1190948120898

Upload: mahendra-singh

Post on 02-Nov-2015

8 views

Category:

Documents


0 download

DESCRIPTION

1190948120898

TRANSCRIPT

  • EE3113_L1 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 1

    Prof. R. LudwigDepartment of Electrical and Computer Engineering

    Worcester Polytechnic InstituteWorcester, MA

    Copyright, 1998 R. Ludwig

  • EE3113_L1 2

    EE 3113: Lecture 1

    Importance of RF circuit design wireless communications (explosive growth of

    cell phones) global positioning systems (GPS) computer engineering (bus systems, CPU,

    peripherals exceeding 600 MHz)

    Why this course??? lumped circuit representation no longer applies!

  • EE3113_L1 3

    What do we mean by going from lumped to distributed theory?

    Example: INDUCTOR

    Low-frequency

    (lumped)

    LjRZ w+=

    High-frequency

    Z = ?

  • EE3113_L1 4

    Current and voltage vary spatially over the component size

    Upper MHz to GHz range

    -1-0.5

    00.5

    1x-1

    -0.5

    0

    0.5

    1

    y0

    2

    4

    6

    z

    -1-0.5

    00.5

    1x

    E (or V) and H (or I) fields

  • EE3113_L1 5

    Frequency spectrum RadioFrequency (RF)

    TV, wireless phones, GPS 300 MHz 3 GHz operational frequency 1 m 10 cm wavelength in air

    MicroWave (MW) RADAR, remote sensing 8 GHz 40 GHz operational frequency 3.75 cm 7.5 mm wavelength in air

  • EE3113_L1 6

    Design FocusCell phone transceiver circuit

    Typical frequencyrange:

    950 MHz

    1.9 GHz

  • EE3113_L1 7

    Implementation

    matching networks

    BJT/FET active devices

    biasing circuits

    printed circuit board

    mircostripline realization

    surface mount technology

  • EE3113_L2 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 2

    Prof. R. LudwigDepartment of Electrical and Computer Engineering

    Worcester Polytechnic InstituteWorcester, MA

    Copyright, 1998 R. Ludwig

  • EE3113_L2 2

    RF Behavior of Passive Components

    Conventional circuit analysis R is frequency independent Ideal inductor: Ideal capacitor:

    Evaluation Impedance chart

    LjXL w=

    CXC w1=

  • EE3113_L2 3

    Impedance Chart(impedance of C & L vs frequency)

    ZC=1/(2pfC)

    ZL=2pfL

  • EE3113_L2 4

    How does a wire behave at high frequency?

    Example: Resistorsp 2a

    lRDC =

    d2/

    aRR DC = d

    w2

    /a

    RL DC =

    mspd

    f

    1=

    High frequency results in skin-effect whereby current flow ispushed to the outside

  • EE3113_L2 5

    How exactly is the current distribution as a function offrequency?

    Low frequency showsuniform currentdistribution

    medium to highfrequency pushescurrent to the outside

    RF sees currentcompletely restrictedto surface

  • EE3113_L2 6

    Impedance Measurement ExampleCapacitor going through resonance

    CapacitorCharacteristics

  • EE3113_L2 7

    Equivalent Circuit Analysis

  • EE3113_L3 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGNLecture Notes for A-term 1999

    LECTURE 3Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01619copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L3 2

