10.1 lecture_2d

84
Lecture  2d: Integer Linear Progr amming Jeff Chak-Fu WONG Department of Mathematics Chinese University of Hong Kong MA T581SS Mathematics for Logistics Produced by Jef f Chak-Fu WONG 1

Upload: julianli0220

Post on 01-Jun-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 1/84

Lecture  2d:

Integer Linear Programming

Jeff Chak-Fu WONG

Department of Mathematics

Chinese University of Hong Kong 

MAT581SS

Mathematics for Logistics

Produced by Jeff Chak-Fu WONG 1

Page 2: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 2/84

TABLE OF  CONTENTS

1.  Land and Doig’s branch and bound method 

BLE OF CONTENTS   2

Page 3: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 3/84

LAND AND  DOIG’S BRANCH AND BOUND METHOD

AND AND DOIG’S BRANCH AND BOUND METHOD   3

Page 4: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 4/84

Branch and Bound is an efficient enumerative technique for

examining all possible integer feasible points.

This can be used to solve both, all as well as mixed, types of integer

programming problems.

AND AND DOIG’S BRANCH AND BOUND METHOD   4

Page 5: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 5/84

Let the given ILP be

max   z =

n

j=1

cjxj

subject ton

j=1 aijxj  = bi  (i = 1, · · ·   , m)

xj  ≥ 0 ( j  = 1, · · ·   , n)   (1)

and

xj  integer for J 1  ⊂ J,

where J  = {1, 2, · · ·   , n}.

AND AND DOIG’S BRANCH AND BOUND METHOD   5

Page 6: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 6/84

As the name suggests, each iteration consists of branching and

bounding.

1.   The branching is done from the current node, a node being

identified as a LPP, where the initial node is the associated LLP of

the given problem.

2.   Certain appropriate bounds are calculated so as to decide

if further branching is needed or not.

Though it is an enumerative technique, it is efficient in the sense thatthe exhaustive enumeration is seldom needed.

AND AND DOIG’S BRANCH AND BOUND METHOD   6

Page 7: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 7/84

Most of the times it is only partial enumeration as that node which

cannot further improve the current available solution is discarded

and therefore the corresponding region is no more required for

enumeration.

AND AND DOIG’S BRANCH AND BOUND METHOD   7

Page 8: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 8/84

The following are the details of the Branch and Bound method.

Step 1

Solve the associated LPP, call (LP )1, and let z1 be its optimal value.

•   If the optimal solution of (LP )1 has integer components for

 j ∈ J 1, i.e., it meets the integer requirements of the given ILP,stop; otherwise go to Step 2.

•  Thus in Step 1, either we stop and get an optimal solution of the

given ILP or we have an upper bound z1 for the optimal

objective function value of the ILP.

AND AND DOIG’S BRANCH AND BOUND METHOD   8

Page 9: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 9/84

Step 2

•  Select a variable xj which is constrained to be integer but is

currently having a fractional value β j in the optimal (LP )1

solution;

•  Construct the following two LP’s:

(LP )2   (LP )3

max  C

T X

  max  CT X

subject to subject to

AX =   b   AX =   b

X ≥ 0 X ≥ 0

xj  ≤ [β j ]   xj  ≥< β j  >

Here

•   [β j ] is the greatest integer less than or equal to β j ;

•   < β j  > is the smallest integer more than or equal to β j .

AND AND DOIG’S BRANCH AND BOUND METHOD   9

Page 10: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 10/84

Obviously

•   [β j ] is the nearest integer in the left of β j ;

•   < β j  > is the nearest integer in the right of β j .

Example 1

If  β j  = 1.6, then [β j ] = 1 and < β j  >= 2.

Sometimes [β j ] = 1 and < β j  >= 2 are also called, respectively, the floor

and ceiling of  β j

AND AND DOIG’S BRANCH AND BOUND METHOD   10

Page 11: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 11/84

•   If we decide to identify problem (LP )k by the kth

node, thenthe above process is to branch from node 1 via the variable xj

to get two new nodes, node 2 and node 3.

•  The new restrictions xj  ≤ [β j ] and xj  ≥< β j  >, are mutually

exclusive so that (LP )2 and (LP )3 are dealt with separate  LP’s.

•   The optimal solution of the given ILP lies either in (LP )2 or  (LP )3,

i.e., in one of the two branches as shown in Figure 1.

node 1

node 2 node 3

(LP)

(LP) (LP)

x <= [ ] x => < >

2 3

1

Optimal solution of

z optimal value of

(LP)

(LP)

1

11

 j  β β j j j

Figure 1:

AND AND DOIG’S BRANCH AND BOUND METHOD   11

Page 12: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 12/84

Step 3

•  Obtain an optimal solution of (LP )2 and (LP )3.

•  Clearly (LP )2 and (LP )3 should be solved by the dual simplex

method as both of these LP’s differ from (LP )1 with regard to an

additional constraint only.

•   Suppose that optimal solutions of (LP )2 and (LP )3 still do not

meet the integer requirements of the given ILP.

AND AND DOIG’S BRANCH AND BOUND METHOD   12

Page 13: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 13/84

Step 4

•  Select either (LP )2 or  (LP )3 for further branching.

•   Branch from these by adding a new constraint corresponding to a

variable which is constrained to be integer but is having a

fractional value.

AND AND DOIG’S BRANCH AND BOUND METHOD   13

Page 14: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 14/84

Step 5

•   This process of branching and solving a sequence of LP’s is

continued until a solution is obtained for one of the LP’s which

meets the integer requirements, namely xj integer for j  ∈ J 1.

•  Let this LPP be (LP )k and  zk denote its optimal value.

•   Then zk becomes a lower bound  for the optimal objective

function value of the given ILP.

