor of tfr (ln_tfr2d=T)

ln_bfrimp = .false. ! implicit bottom friction (requires ln_zdfexp = .false. if true) ln_loglayer = .true. ! logarithmic formulation (non linear case)/

Control RUN (2015-2017)

● NEMO Namelist:!-----------------------------------------------------------------------&nambfr ! bottom friction!----------------------------------------------------------------------- nn_bfr = 2 ! type of bottom friction : = 0 : free slip, = 1 : linear friction ! = 2 : nonlinear friction rn_bfri1 = 4.e-4 ! bottom drag coefficient (linear case) rn_bfri2 = 1.e-5 ! bottom drag coefficient (non linear case). Minimum coeft if ln_loglayer=T rn_bfri2_max = 1.e-1 ! max. bottom drag coefficient (non linear case and ln_loglayer=T) rn_bfeb2 = 2.5e-3 ! bottom turbulent kinetic energy background (m2/s2) rn_bfrz0 = 1.e-2 ! bottom roughness [m] if ln_loglayer=T ln_bfr2d = .false. ! horizontal variation of the bottom friction coef (read a 2D mask file ) rn_bfrien = 50. ! local multiplying factor of bfr (ln_bfr2d=T) rn_tfri1 = 4.e-4 ! top drag coefficient (linear case) rn_tfri2 = 2.5e-3 ! top drag coefficient (non linear case). Minimum coeft if ln_loglayer=T rn_tfri2_max = 1.e-1 ! max. top drag coefficient (non linear case and ln_loglayer=T) rn_tfeb2 = 0.0 ! top turbulent kinetic energy background (m2/s2) rn_tfrz0 = 3.e-3 ! top roughness [m] if ln_loglayer=T ln_tfr2d = .false. ! horizontal variation of the top friction coef (read a 2D mask file ) rn_tfrien = 50. ! local multiplying factor of tfr (ln_tfr2d=T)

ln_bfrimp = .false. ! implicit bottom friction (requires ln_zdfexp = .false. if true) ln_loglayer = .true. ! logarithmic formulation (non linear case)/

Page 24: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

First results● GOOD NEWS: clear tidal signal!● BAD NEWS: Amplitude is too small...

HP: - Boundary conditions (Atlantic tides)

- Time interval (hourly mean Vs hourly snapshot )

01 May 2015 - MonacoS

SH

[m]

Page 25: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Run settingsTides RUN (2015-2017)

● key_tide (M2, S2, N2, K1, O1, Q1, K2, P1)

● Modified Bathymetry (Croatian coast)

● Daily fields + Hourly fields: ssh and sea surface velocities => TOT ~ 215 G/yr

Control RUN (2015-2017)

● Modified Bathymetry (Croatian coast)

● Daily fields + Hourly fields: ssh and sea surface velocities => TOT ~ 215 G/yr

Page 26: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Run settingsTides RUN (2015-2017)

● key_tide (M2, S2, N2, K1, O1, Q1, K2, P1)

● Modified Bathymetry (Croatian coast)

● Hourly fields: ssh and sea surface velocities

● Timestep: 150s

● NEMO Namelist:!-----------------------------------------------------------------------&namsplit ! time splitting parameters ("key_dynspg_ts")!-----------------------------------------------------------------------ln_bt_fw = .FALSE. !*jc Forward integration of barotropic equationsnn_baro = 50 !*jc Number of iterations of barotropic modenn_bt_flt = 1 !*jc Time filter choice ! = 0 None ! = 1 Boxcar over nn_baro barotropic steps ! = 2 Boxcar over 2*nn_baro !-----------------------------------------------------------------------&nambfr ! bottom friction!-----------------------------------------------------------------------rn_bfeb2 = 0. !*jc bottom turbulent kinetic energy background (m3/s2)

Control RUN (2015-2017)

● Modified Bathymetry (Croatian coast)