    Transmission Line Analysis

    Propagating electric field

    Phase velocity

    Traveling voltage wave

    )cos(0 kztEE XX -= w

    Time factor

    Space factor

    rp

    cfv

    eeml ===

    1

    kkzt

    EtzV X)sin(

    ),( 0-

    =w

  • EE3113_L3 3

    High frequency implies spatial voltage distribution

    Voltage has a time andspace behavior

    Space is neglected for lowfrequency applications

    For RF there can be a largespatial variation

  • EE3113_L3 4

    Generic way to measure spatial voltage variations

    For low frequency (1MHz)Kirchhoffs laws apply

    For high frequency (1GHz)Kirchhoffs laws do notapply anymore

  • EE3113_L3 5

    Kirchhoffs laws on a microscopic level

    Over a differential sectionwe can again use basiccircuit theory

    Model takes into accountline losses and dielectriclosses

    Ideal line involves only Land C

  • EE3113_L3 6

    Example of transmission line: Two-wire line

    Alternating electric fieldbetween conductors

    alternating magnetic fieldsurrounding conductors

    dielectric medium tendsto confine field insidematerial

  • EE3113_L3 7

    Example of transmission line: Coaxial cable

    Electric field iscompletely containedwithin both conductors

    Perfect shielding ofmagnetic field

    TEM modes up to acertain cut-off frequency

    E

    H

  • EE3113_L3 8

    Example of transmission line: Microstip line

    Cross-sectional view

    Low dielectric medium High dielectric medium

  • EE3113_L3 9

    Triple-layer transmission line

    Conductor is completely shielded between twoground planes

    Cross-sectional view

  • EE3113_L4 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 4

    Prof. R. LudwigDepartment of Electrical and Computer Engineering

    Worcester Polytechnic InstituteWorcester, MA 01609

    copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L4 2

    General Transmission Line Equations

    Detailed analysis of a differential section

    Note: Analysis applies to all types of transmission lines such ascoax cable, two-wire, microstrip, etc.

  • EE3113_L4 3

    Kirchhoffs laws on a microscopic level

    Over a differentialsection we can againuse basic circuit theory

    Model takes intoaccount line losses anddielectric losses

    Ideal line involvesonly L and C

  • EE3113_L4 4

    Advantages versus disadvantages ofelectric circuit representation

    Clear intuitivephysical picture

    yields a standardizedtwo-port networkrepresentation

    serves as buildingbocks to go frommicroscopic tomacroscopic forms

    Basically a one-dimensional representation(cannot take into accountinterferences)

    Material nonlinearities,hysteresis, and temperatureeffects are not accountedfor

  • EE3113_L4 5

    )()()(

    ))()(

    ( zILjRdz

    zdVz

    zVzzVLim w+=-=

    D-D+

    -

    Derivation of differential transmission line form

    )()()()( zzVzzILjRzV D++D+= wKVL :

    KCL :)()()()( zzIzzzVCjGzI D++D+D+= w

    )()()(

    zVCjGdz

    zdIw+=-

    CoupledDE

  • EE3113_L4 6

    Traveling Voltage and Current Waves

    0)()( 2

    2

    2

    =- zVkdz

    zVd

    where

    ))(( CjGLjRjkkk ir ww ++=+=

    kzkz eVeVzV +--+ +=)( kzkz eIeIzI +--+ +=)(

    0)()( 2

    2

    2

    =- zIkdz

    zId

    Left traveling wave

    Right traveling wavePhasor expressions

  • EE3113_L4 7

    General line impedance definition

    )()(

    )( kzkz eVeVLjR

    kzI +--+ -

    +=

    w

    -

    -

    +

    +

    -==++

    =IV

    IV

    CjGLjR

    Z)()(

    0 ww

    ?

    Characteristic line impedance

  • EE3113_L5 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 5

    Prof. R. LudwigDepartment of Electrical and Computer Engineering

    Worcester Polytechnic InstituteWorcester, MA

    copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L5 2

    Lossless Transmission Line Model

    Line representation

    )()(

    0 CjGLjR

    Zww

    ++

    =Characteristic impedance:

    Note: R, L, G, C are given per unit length and depend on geometry

    Lossless implies:R = G = 0!

  • EE3113_L5 3

    Transmission Line Parameters for different line types

    2-wire coax

    sdpa1

    )2

    (1aD

    ch-pm

    R

    L

    G

    C

    )11

    (2

    1ba

    +psd

    parallel-plate

    ))2/((1 aDch-ps

    ))2/((1 aDch-pe

    sdw2

    wd

    m

    dw

    s

    dw

    e

    )ln(2 a

    bpm

    )/ln(2

    abps

    )/ln(2

    abpe

  • EE3113_L5 4

    Microstrip line

    1/),4

    8ln(2

    / 000

  • EE3113_L5 5

    What is a voltage reflection coefficient?

    0

    00 ZZ

    ZZ

    L

    L

    +-

    =GReflection coefficientat the load location

    )(10 =G LZ

    )0(10 -=G LZ

  • EE3113_L5 6

    Standing Waves

    )()( djdj eeVdV bb -++ -=

    )2/cos()sin(2),( pwb += + tdVtdv

  • EE3113_L5 7

    Standing wave ratio

    ||1||1

    ||||

    ||||

    0

    0

    min

    max

    min

    max

    G-G+

    ===II

    VV

    SWR

    SWR is a measure of mismatch of theload to the line

    SWR=1 (matched) or SWR (total mismatch)

    match

  • EE3113_L6 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 6

    Prof. R. LudwigDepartment of Electrical and Computer Engineering

    Worcester Polytechnic InstituteWorcester, MA 01609

    copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L6 2

    Special Termination Conditions

    Lossless transmission line

    CL

    Z =0

    )tan()tan(

    )(0

    00 djZZ

    djZZZdZ

    L

    Lin b

    b++

    =

    Characteristic impedance

  • EE3113_L6 3

    Input impedance of short circuit transmission line

    )tan()( 0 djZdZin b=Impedance

    Voltage:

    )sin(2)( djVdV b+=

    Current:

    )cos(2

    )(0

    dZV

    dI b+

    =

  • EE3113_L6 4

    Input impedance of open circuit transmission line

    Voltage:

    Current:

    Impedance

    )cos(2)( dVdV b+=

    )sin(2

    )(0

    dZjV

    dI b+

    =

    )cot()( 0 djZdZin b-=

  • EE3113_L6 5

    Quarter-wave transmission line

    LL

    Lin Z

    ZjZZjZZ

    ZZ2

    0

    0

    00 )4/tan(

    )4/tan()4/( =

    ++

    =blbl

    l

    Quarter-wave transformer model:

    given input and output impedances

    Predict lineimpedance

    inLZZZ =0

  • EE3113_L6 6

    What should you know? Input impedance: Page 80, equation (2.71) Example 2.6 on page 82 Example 2.7 on page 84 Example 2.8 on page 87

    Matching works only forparticular frequencies

    500 MHz 1.5 GHz

  • EE3113_L7 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 7

    Prof. R. LudwigDepartment of Electrical and Computer Engineering

    Worcester Polytechnic InstituteWorcester, MA 01609

    copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L7 2

    Sourced and Loaded Transmission Lines Lossless transmission line with source

    )()1(Gin

    inGininin ZZ

    ZVVV

    +=G+= +

    Voltage at the beginning of the transmission line iscomposed of an incident and reflected component!

    0

    0

    ZZZZ

    G

    G

    +-

    =0

    0

    ZZZZ

    L

    L

    +-

    =

  • EE3113_L7 3

    Power considerations

    }Re{21 *

    ininin IVP =

    )1( ininin VV G+=+ )1(

    0in

    inin Z

    VI G-=

    +

    )||1(||

    21 2

    0

    2

    inin

    in ZV

    P G-=+

    )||1(|1|

    |1|||81 2

    2

    2

    0

    2

    ininS

    SGin Z

    VP G-

    GG-G-

    =

  • EE3113_L7 4

    Two special cases:

    Load and sourcematched line 00 =G=G S

    0

    2||81

    ZV

    P Gin =

    Mismatch at source,but match at load 00 =G

    2

    0

    2

    |1|||

    81

    SG

    in ZV

    P G-=

    How to measure power?mWWP

    dBmP1

    ][log10][ =

  • EE3113_L7 5

    Return and insertion losses

    Return loss: ||log20||log10)log(10 2 inini

    r

    PP

    RL G-=G-=-= [dB]

    Insertion loss: )||1log(10)log(10)log(10 2ini

    ri

    i

    t

    PPP

    PP

    IL G--=-

    -=-= [dB]

    No reflection Full reflection

    0

    dB10 dB

    1RL

    SWR

  • EE3113_L8 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 8

    Prof. R. LudwigDepartment of Electrical and Computer Engineering

    Worcester Polytechnic InstituteWorcester, MA 01609

    copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L8 2

    From Reflection Coefficient to LoadImpedance (Smith Chart)

    Reflection coefficient in phasor form

    Ljir

    L

    L ejZZZZ q|| 000

    0

    00 G=G+G=+

    -=G

    The load reflectioncoefficient is identified inthe complex domain

    0G

  • EE3113_L8 3

    Normalized impedance

    ir

    irinin j

    jdd

    jxrzZdZG-G-G+G+

    =G-G+

    =+==11

    )(1)(1

    /)( 0

    irdjj jeed L G+G=G=G - bq 20 ||)(

    22

    22

    )1(1

    ir

    irrG+G-

    G-G-=

    22)1(2

    ir

    ixG+G-

    G=

    Real part of normalizedimpedance

    Imaginary part ofnormalized impedance

  • EE3113_L8 4

    Inversion of complex reflection coefficient(constant normalized resistance)

    222 )1

    1()

    1(

    +=G+

    +-G

    rrr

    ir

  • EE3113_L8 5

    Inversion of complex reflection coefficient(constant normalized reactance)