AND AND DOIG’S BRANCH AND BOUND METHOD   14

Page 15: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 15/84

At this point, we can eliminate from consideration all those LP’s(nodes) which have the objective function value z less than this

lower bound, namely zk.

We say that all such nodes have been fathomed  because it is not

possible to find a better solution (lower bound) from these LP’s than

what we have now.

•   This is because, branching from a LPP means adding one more

constraint and hence further reducing its feasible region.

AND AND DOIG’S BRANCH AND BOUND METHOD   15

Page 16: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 16/84

Step 6

•  Continue selecting a node (i.e. LP) and branching till all the

nodes have been fathomed.

•   The fathomed node with the largest value of z will give the

optimal solution of the given ILP.

AND AND DOIG’S BRANCH AND BOUND METHOD   16

Page 17: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 17/84

Example 2   Use branch and bound method to solve the following ILP

max   z = 7x1 + 9x2

subject to

−x1 + 3x2  ≤ 6

7x1

 + x2

 ≤ 35x1  ≤ 7

x2  ≤ 7

x1, x2  ≥ 0

x1 and x2 integer.

AND AND DOIG’S BRANCH AND BOUND METHOD   17

Page 18: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 18/84

Solution

•   The first step is to solve the associated LPP, (LP )1.

AND AND DOIG’S BRANCH AND BOUND METHOD   18

Page 19: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 19/84

cj   7 9 0 0 0 0

x1   x2  ↓   x3   x4   x5   x6   θ

0   x3  ←   6 -1   3   1 0 0 0   6

3  = 2   1

3 × R1

0   x4   35 7 1 0 1 0 0 35/10   x5   7 1 0 0 0 1 0 7/1

0   x6   7 0 7 0 0 0 1 7/1

z(XB) = 0   -7 -9 0 0 0 0

cj   7 9 0 0 0 0

x1   x2  ↓   x3   x4   x5   x6   θ

9   x2   2 -1/3   1   1/3 0 0 0   6

3  = 2

0   x4   35 7 1 0 1 0 0   R2 − R1

0   x5   7 1 0 0 0 1 0

0   x6   7 0 7 0 0 0 1   R4 − 7 × R1

z(XB) = 0   -7 -9 0 0 0 0   R5 + 9 × R1

AND AND DOIG’S BRANCH AND BOUND METHOD   19

Page 20: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 20/84

cj   7 9 0 0 0 0

x1  ↓   x2   x3   x4   x5   x6   θ

9   x2   2 -1/3 1 1/3 0 0 0

0  x

4  ←   33   22/3   0 -1/3 1 0 0   33

22/3   = 4.5

  3

22

 ×R2

0   x5   7 1 0 0 0 1 0   7/1

0   x6   5 1/3 0 1/3 0 0 1   5/(1/3) = 15

z(XB) = 18   -10 0 3 0 0 0

cj   7 9 0 0 0 0

x1  ↓   x2   x3   x4   x5   x6   θ

9   x2   2 -1/3 1 1/3 0 0 0   R1 +   1

3 × R2

7   x1   9/2   1   0 -1/22 3/22 0 0  33

22/3   = 4.50   x5   7 1 0 0 0 1 0   R3 − R2

0   x6   5 1/3 0 1/3 0 0 1   R4 −  1

3 × R2

z(XB) = 18   -10 0 3 0 0 0   R5 + 10 × R2

AND AND DOIG’S BRANCH AND BOUND METHOD   20

Page 21: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 21/84

cj   7 9 0 0 0 0

x1   x2   x3   x4   x5   x6   θ

9   x2   7/2 0 1 7/22 1/22 0 0

7   x1   9/2 1 0 -1/22 3/22 0 0

0   x5   5/2 0 0 1/22 -3/22 1 0

0   x6   7/2 0 0 -7/22 -1/22 0 1

z(XB) = 63   0 0 28/11 15/11 0 0

•   The optimal solution of (LP )1 is  (x1  = 9/2, x2  = 7/2) and the

optimal value is z1  = 63.

•  As the solution of (LP )1 does not meet the integer

requirements, it is not optimal for the given ILP.

•   However, z1  = 63 is an upper bound for the optimal objective

function value of the given ILP problem (LP )1 is depicted as

node 1 in Fig. 2.

AND AND DOIG’S BRANCH AND BOUND METHOD   21

Page 22: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 22/84

node 1

( LP ) 1

x = 9/2, x = 7/2

z = 63 ( upper bound )

1 2

1

Figure 2:   (LP )1

AND AND DOIG’S BRANCH AND BOUND METHOD   22

Page 23: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 23/84

•   The next step of the branch and bound method is to branch

from node 1 via a variable xj which is constrained to be integer

but is currently having a fractional value.

•  In our example, x1 and  x2 both are constrained to be integers

and both are having a fractional value so we may branch from

node 1 via x1 or  x2.

•   In practice, we choose that j for which the fractional part of

such xj is positive most, with the hope that this way we may get

a deeper  cut.

•  Here both x1 and  x2 have equal fractional part so we can

branch either from x1 or  x2.

AND AND DOIG’S BRANCH AND BOUND METHOD   23

Page 24: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 24/84

•   –   If we decide to branch from x1,–  then for β 1  = 9/2, [β 1] = 4 and < β 1  >= 5

and therefore we get two new LP’s, (LP )2 and (LP )3, as

(LP )2   (LP )3

Same a (LP)1  but with Same as (LP)1 but with

one additional constraint one additonal constraint

x1

 ≤ 4. x1

 ≥ 5.

•   These are identified as node 2 and node 3.

–   Solving (LP )2 we get (x1  = 4, x2  = 10/3) and z2  = 58.

–  Similarly solving (LP )3 we get (x1  = 5, x2  = 0) and z3  = 35.

•  As the solution of (LP )3 meets the integer requirements, the

value z3  = 35 becomes a lower bound for the optimal objective

function value of the given ILP.