Page 27: 1) Run settings 2) First results 3) Harmonic analysis tools · First results In-situ obs EAS1: RMS=5.83, Bias=-0.01 cm EAS3 : RMS=5.68, Bias=0.01 cm Tarifa In-situ obs EAS1: RMS=5.83,

Run settings● Tides RUN (2015-2017)

● NEMO Namelist: !-----------------------------------------------------------------------&nambfr ! bottom friction!-----------------------------------------------------------------------

nn_bfr = 2 ! type of bottom friction : = 0 : free slip, = 1 : linear friction ! = 2 : nonlinear friction rn_bfri1 = 4.e-4 ! bottom drag coefficient (linear case) rn_bfri2 = 1.e-5 ! bottom drag coefficient (non linear case). Minimum coeft if ln_loglayer=T rn_bfri2_max = 1.e-1 ! max. bottom drag coefficient (non linear case and ln_loglayer=T) rn_bfeb2 = 0. !*jc bottom turbulent kinetic energy background (m3/s2) rn_bfrz0 = 1.e-2 ! bottom roughness [m] if ln_loglayer=T ln_bfr2d = .false. ! horizontal variation of the bottom friction coef (read a 2D mask file ) rn_bfrien = 50. ! local multiplying factor of bfr (ln_bfr2d=T) rn_tfri1 = 4.e-4 ! top drag coefficient (linear case) rn_tfri2 = 2.5e-3 ! top drag coefficient (non linear case). Minimum coeft if ln_loglayer=T rn_tfri2_max = 1.e-1 ! max. top drag coefficient (non linear case and ln_loglayer=T) rn_tfeb2 = 0.0 ! top turbulent kinetic energy background (m2/s2) rn_tfrz0 = 3.e-3 ! top roughness [m] if ln_loglayer=T ln_tfr2d = .false. ! horizontal variation of the top friction coef (read a 2D mask file ) rn_tfrien = 50. ! local multiplying factor of tfr (ln_tfr2d=T)

ln_bfrimp = .false. ! implicit bottom friction (requires ln_zdfexp = .false. if true) ln_loglayer = .true. ! logarithmic formulation (non linear case)/

Control RUN (2015-2017)

● NEMO Namelist:!-----------------------------------------------------------------------&nambfr ! bottom friction!----------------------------------------------------------------------- nn_bfr = 2 ! type of bottom friction : = 0 : free slip, = 1 : linear friction ! = 2 : nonlinear friction rn_bfri1 = 4.e-4 ! bottom drag coefficient (linear case) rn_bfri2 = 1.e-5 ! bottom drag coefficient (non linear case). Minimum coeft if ln_loglayer=T rn_bfri2_max = 1.e-1 ! max. bottom drag coefficient (non linear case and ln_loglayer=T) rn_bfeb2 = 2.5e-3 ! bottom turbulent kinetic energy background (m2/s2) rn_bfrz0 = 1.e-2 ! bottom roughness [m] if ln_loglayer=T ln_bfr2d = .false. ! horizontal variation of the bottom friction coef (read a 2D mask file ) rn_bfrien = 50. ! local multiplying factor of bfr (ln_bfr2d=T) rn_tfri1 = 4.e-4 ! top drag coefficient (linear case) rn_tfri2 = 2.5e-3 ! top drag coefficient (non linear case). Minimum coeft if ln_loglayer=T rn_tfri2_max = 1.e-1 ! max. top drag coefficient (non linear case and ln_loglayer=T) rn_tfeb2 = 0.0 ! top turbulent kinetic energy background (m2/s2) rn_tfrz0 = 3.e-3 ! top roughness [m] if ln_loglayer=T ln_tfr2d = .false. ! horizontal variation of the top friction coef (read a 2D mask file ) rn_tfrien = 50. ! local multiplying factor of tfr (ln_tfr2d=T)

ln_bfrimp = .false. ! implicit bottom friction (requires ln_zdfexp = .false. if true) ln_loglayer = .true. ! logarithmic formulation (non linear case)/