    222 )1

    ()1

    ()1(xxir

    =-G+-G

  • EE3113_L8 6

    Combined display: Smith Chart

  • EE3113_L9 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGNLecture Notes for A-term 1999

    LECTURE 9Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L9 2

    Impedance Transformation(Smith Chart)

    Reflection coefficient in phasor form

    Ljir

    L

    L ejZZZZ q|| 000

    0

    00 G=G+G=+

    -=G

    0G

    ir

    irinin j

    jdd

    jxrzZdZG-G-G+G+

    =G-G+

    =+==11

    )(1)(1

    /)( 0

  • EE3113_L9 3

    Generic Smith Chart computation

    Normalize load impedance find reflection coefficient rotate reflection coefficient record normalized input impedance de-normalize input impedance

    LL zZ

    0GLz)(0 dGG

    )(dzin)()( dZdz inin

  • EE3113_L9 4

    Graphical display

  • EE3113_L9 5

    How to create ideal capacitors and inductors with atransmission line?

    Start oftransformation

    Capacitivedomain

    Inductivedomain

  • EE3113_L9 6

    Start oftransformation

  • EE3113_L10 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 10Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L10 2

    Admittance Transformation(Smith Chart)

    impedance representation in Smith Chart

    0G

    )(1)(1

    dd

    jxrzin G-G+

    =+=

    admittance representation in Smith Chart

    )(1)(1

    )(1)(11

    0 dede

    dd

    zYY

    y jj

    in

    inin G-

    G+

    G+G-

    === --

    p

    p

    180 degreephase shift

  • EE3113_L10 3

    Transformation21

    21

    11 jyjz inin -=+=

  • EE3113_L10 4

    Alternative: re-interpretation

    Instead of rotating the reflection coefficient about180 degree, we keep the location fixed and rotate theentire Smith Chart by 180 degree.

  • EE3113_L10 5

    Re-interpretation leads to ZY-Smith Chart

    The Smith Chart inits original form iskept for impedancedisplay,

    but a second SmithChart is rotated by180 degree foradmittance display.

  • EE3113_L11 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGNLecture Notes for A-term 1999

    LECTURE 11Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L11 2

    Parallel Connection of R and L Elements(Smith Chart)

    parallel connection of R and L elements

    0

    1)(

    LYjgy

    LLin w

    w -=

  • EE3113_L11 3

    Parallel connection of R and C elements

    CjZgy LLin ww 0)( +=

  • EE3113_L11 4

    Series connection of R and L elements

    0

    )(Z

    Ljrz LLinw

    w +=

  • EE3113_L11 5

    Series connection of R and C elements

    0

    1)(

    CZjrz

    LLin w

    w -=

  • EE3113_L11 6

    Practical case: BJT connected viaa T-network

  • EE3113_L12 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 12Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L12 2

    Single and Multi-Port Networks

    basic current and voltage definitions definitions

  • EE3113_L12 3

    Impedance and admittance networks

    }]{[}{ IZV = }]{[}{ VYI =

    }]{][[}{ IYZV =

    ][][ 1 ZY =-

  • EE3113_L12 4

    Example Z-representation of Pi-network

    +

    +++

    =)(

    )(1][

    PBPAPCPCPA

    PCPAPCPBPA

    PCPBPA ZZZZZ

    ZZZZZ

    ZZZZ

    )(0| mkim

    nnm ki

    vz ==

  • EE3113_L12 5

    Additional networks

    -

    =

    2

    2

    1

    1

    i

    v

    DC

    BA

    i

    v Chain or ABCD network

    (often used for cascading)

    =

    2

    1

    2221

    1211

    2

    1

    v

    i

    hh

    hh

    i

    v Hybrid or h-network

    (often used for active devices)

    Typical exampleof h-network(small signal, lowfrequency model)

  • EE3113_L13 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 13Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L13 2

    Interconnecting Networks

    Certain networks are more advantageous tointerconnect.