AND AND DOIG’S BRANCH AND BOUND METHOD   24

Page 25: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 25/84

node 1

node 2 node 3

( LP )

( LP ) ( LP )

1

2 3

x = 9/2, x = 7/2

z = 63 ( upper bound )

1 2

1

x = 4, x = 10/3

z = 582

21

x <= 4 x => 51 1

Figure 3:   (LP )2

AND AND DOIG’S BRANCH AND BOUND METHOD   25

Page 26: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 26/84

node 1

node 2 node 3

( LP )

( LP ) ( LP )

1

2 3

x = 9/2, x = 7/2

z = 63 ( upper bound )

1 2

1

x = 4, x = 10/3

z = 58

x = 5, x = 0

z = 35 ( lower bound )2

21

3

1 2

x <= 4 x => 51 1

Figure 4:   (LP )3

AND AND DOIG’S BRANCH AND BOUND METHOD   26

Page 27: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 27/84

(LP )2:

Consider

x1  ≤ 4   (2)

Putting

x1  =   122

x3 −   322

x4 + 92

into (2), and introducing the Gomorian slack, we have

1

22 x3 −

  3

22 x4 + x7  = −

1

2 .

AND AND DOIG’S BRANCH AND BOUND METHOD   27

Page 28: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 28/84

cj   7 9 0 0 0 0 0

x1   x2   x3   x4   x5   x6   x7

9   x2   7/2 0 1 7/22 1/22 0 0 0

7   x1   9/2 1 0 -1/22 3/22 0 0 0

0   x5   5/2 0 0 1/22 -3/22 1 0 0

0  x

6   7/2 0 0 -7/22 -1/22 0 1 00   ← x7   -1/2 0 0 1/22   -3/22   0 0 1   − 22

3   ×R5

z(XB) = 63   0 0 28/11 15/11 0 0 0

15/11−3/22

AND AND DOIG’S BRANCH AND BOUND METHOD   28

Page 29: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 29/84

cj   7 9 0 0 0 0 0

x1   x2   x3   x4   x5   x6   x7

9   x2   7/2 0 1 7/22 1/22 0 0 0   R1 −  122  ×R5

7   x1   9/2 1 0 -1/22 3/22 0 0 0   R2 −  322  ×R5

0  x

5   5/2 0 0 1/22 -3/22 1 0 0  R

3  +

  3

22  ×R

5

0   x6   7/2 0 0 -7/22 -1/22 0 1 0   R4  +   122  ×R5

0   x4   11/3 0 0 -1/3   1   0 0 -22/3

z(XB) = 63   0 0 28/11 15/11 0 0 0   R6 −  1511  ×R5

cj   7 9 0 0 0 0 0

x1   x2   x3   x4   x5   x6   x7

9   x2   10/3 0 1 1/3 0 0 0 1/3

7   x1   4 1 0 0 0 0 0 1

0   x5   3 0 0 0 0 1 0 -1

0   x6   11/3 0 0 -1/3 0 0 1 -1/3

0   x4   11/3 0 0 -1/3   1   0 0 -22/3

z(XB) = 58   0 0 3 0 0 0 10

AND AND DOIG’S BRANCH AND BOUND METHOD   29

Page 30: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 30/84

(LP )3:

Consider

x1  ≥ 5   (3)

Putting

x1  =  1

22 x3 −  3

22 x4 + 9

2

into (3), multiplying −1 on the both sides of (3), and introducing the

Gomorian slack, we have

−   122 x3 +   322 x4 + x7  = − 12 .

AND AND DOIG’S BRANCH AND BOUND METHOD   30

Page 31: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 31/84

cj   7 9 0 0 0 0 0

x1   x2   x3   x4   x5   x6   x7

9   x2   7/2 0 1 7/22 1/22 0 0 0

7   x1   9/2 1 0 -1/22 3/22 0 0 0

0   x5   5/2 0 0 1/22 -3/22 1 0 0

0   x6   7/2 0 0 -7/22 -1/22 0 1 00   ← x7   -1/2 0 0   -1/22   3/22 0 0 1   −22 ×R5

z(XB) = 63   0 0 28/11 15/11 0 0 0

28/11−

1/22

AND AND DOIG’S BRANCH AND BOUND METHOD   31

Page 32: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 32/84

cj   7 9 0 0 0 0 0

x1   x2   x3   x4   x5   x6   x7

9   x2   7/2 0 1 7/22 1/22 0 0 0   R1 −  722  ×R5

7   x1   9/2 1 0 -1/22 3/22 0 0 0   R2 +   122  ×R5

0  x

5   5/2 0 0 1/22 -3/22 1 0 0  R

3 −

  1

22  ×R

5

0   x6   7/2 0 0 -7/22 -1/22 0 1 0   R4 +   722  ×R5

0   x3   11 0 0   1   -3 0 0 -22

z(XB) = 63   0 0 28/11 15/11 0 0 0   R6 −  28

11  ×R5

cj   7 9 0 0 0 0 0

x1   x2   x3   x4   x5   x6   x7

9   x2   0 0 1 0 1 0 0 7

7   x1   5 1 0 0 0 0 0 -1

0   x5   2 0 0 0 0 1 0 1

0   x6   7 0 0 0 -1 0 1 -7

0   x3   11 0 0   1   -3 0 0 -22

z(XB) = 35   0 0 0 9 0 0 56

AND AND DOIG’S BRANCH AND BOUND METHOD   32

Page 33: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 33/84

At this stage we check the objective function value of other LP’s.

In our case, there is only one node to be checked, i.e. node 2.

node 1

node 2 node 3

node 4 node 5

( LP )

( LP ) ( LP )

( LP ) ( LP )

1

2 3

4 5

x = 9/2, x = 7/2

z = 63 ( upper bound )

1 2

1

x = 4, x = 10/3

z = 58

x = 5, x = 0

z = 35 ( lower bound )2

21

3

1 2

x <= 3 x => 4

x <= 4 x => 51 1

2 2

Figure 5:   (LP )4 and (LP )5

AND AND DOIG’S BRANCH AND BOUND METHOD   33

Page 34: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 34/84

As the objective function value of (LP )2 is more than this lower

bound z3  = 35, this node is not fathomed and it is considered for

further branching.Had the value of (LP )2 been less than the lower bound z3  = 35, it

would have been a fathomed node and (x1  = 5, x2  = 0) would

have been taken as an optimal solution of the given ILP.

Branching from node 2, via x2 we get two LP’s, namely (LP )4 and

(LP )5.

•   Problem (LP )5 is infeasible.

•  An optimal solution of (LP )4 is  (x1  = 4, x2  = 3) with the objective

function value z4  = 55.

AND AND DOIG’S BRANCH AND BOUND METHOD   34

Page 35: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 35/84

(LP )4:

Consider

x2  ≤ 3.   (4)

Putting

x2  = − 13

x3 −  13

x7 + 103

into (4), and introducing the Gomorian slack, we have

1

3 x3 −

 1

3 x7 + x8  = −

1

3 .

AND AND DOIG’S BRANCH AND BOUND METHOD   35

Page 36: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 36/84

cj   7 9 0 0 0 0 0 0

x1   x2   x3   x4   x5   x6   x7   x8

9   x2   10/3 0 1 1/3 0 0 0 1/3 0

7   x1   4 1 0 0 0 0 0 1 0

0   x5   3 0 0 0 0 1 0 -1 0

0   x6   11/3 0 0 -1/3 0 0 1 -1/3 00   x4   11/3 0 0 -1/3 1 0 0 -22/3 0

0   ← x8   -1/3 0 0   -1/3   0 0 0 -1/3 1   −3 × R6

z(XB) = 58   0 0 3 0 0 0 10 0

3−1/3

  = −9   10−1/3

  = −30

cj   7 9 0 0 0 0 0 0

x1   x2   x3   x4   x5   x6   x7   x8

9   x2   10/3 0 1 1/3 0 0 0 1/3 0   R1 −  13 × R6

7   x1   4 1 0 0 0 0 0 1 0

0   x5   3 0 0 0 0 1 0 -1 0

0   x6   11/3 0 0 -1/3 0 0 1 -1/3 0   R4  +   13  × R6

0   x4   11/3 0 0 -1/3 1 0 0 -22/3 0   R5  +   13 × R6

0   x3   1 0 0   1   0 0 0 1 -3

z(XB) = 58   0 0 3 0 0 0 10 0   R7 − 3 × R6

AND AND DOIG’S BRANCH AND BOUND METHOD   36

Page 37: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 37/84

cj   7 9 0 0 0 0 0 0

x1   x2   x3   x4   x5   x6   x7   x8

9   x2   3 0 1 0 0 0 0 0 1

7   x1   4 1 0 0 0 0 0 1 0

0   x5   3 0 0 0 0 1 0 -1 0

0   x6   4 0 0 0 0 0 1 0 -10   x4   4 0 0 0 1 0 0 -7 -1

0   x3   1 0 0   1   0 0 0 1 -3

z(XB) = 55   0 0 3 0 0 0 7 9

AND AND DOIG’S BRANCH AND BOUND METHOD   37

Page 38: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 38/84

(LP )5:

Consider

x2  ≥ 4.   (5)

Putting

x2  = − 13

x3 −  13

x7 + 103

into (5), multiplying −1 on the both sides of (5), and introducing the

Gomorian slack, we have

13

x3 + 13

x7 + x8  = −53

.

AND AND DOIG’S BRANCH AND BOUND METHOD   38

Page 39: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 39/84

cj   7 9 0 0 0 0 0 0

x1   x2   x3   x4   x5   x6   x7   x8

9   x2   10/3 0 1 1/3 0 0 0 1/3 0

7   x1   4 1 0 0 0 0 0 1 0

0   x5   3 0 0 0 0 1 0 -1 0

0   x6   11/3 0 0 -1/3 0 0 1 -1/3 0

0   x4   11/3 0 0 -1/3 1 0 0 -22/3 0

0   ← x8   -5/3 0 0 1/3 0 0 0 1/3 1

z(XB) = 58   0 0 3 0 0 0 10 0

? ?

AND AND DOIG’S BRANCH AND BOUND METHOD   39

Page 40: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 40/84

Now all nodes have been fathomed and so we have to choose the

fathomed node with the maximum objective function value.

This gives (x∗1  = 4, x∗2  = 3) as an optimal solution of the given ILP and

the objective function value z∗ as z∗ = 55.

AND AND DOIG’S BRANCH AND BOUND METHOD   40

Page 41: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 41/84

See the above details in Fig 6.

node 1

node 2 node 3

node 4 node 5 infeasible

( LP )

( LP ) ( LP )

( LP ) ( LP )

1

2 3

4 5

x = 9/2, x = 7/2

z = 63 ( upper bound )

1 2

1

x = 4, x = 10/3

z = 58

x = 5, x = 0

z = 35 ( lower bound )

2

21

3

1 2

z = 55

x = 4, x = 31 2

4

x <= 3 x => 4

x <= 4 x => 51 1

2 2

Figure 6:

AND AND DOIG’S BRANCH AND BOUND METHOD   41

Page 42: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 42/84

7 x + x = 35

x

x

x = 7

- x + 3 x = 6

x = 72

21

1 2

1

1

2

(9/2, 7/2)

Figure 7:   (LP )1

AND AND DOIG’S BRANCH AND BOUND METHOD   42

Page 43: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 43/84

7 x + x = 35

x

x

x = 7

- x + 3 x = 6

x = 72

21

1 2

1

1

2

(9/2, 7/2)

x => 5x <= 4   11

(4, 10/3)