    Example: series connection

    ]"[]'[][ ZZZ +=

  • EE3113_L13 3

    Hybrid representation

    ]"[]'[][ hhh +=

    Typical example

  • EE3113_L13 4

    ABCD parameter representation

    Very useful when cascading networks

    -

    =

    2

    2

    1

    1

    "

    "

    ""

    ""

    ''

    ''

    i

    v

    DC

    BA

    DC

    BA

    i

    v

  • EE3113_L13 5

    ABCD network is very useful for transmission linerepresentations

    =

    )cos(

    )sin()sin()cos(

    0

    0

    lZ

    lj

    ljZl

    DC

    BAb

    bbb

    Example:

  • EE3113_L14 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 14Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L14 2

    Scattering parameters There is a need to establish well-defined

    termination conditions in order to find thenetwork descriptions for Z, Y , h, andABCD networks

    Open and short voltage and currentconditions are difficult to enforce

    RF implies forward and backward travelingwaves which can form standing wavesdestroying the elements

  • EE3113_L14 3

    Solution: S-parameters

    Input-output behavior of network is definedin terms of normalized power waves

    Ratio of the power waves are recorded interms of so-called scattering parameters

    S-parameters are measured based onproperly terminated transmission lines (andnot open/short circuit conditions)

  • EE3113_L14 4

    Basic configuration

    11

    | 01

    111 2 portatwavepowerincident

    portatwavepowerreflectedab

    S a == =

    12

    | 01

    221 2 portatwavepowerincident

    portatwavepowerdtransmitteab

    S a == =

    22

    | 02

    222 1 portatwavepowerincident

    portatwavepowerreflectedab

    S a == =

    21

    | 02

    11 portatwavepowerincident

    portatwavepowerdtransmitteab

    S a == =

  • EE3113_L14 5

    Set-up for measuring S-parameters

    Properly terminated output

    Properly terminated input side

    Load impedance =line impedance

    input impedance =line impedance

  • EE3113_L15 1

    EE 3113INTRODUCTION TO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 15Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L15 2

    Scattering parameters There is a need to establish well-defined

    termination conditions in order to find thenetwork descriptions for Z, Y , h, andABCD networks

    Open and short voltage and currentconditions are difficult to enforce

    RF implies forward and backward travelingwaves which can form standing wavesdestroying the elements

  • EE3113_L15 3

    Solution: S-parameters

    Input-output behavior of network is definedin terms of normalized power waves

    Ratio of the power waves are recorded interms of so-called scattering parameters

    S-parameters are measured based onproperly terminated transmission lines (andnot open/short circuit conditions)

  • EE3113_L15 4

    Measurements of ScatteringParameters

    01

    111 2

    | == aab

    S

    01

    221 2

    | == aab

    S

    02

    222 1

    | == aab

    S

    02

    112 1

    | == aab

    S

    Require proper terminationon port 2

    Require proper terminationon port 1

  • EE3113_L15 5

    Arrangement for measuring S-parameters

    Properly terminated port 2 in order to makeS11 and S21 measurements

    Properly terminated port 1 in order to makeS22 and S12 measurements

    Load impedance =line impedance

    input impedance =line impedance

  • EE3113_L15 6

    Example: S-parameters of T-network

    Port 1 measurements Port 2 measurements

  • EE3113_L16 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 16Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L16 2

    Working with S-parameters For network computations it is easier to

    convert from the S-matrix representation tothe chain scattering matrix notation

    =

    2

    1

    2221

    1211

    2

    1

    a

    a

    SS

    SS

    b

    b

    =

    2

    2

    2221

    1211

    1

    1

    a

    b

    TT

    TT

    b

    a

    .,,1 2111212111 etcSSTST ==

  • EE3113_L16 3

    Advantage: cascading just like in the ABCDform

    =

    B

    B

    BB

    BB

    AA

    AA

    A

    A

    a

    b

    TT

    TT

    TT

    TT

    b

    a

    2

    2

    2221

    1211

    2221

    1211

    1

    1

  • EE3113_L16 4

    Signal flow chart computations

    Complicated networks can be efficiently analyzed in amanner identical to signals and systems and control.

    in general

  • EE3113_L16 5

    Arrangement for flow-chart analysis

    GG

    S VZZ

    Zb

    0

    0

    +=

  • EE3113_L16 6

    Analysis of most common circuit

    Sba1

    Determination ofthe ratio

  • EE3113_L16 7

    Important issue: what happens to the S11 parameter ifport 2 is not properly terminated?

    LL

    in SSS

    Sab

    GG-

    +==G22

    211211

    1

    1

    1

    Note: Only GL = 0 ensures that the S11 can be measured!