(5,0)

Figure 8:   (LP )2 and (LP )3

AND AND DOIG’S BRANCH AND BOUND METHOD   43

Page 44: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 44/84

7 x + x = 35

x

x

x = 7

- x + 3 x = 6

x = 72

21

1 2

1

1

2

(9/2, 7/2)

x => 5x <= 4   11

(4, 10/3)

(5,0)

x => 4

x <= 3

2

2(4, 3)

Figure 9:   (LP )4 and (LP )5

AND AND DOIG’S BRANCH AND BOUND METHOD   44

Page 45: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 45/84

Example 3   Use branch and bound method to solve the following integer

LPP

max   z = 3x1 + 4x2

subject to

7x1 + 16x2  ≤ 523x1 − 2x2  ≤ 9

x1, x2  ≥ 0

x1 and x2 integer.

AND AND DOIG’S BRANCH AND BOUND METHOD   45

Page 46: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 46/84

Solution

cj   :   3 4 0 0

CB   XB   x1   x2  ↓   x3   x4   θ

0   x3  ←   52 7   16   1 0   52

16  =   13

4

1

16 × R1

0   x4   9 3 -2 0 1

zj − cj   z(XB) = 0   -3 -4 0 0

cj   :   3 4 0 0

CB   XB   x1   x2  ↓   x3   x4   θ

4   x2   13/4 7/16   1   1/16 0   52

16  =   13

4

0   x4   9 3 -2 0 1   R2 + 2× R1

zj − cj   z(XB) = 0   -3 -4 0 0   R3 + 4× R1

AND AND DOIG’S BRANCH AND BOUND METHOD   46

Page 47: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 47/84

cj   :   3 4 0 0

CB   XB   x1  ↓   x2   x3   x4   θ

4   x2   13/4 7/16 1 1/16 0  13

/4

7/16   = 52/7

0   x4  ←   31/2   31/8   0 0 1   31/231/8   = 4   8

31 × R2

zj − cj   z(XB) = 13   -5/4 0 1/4 0

cj   :   3 4 0 0

CB   XB   x1  ↓   x2   x3   x4   θ

4   x2   13/4 7/16 1 1/16 0   R1 −  7

16 × R2

3   x1   4   1   0 1/31 8/31  31

/2

31/8   = 4

zj − cj   z(XB) = 13   -5/4 0 1/4 0   R3 +   5

4 × R2

AND AND DOIG’S BRANCH AND BOUND METHOD   47

Page 48: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 48/84

cj   :   3 4 0 0

CB   XB   x1   x2   x3   x4   θ

4   x2   3/2 0 1 3/62 -7/62

3   x1   4 1 0 1/31 8/31

zj − cj   z(XB) = 18   0 0 9/31 10/31

AND AND DOIG’S BRANCH AND BOUND METHOD   48

Page 49: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 49/84

node 1

node 2 node 3

( LP )( LP )

x <= 1 x => 2

2 3

( LP ) 1

x = 4, x = 3/2

z = 18 ( upper bound )1

1 2

2 2

Figure 10:   (LP )2 and  (LP )3

AND AND DOIG’S BRANCH AND BOUND METHOD   49

Page 50: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 50/84

(LP )2:

Consider

x2  ≤ 1   (6)

Putting

x2  = −   316

x3 +   762

x4 + 32

into (6) and introducing the Gomorian slack, we have

−  3

16

x3 +  7

62

x4 + x5  = −1

2

.

AND AND DOIG’S BRANCH AND BOUND METHOD   50

Page 51: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 51/84

cj   :   3 4 0 0 0CB   XB   x1   x2   x3   x4   x5

4   x2   3/2 0 1 3/62 -7/62 0

3   x1   4 1 0 1/31 8/31 0

0   ← x5   -1/2 0 0   -3/62   7/62 1   −16

3   × R3

zj  − cj   z(XB) = 18   0 0 9/31 10/31 0

9/31−3/62

AND AND DOIG’S BRANCH AND BOUND METHOD   51

Page 52: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 52/84

cj   :   3 4 0 0 0

CB   XB   x1   x2   x3   x4   x5

4   x2   3/2 0 1 3/62 -7/62 0   R1 −  3

62 × R3

3   x1   4 1 0 1/31 8/31 0   R2 −  1

31  × R3

0   x3   31/3 0 0   1   -7/3 -62/3

zj  − cj   z(XB) = 18   0 0 9/31 10/31 0   R4 −  9

31 × R3

cj   :   3 4 0 0 0

CB   XB   x1   x2   x3   x4   x5

4   x2   1 0 1 0 0 1

3   x1   11/3 1 0 0 1/3 2/30   x3   31/3 0 0   1   -7/3 -62/3

zj  − cj   z(XB) = 15   0 0 0 1 6

AND AND DOIG’S BRANCH AND BOUND METHOD   52

Page 53: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 53/84

(LP )3:

Consider

x2  ≥ 2   (7)

Putting

x2  = −  3

62 x3 +  7

62 x4 + 3

2

into (7), multiplying −1 on the both sides of (7), and introducing the

Gomorian slack, we have

3

62 x3 −

  7

62 x4 + x5  = −

1

2 .

AND AND DOIG’S BRANCH AND BOUND METHOD   53

Page 54: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 54/84

cj   :   3 4 0 0 0CB   XB   x1   x2   x3   x4   x5

4   x2   3/2 0 1 3/62 -7/62 0

3   x1   4 1 0 1/31 8/31 0

0   ← x5   -1/2 0 0 3/62   -7/62   1   −62

7   × R3

zj  − cj   z(XB) = 18   0 0 9/31 10/31 0

10/31−7/62

AND AND DOIG’S BRANCH AND BOUND METHOD   54

Page 55: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 55/84

cj   :   3 4 0 0 0

CB   XB   x1   x2   x3   x4   x5

4   x2   3/2 0 1 3/62 -7/62 0   R1 +   7

62 × R3

3   x1   4 1 0 1/31 8/31 0   R2 −  8

31  × R3

0   x4   31/7 0 0 -3/7   1   -62/7

zj  − cj   z(XB) = 18   0 0 9/31 10/31 0   R4 −  10

31 × R3

cj   :   3 4 0 0 0

CB   XB   x1   x2   x3   x4   x5

4   x2   2 0 1 0 0 -1

3   x1   20/7 1 0 1/7 0 16/70   x4   31/7 0 0 -3/7   1   -62/7

zj  − cj   z(XB) = 116/7   0 0 3/7 0 20/7

AND AND DOIG’S BRANCH AND BOUND METHOD   55

Page 56: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 56/84

node 1

node 2 node 3

node 5node 4

( LP )

( LP )

( LP )

( LP )

x <= 1 x => 2

x <= 3 x => 4

2 3

4 5

( LP ) 1

x = 4, x = 3/2

z = 18 ( upper bound )1

1

z = 15

x = 11/3. x = 1 x = 20/7, x = 2

z = 116/72 3

1 12

2

2

2 2

1 1

Figure 11:   (LP )4 and  (LP )5

AND AND DOIG’S BRANCH AND BOUND METHOD   56

Page 57: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 57/84

(LP )4:

Consider

x1  ≤ 3   (8)

Putting

x1  = −13

x4 −  23

x5 + 113

into (8), and introducing the Gomorian slack, we have

−1

3

x4 − 2

3

x5 + x6  = −2

3

.

AND AND DOIG’S BRANCH AND BOUND METHOD   57

Page 58: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 58/84

cj   :   3 4 0 0 0 0

CB   XB   x1   x2   x3   x4   x5   x6

4   x2   1 0 1 0 0 1 0

3   x1   11/3 1 0 0 1/3 2/3 0

0   x3   31/3 0 0 1 -7/3 -62/3 0

0   ← x6   -2/3 0 0 0   -1/3   -2/3 1   −3 × R4

zj  − cj   z(XB) = 15   0 0 0 1 6 0

1

−1/3

  = −3   6

−2/3

AND AND DOIG’S BRANCH AND BOUND METHOD   58

Page 59: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 59/84

cj   :  3 4 0 0 0 0

CB   XB   x1   x2   x3   x4   x5   x6

4   x2   1 0 1 0 0 1 0

3   x1   11/3 1 0 0 1/3 2/3 0   R2 −  1

3 × R4

0   x3   31/3 0 0 1 -7/3 -62/3 0   R3 +  7

3  × R4

0   x4   2 0 0 0   1   2 -3   −3 × R4

zj  − cj   z(XB) = 15   0 0 0 1 6 0   R5 − R4

cj   :   3 4 0 0 0 0

CB   XB   x1   x2   x3   x4   x5   x6

4   x2   1 0 1 0 0 1 0

3   x1   3 1 0 0 0 0 10   x3   15 0 0 1 0 -16 -7

0   x4   2 0 0 0   1   2 -3

zj  − cj   z(XB) = 13   0 0 0 0 4 3

AND AND DOIG’S BRANCH AND BOUND METHOD   59

Page 60: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 60/84

(LP )5:

Consider

x1  ≥ 4   (9)

Putting

x1  = −

1

3 x4 − 2

3 x5 + 11

3

into (9), multiplying −1 on the both sides of (9), and introducing the

Gomorian slack, we have

1

3 x4 +

 2

3 x5 + x6  = −

1

3 .

AND AND DOIG’S BRANCH AND BOUND METHOD   60

Page 61: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 61/84

cj   :   3 4 0 0 0 0

CB   XB   x1   x2   x3   x4   x5   x6

4   x2   1 0 1 0 0 1 0

3   x1   11/3 1 0 0 1/3 2/3 0

0   x3   31/3 0 0 1 -7/3 -62/3 0

0   ← x6   -1/3 0 0 0 1/3 2/3 1

zj  − cj   z(XB) = 15   0 0 0 1 6 0

? ?

AND AND DOIG’S BRANCH AND BOUND METHOD   61

Page 62: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 62/84

node 1

node 2 node 3

node 6 node 7node 5node 4

( LP ) ( LP )( LP )

( LP )

( LP )

( LP )

x <= 1 x => 2

x <= 2 x => 3x <= 3 x => 4

2 3

4 5 6 7

( LP ) 1

x = 4, x = 3/2

z = 18 ( upper bound )1

1

z = 15

x = 11/3. x = 1 x = 20/7, x = 2

z = 116/7

x = 3, x = 1

2 3

1 1

1

2

2

2

2

2 2

1 1 1 1

z = 13 ( lower bound )4

infeasible

Figure 12:   (LP )6 and  (LP )7

AND AND DOIG’S BRANCH AND BOUND METHOD   62

Page 63: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 63/84

(LP )6:

Consider

x1  ≤ 2   (10)

Putting

x1  = − 13

x3 −  177

  x5 + 207

into (10), and introducing the Gomorian slack, we have

−1

3

x3 − 17

7

  x5 + x6  = −6

7

.