  • EE3113_L17 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 17Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L17 2

    Semiconductor fundamentals Basic semiconductor lattice structure

    intrinsic, n and p-type semiconductors

  • EE3113_L17 3

    Space charge formation across the pn junction

    Behavior of junction due to an applied voltage

  • EE3113_L17 4

    Voltage-Current response of conventional diode

    V-I current behavior

    II =

    )1( /0 -= TAVVeII

  • EE3113_L17 5

    Key terms

    Concentrations (nn, np, pp, pn) Band model, Fermi energy Barrier voltage Space charge, junction capacitance reverse and forward biasing V/I characteristics

  • EE3113_L18 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 18Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA

    Copyright, 1998 R. Ludwig

  • EE3113_L18 2

    RF diodes Key equation: Schottky diode equation

    diode analysis involves typically threemodels: DC model small signal ac model small signal RF model

    )1(0 -= TA

    nVV

    eII

  • EE3113_L18 3

    Small signal ac model

    Dynamic resistance (junction resistance)

    dQ

    dQA

    iII

    vVV

    +=

    +=

    0IInV

    RQ

    Tj +

    =

    Note: dynamic resistance depends on biasand is strongly temperature dependent

  • EE3113_L18 4

    Small signal RF model

    Schottky diode metal-n semiconductor majority carrier only

    +

    +

    +

    Applications: mixers, detectors, rectifiers

    + -

  • EE3113_L18 5

    PIN diode

    P+ N+I

    Intrinsic (low doped) n, p, orpn layer

    Major property: Variable resistance behavior

    Forward bias:

    Isolation state

    Zero bias:

    Insertion loss state

    Applications: attenuating, switching, modulating, limiting,and phase shifting.

  • EE3113_L18 6

    Electric behavior of PIN diode

    Forward bias (low resistance)Reverse bias (capacitance)

    Circuitapplication

  • EE3113_L19 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 19Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L19 2

    RF Transistors BJT: low noise, linear power amplification,

    power applications (bipolar operation)

    GaAs FET: very low noise, low power (monopolar operation)

    HEMT (High electron mobility transistor): very high frequency (f > 20 GHz) (electron gas)

  • EE3113_L19 3

    Major issue when dealing with RF transistors: NOISE shot noise in emitter-base shot noise in collector system thermal noise in base resistance

    How to reduce noise minimize current flow across pn-junction minimize resistance

    Solution Finger structure of base, emitter configuration

  • EE3113_L19 4

    Finger structure of BJT

    Cross-sectional view

    Top-down view

    (see pp. 325 - 342)

  • EE3113_L19 5

    Functionality of BJT

  • EE3113_L19 6

    Structure of MESFET

    (see pp. 344 - 355)

    Functionality of MESFET

  • EE3113_L19 7

    Modeling efforts for BJT Non-linear models

    Ebers-Moll Gummel-Poon

    Low frequency h-parameter model

    High frequency modified hybrid model with additional Cbeand

    Cbecapacitances Miller effect is used to convert Cbc into input

    capacitance

  • EE3113_L19 8

    Non-linear BJT model

    Dynamic Ebers-Moll chip model

    RBLB C

    E

    Cbe

    Ebers-Moll Model

    RCL

    REL

    Cce

    Cbc

    LBL LCL

    LEL

    RF model with parasitic effects

    See notes, pp. 374 - 397

  • EE3113_L19 9

    Small-signal BJT model

    Hybrid-PI Ebers-Moll model (p. 384)

    RF-model (p. 387)

    Decoupled RF-model (Miller effect)

  • EE3113_L19 10

    Performance analysis

    Hybrid Pi-model (see p. 392)

  • EE3113_L19 11

    S-parameter modeling of BJT

    Hybrid model can be converted into S-parameters via input/output impedance and voltage relations

    S-parameters can also be directly measured for certain biasing and operating frequency condition (values are provided by manufacturer)

  • EE3113_L19 12

    How to measure S-parameters?

    Vector voltmeter

    Dual directional coupler

  • EE3113_L19 13

    Alternative: Network analyzer with S-parameter test set

  • EE3113_L20 1

    EE 3113INTRODUCTION TO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 20Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L20 2

    Matching Networks

    MNsare critical for at least two critical reasons maximize power transfer: minimize

    Primary goal of a MN is to achieve

    0=Gin

    )||1( 2inirit PPPP G-=-=

    ||1||1

    in

    inSWRG-G+

    =

  • EE3113_L20 3

    MN strategy

    Pick an appropriate two-element MN for which matching is possible (based on a given load impedance or S-parameter)

    find the L, C values from the ZY Smith Chart

    convert discrete values into equivalent microstriplines

  • EE3113_L20 4

    Region of matching for shunt L, series C matching network

  • EE3113_L20 5

    Region of matching for series C shunt L matching network

  • EE3113_L20 6

    Region of matching for series L shunt C matching network

  • EE3113_L20 7

    Region of matching for shunt C and series L matching network

  • EE3113_L21 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 21Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L21 2