AND AND DOIG’S BRANCH AND BOUND METHOD   63

Page 64: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 64/84

cj   :   3 4 0 0 0 0

CB   XB   x1   x2   x3   x4   x5   x6

4   x2   2 0 1 0 0 -1 0

3   x1   20/7 1 0 1/7 0 16/7 0

0   x4   31/7 0 0 -3/7 1 -62/3 0

0   ← x6   -6/7 0 0 -1/7 0   -16/7   1   −   716 × R4

zj  − cj   z(XB) = 116/7   0 0 3/7 0 20/7 0

3/7−1

/7

  = −3   20/7−16

/7

AND AND DOIG’S BRANCH AND BOUND METHOD   64

Page 65: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 65/84

cj

  :   3 4 0 0 0 0

CB   XB   x1   x2   x3   x4   x5   x6

4   x2   2 0 1 0 0 -1 0   R1 + ×R4

3   x1   20/7 1 0 1/7 0 16/7 0   R2 −  16

7  × R4

0   x4   31/7 0 0 -3/7 1 -62/3 0   R3 +  62

7   × R4

0   x5   3/8 0 0 1/16 0   1   -7/16

zj  − cj   z(XB) = 116/7   0 0 3/7 0 20/7 0   R5 −  20

7  × R4

cj   :   3 4 0 0 0 0

CB   XB   x1   x2   x3   x4   x5   x6

4   x2   19/8 0 1 1/16 0 0 -7/16

3   x1   2 1 0 0 0 0 10   x4   31/4 0 0 1/8 1 0 -31/8

0   x5   3/8 0 0 1/16 0   1   -7/16

zj  − cj   z(XB) = 31/2   0 0 1/84 0 0 5/4

AND AND DOIG’S BRANCH AND BOUND METHOD   65

Page 66: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 66/84

(LP )7:

Consider

x1  ≥ 3   (11)

Putting

x1  = −

1

3 x3 −

 17

7   x5 +

 20

7

into (11), multiplying −1 on the both sides of (11), and introducing the

Gomorian slack, we have

1

3 x3

 +

 17

7   x5

 + x6

 =−

1

7 .

AND AND DOIG’S BRANCH AND BOUND METHOD   66

Page 67: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 67/84

cj   :   3 4 0 0 0 0

CB   XB   x1   x2   x3   x4   x5   x6

4   x2   2 0 1 0 0 -1 0

3   x1   20/7 1 0 1/7 0 16/7 0

0   x4   31/7 0 0 -3/7 1 -62/3 0

0   ← x6   -1/7 0 0 1/3 0 16/7 1

zj  − cj   z(XB) = 116/7   0 0 3/7 0 20/7 0

? ?

AND AND DOIG’S BRANCH AND BOUND METHOD   67

Page 68: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 68/84

node 1

node 2 node 3

node 9node 8

node 6 node 7node 5node 4

( LP )

( LP ) ( LP )

( LP )( LP )

( LP )

( LP )

( LP )

x <= 1 x => 2

x <= 2 x => 3

x <= 2 x => 3

x <= 3 x => 4

2 3

4 5 6 7

8

( LP ) 1

9

x = 4, x = 3/2

z = 18 ( upper bound )1

1

z = 15

x = 11/3. x = 1 x = 20/7, x = 2

z = 116/7

z = 31/2

x = 2, x = 19/8

infeasiblex = 3, x = 1

6

2 3

1 1

1

1

2

2

2

2

2

2 2

1 1 1 1

2 2

z = 13 ( lower bound )4

infeasible

Figure 13:   (LP )8 and  (LP )9

AND AND DOIG’S BRANCH AND BOUND METHOD   68

Page 69: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 69/84

(LP )8:

Consider

x2  ≤ 2   (12)

Putting

x2  = −   116

x3 +   716

x6 + 198

into (12), and introducing the Gomorian slack, we have

−  1

16

x3 +  7

16

x6 + x7  = −3

8

.

AND AND DOIG’S BRANCH AND BOUND METHOD   69

Page 70: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 70/84

cj   :   3 4 0 0 0 0 0

CB   XB   x1   x2   x3   x4   x5   x6   x7

4   x2   19/8 0 1 1/16 0 0 -7/16 0

3   x1   2 1 0 0 0 0 1 0

0   x4   31/4 0 0 1/8 1 0 -31/8 0

0   x5

  3/8 0 0 1/16 0 1 -7/16 00   ← x7   -3/8 0 0 -1/16 0 0 7/16 1   −16 × R5

zj  − cj   z(XB) = 31/2   0 0 1/4 0 0 5/4 0

1/4−1/16

AND AND DOIG’S BRANCH AND BOUND METHOD   70

Page 71: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 71/84

cj   :   3 4 0 0 0 0 0

CB   XB   x1   x2   x3   x4   x5   x6   x7

4   x2   19/8 0 1 1/16 0 0 -7/16 0   R1 −  1

16 × R5

3   x1   2 1 0 0 0 0 1 0

0   x4   31/4 0 0 1/8 1 0 -31/8 0   R3 −  1

8 × R5

0   x5   3/8 0 0 1/16 0 1 -7/16 0   R4 −   116 × R5

0   ← x7   6 0 0 1 0 0 -7 -16

zj  − cj   z(XB) = 31/2   0 0 1/4 0 0 5/4 0   R6 −  1

4 × R5

AND AND DOIG’S BRANCH AND BOUND METHOD   71

Page 72: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 72/84

cj   :   3 4 0 0 0 0 0

CB   XB   x1   x2   x3   x4   x5   x6   x7

4   x2   2 0 1 0 0 0 0 1

3   x1   2 1 0 0 0 0 1 0

0   x4   7 0 0 0 1 0 -3 20   x5   0 0 0 0 0 1 0 1

0   x3   6 0 0 1 0 0 -7 -16

zj  − cj   z(XB) = 14   0 0 0 0 0 3 4

AND AND DOIG’S BRANCH AND BOUND METHOD   72

Page 73: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 73/84

(LP )9:

Consider

x2  ≥ 3   (13)

Putting

x2  = −

  1

16 x3 +

  7

16 x6 +

 19

8

into (13), multiplying −1 on the both sides of (13), and introducing the

Gomorian slack, we have

1

16x3 −

  7

16x6 + x7  = −

5

8.

AND AND DOIG’S BRANCH AND BOUND METHOD   73

Page 74: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 74/84

cj   :   3 4 0 0 0 0 0

CB   XB   x1   x2   x3   x4   x5   x6   x7

4   x2   19/8 0 1 1/16 0 0 -7/16 0

3   x1   2 1 0 0 0 0 1 0

0   x4   31/4 0 0 1/8 1 0 -31/8 0

0  x

5   3/8 0 0 1/16 0 1 -7/16 0

0   ← x7   -5/8 0 0 1/16 0 0 -7/16 1   − 16

7  × R5

zj  − cj   z(XB) = 31/2   0 0 1/4 0 0 5/4 0

5/4−7/16

AND AND DOIG’S BRANCH AND BOUND METHOD   74

Page 75: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 75/84

cj   :   3 4 0 0 0 0 0

CB   XB   x1   x2   x3   x4   x5   x6   x7

4   x2   19/8 0 1 1/16 0 0 -7/16 0   R1 +   7

16 × R5

3   x1   2 1 0 0 0 0 1 0   R1 − R5

0   x4   31/4 0 0 1/8 1 0 -31/8 0   R3 +   31

8  × R5

0   x5   3/8 0 0 1/16 0 1 -7/16 0   R4 +   716 × R5

0   ← x7   10/7 0 0 -1/7 0 0 1 -16/7

zj  − cj   z(XB) = 31/2   0 0 1/4 0 0 5/4 0   R6 −  5

4 × R5

AND AND DOIG’S BRANCH AND BOUND METHOD   75

Page 76: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 76/84

cj   :   3 4 0 0 0 0 0

CB   XB   x1   x2   x3   x4   x5   x6   x7

4   x2   3 0 1 0 0 0 0 -1

3   x1   4/7 1 0 1/7 0 0 0 16/7

0   x4

  93/7 0 0 -3/7 1 0 0 -62/70   x5   1 0 0 0 0 1 0 -1

0   x6   10/7 0 0 -1/7 0 0 1 -16/7

zj  − cj   z(XB) = 96/7   0 0 3/7 0 0 0 20/7

AND AND DOIG’S BRANCH AND BOUND METHOD   76

In Fig. 14, all the nodes have been fathomed.

Page 77: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 77/84

node 1

node 2 node 3

node 9node 8

node 6 node 7node 5node 4

( LP )

( LP ) ( LP )

( LP )( LP )

( LP )

( LP )

( LP )

x <= 1 x => 2

x <= 2 x => 3

x <= 2 x => 3

x <= 3 x => 4

2 3

4 5 6 7

8

( LP ) 1

9

x = 4, x = 3/2

z = 18 ( upper bound )1

1

z = 15

x = 11/3. x = 1 x = 20/7, x = 2

z = 116/7

z = 31/2

x = 2, x = 19/8

infeasiblex = 3, x = 1

z = 14

x = 2, x = 2 x = 4/7, x = 3

z = 96/78 9

6

2 3

1 1

1

1

2

2

2

2

2 2

2

2 2

1 1 1 1

2 2

1 1

z = 13 ( lower bound )4

infeasible

Figure 14:

AND AND DOIG’S BRANCH AND BOUND METHOD   77

Page 78: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 78/84

Therefore an optimal solution of the given ILP is (x∗1

 = 2, x∗2

 = 2) and the

optimal value is z∗ = 14.

AND AND DOIG’S BRANCH AND BOUND METHOD   78

Page 79: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 79/84

For example,

•   if we plot the feasible region of (LP )1, (LP )2 and  (LP )3

•   then we can visualize that the optimal solution of the ILP is either in

(LP )1 or  (LP )2, i.e. either in the branch x2  ≤ 1 or in the branch x2  ≥ 2.

Fig 16 illustrates this point.

AND AND DOIG’S BRANCH AND BOUND METHOD   79

x2

Page 80: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 80/84

3 x - 2 x = 921

7 x + 16 x = 52

x

1 2

1

(4, 3/2)

Figure 15:   (LP )1

AND AND DOIG’S BRANCH AND BOUND METHOD   80

x2

Page 81: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 81/84

3 x - 2 x = 921

7 x + 16 x = 52

x

1 2

1

(4, 3/2)

x => 2

x <= 1

2

2

(11/3. 1)

(20/7. 2)

Figure 16:   (LP )2 and  (LP )3

AND AND DOIG’S BRANCH AND BOUND METHOD   81

x2

Page 82: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 82/84

3 x - 2 x = 921

7 x + 16 x = 52

x

1 2

1

(4, 3/2)

x => 2

x <= 1

2

2

(11/3. 1)

(20/7. 2)

x <= 3   x => 411

(3, 1)

Figure 17:   (LP )4 and  (LP )5

AND AND DOIG’S BRANCH AND BOUND METHOD   82

x2

Page 83: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 83/84

3 x - 2 x = 921

7 x + 16 x = 52

x

1 2

1

(4, 3/2)

x => 2

x <= 1

2

2

(11/3. 1)

(20/7. 2)

x <= 21

  x => 31

(2, 19/8)

Figure 18:   (LP )6 and  (LP )7

AND AND DOIG’S BRANCH AND BOUND METHOD   83

x2

Page 84: 10.1 Lecture_2d

8/9/2019 10.1 Lecture_2d

http://slidepdf.com/reader/full/101-lecture2d 84/84

3 x - 2 x = 921

7 x + 16 x = 52

x

1 2

1

(4, 3/2)

(11/3. 1)

(20/7. 2)

(2, 19/8)

x => 3

x <= 2

2

2

 (4/7, 3)

(2, 2)

Figure 19:   (LP )8 and  (LP )9

AND AND DOIG’S BRANCH AND BOUND METHOD   84