    There are two strategies

    A) Source impedance -> conjugate complex load impedance

    B) Load impedance -> conjugate complex source impedance

  • EE3113_L21 3

    A) General two-element approach

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.01.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.0

    2.00.2

    0.2

    0.2

    0.5

    0.5

    0.5

    1.0

    1.0

    1.0

    2.0

    2.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.0

    2.0

    2.0

    2.0

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.01.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.0

    2.0

    0010

    -10

    20-20

    30-30

    40-40

    50

    -50

    60

    -60

    70

    -70

    80

    -80

    90

    -90

    100

    -100

    110

    -110

    120

    -120

    130

    -130

    140

    -140

    150

    -150

    160

    -160

    170

    -170

    180

    0.

    01

    0.01

    0.02

    0.02

    0.03

    0.03

    0.04

    0.04

    0.05

    0.05

    0.06

    0.06

    0.07

    0.07

    0.08

    0.08

    0.09

    0.09

    0.1

    0.1

    0.11

    0.11

    0.12

    0.12

    0.13

    0.13

    0.14

    0.14

    0.15

    0.15

    0.16

    0.16

    0.17

    0.17

    0.18

    0.18

    0.19

    0.19

    0.2

    0.20.21

    0.210.22

    0.220.23

    0.23

    0.24

    0.24

    0.25

    0.25

    0.26

    0.26

    0.27

    0.27

    0.28

    0.28

    0.29

    0.29

    0.3

    0.3

    0.31

    0.31

    0.32

    0.32

    0.33

    0.33

    0.34

    0.34

    0.35

    0.35

    0.36

    0.36

    0.37

    0.37

    0.38

    0.38

    0.39

    0.39

    0.4

    0.4

    0.41

    0.41

    0.42

    0.42

    0.43

    0.43

    0.44

    0.44

    0.45

    0.45

    0.46

    0.46

    0.47

    0.47

    0.48

    0.48

    0.49

    0.49

    0.0

    0.0

    zS

    zL*

    A D

    B C

    Source impedance transformation to conj. comp. load

  • EE3113_L21 4

    B) Load impedance to conjugate complex source impedance ( )W== 50*SS ZZ

    ZLZS

    ZLZSZLZS

    ZLZS

    (c)

    (b)

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.0

    1.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.0

    2.0

    0.2

    0.2

    0.2

    0.5

    0.5

    0.5

    1.0

    1.0

    1.0

    2.0

    2.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.0

    2.0

    2.0

    2.0

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.0

    1.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.0

    2.0

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.01.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.02.0

    0.2

    0.2

    0.2

    0.5

    0.5

    0.5

    1.0

    1.0

    1.0

    2.0

    2.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.0

    2.0

    2.0

    2.0

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.01.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.02.0

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.0

    1.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.0

    2.0

    0.2

    0.2

    0.2

    0.5

    0.5

    0.5

    1.0

    1.0

    1.0

    2.0

    2.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.0

    2.0

    2.0

    2.0

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.0

    1.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.0

    2.0

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.0

    1.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.0

    2.0

    0.2

    0.2

    0.2

    0.5

    0.5

    0.5

    1.0

    1.0

    1.0

    2.0

    2.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.0

    2.0

    2.0

    2.0

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.0

    1.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.0

    2.0

    (a)

    (d)

  • EE3113_L21 5

    The art of designing MNs

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.01.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.02.0

    0.2

    0.2

    0.2

    0.5

    0.5

    0.5

    1.0

    1.0

    1.0

    2.0

    2.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.0

    2.0

    2.0

    2.0

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.01.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.02.0

    zS

    zL

    A

    B

    VS

    RS=50W

    RL

    CL

    L nH=10

    C pF=2.6Vout

    VS

    RS=50W

    RL

    CLL nH=9.75

    C pF=0.6

    Vout

    Frequency , GHzf

    Inpu

    t ref

    lect

    ion

    coef

    fici

    ent |

    |G Circuit in

    Figure 8-8(b)

    Circuit inFigure 8-8(c)

    (b)

    (c)

    Frequency , GHzf

    Tran

    sfer

    func

    tion

    , dB

    H

    Circuit inFigure 8-8(b)

    Circuit inFigure 8-8(c)

    2.16.1 jzL +=

    2.16.1 jzL +=

    f = 1GHz

    Z0= 50 Ohm

  • EE3113_L21 6

    More complicated networks

    Three-element Pi and T networks permit the matching of almost any load conditions

    Added element has the advantage of more flexibility in the design process (fine tuning)

    Provides quality factor design (see Ex. 8.4)

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.01.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.0

    2.0

    0.2

    0.2

    0.2

    0.5

    0.5

    0.5

    1.0

    1.0

    1.0

    2.0

    2.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.0

    2.0

    2.0

    2.0

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.01.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.0

    2.0

    Qn=2

    zL

    B

    A

    zin Qn=2

  • EE3113_L21 7

    MN realizations in microstripline

    TL1TL2TL3

    C1C2 ZL

    Zin

    Distributed microstip lines and lumped capacitors

    less susceptible to parasitics

    easy to tune

    efficient PCB implementation

    small size for high frequency

  • EE3113_L21 8

    Microstip line procedure

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.01.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.0

    2.0

    0.2

    0.2

    0.2

    0.5

    0.5

    0.5

    1.0

    1.0

    1.0

    2.0

    2.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.0

    2.0

    2.0

    2.0

    0.2

    0.2

    0.2

    0.50.5

    0.5

    1.01.0

    1.0

    2.02.0

    2.0

    5.0

    5.0

    5.0

    0.5

    0.5

    0.5

    0.5

    2.02.0

    2.0

    2.0

    0010

    -10

    20-20

    30-30

    40-40

    50

    -50

    60

    -60

    70

    -70

    80

    -80

    90

    -90

    100

    -100

    110

    -110

    120

    -120

    130

    -130

    140

    -140

    150

    -150

    160

    -160

    170

    -170

    180

    0.

    01

    0.01

    0.02

    0.02

    0.03

    0.03

    0.04

    0.04

    0.05

    0.05

    0.06

    0.06

    0.07

    0.07

    0.08

    0.08

    0.09

    0.09

    0.1

    0.1

    0.11

    0.11

    0.12

    0.12

    0.13

    0.13

    0.14

    0.14

    0.15

    0.15

    0.16

    0.16

    0.17

    0.17

    0.18

    0.18

    0.190.19

    0.2

    0.20.21

    0.210.22

    0.220.23

    0.23

    0.24

    0.24

    0.2

    5

    0.2

    5

    0. 26

    0.26

    0.27

    0.27

    0.28

    0.28

    0.29

    0.29

    0.3

    0.3

    0.31

    0.31

    0.32

    0.32

    0.33

    0.33

    0.34

    0.34

    0.35

    0.35

    0.36

    0.36

    0.37

    0.37

    0.38

    0.38

    0.39

    0.39

    0.4

    0.4

    0.41

    0.41

    0.42

    0.42

    0.43

    0.43

    0.44

    0.44

    0.45

    0.45

    0.46

    0.46

    0.47

    0.47

    0.48

    0.48

    0.49

    0.49

    0.0

    0.0

    zin

    zL

    A

    B

    l 1=0.0

    55l

    l2=0.26l

    l1=0.055l

    C1=4.37pF ZL

    Zin

    l2=0.26l

    W+= )1030( jZL W+= )8060( jZin

  • EE3113_L22 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 22Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L22 2

    Microstripline Matching Networks

    Most commonly used in RF circuits Can be used up to approximately 20 GHz (for

    TEM modes) Microstrip lines require typically 6 parameters

    dielectric constant eer PCB board height h, strip width w, thickness t resistivity rr and loss tangent d

  • EE3113_L22 3

    Key parameter designations

    er , d

    wt

    h

    r

    ???0 =++

    =CjGLjR

    ZwwDont use:

  • EE3113_L22 4

    Please keep in mind, there are two issues A) phase velocity and B) characteristic impedance:

    effrp

    ccv

    ee=

    1/)41

    8ln(60

    00 += hwhw

    wh

    ZZeffe

    1/)444.1/ln(667.0393.1/

    /120600 +++

    = hwhwhw

    Z eff

    eff

    ep

    e

    Numerical evaluation (Manuscript, page 70):

    Z0(er)=F1(w/h) and eeff(er)=F2(w/h)

  • EE3113_L22 5

    Microstriplines have two sources of losses

    zcdeZ

    VzP )(2

    0

    2||21

    )( aa +-+

    + =

    Dielectric losses ad (which are typically small)

    and

    Conduction losses ac (which can be significant)

    Depending on frequency, one may have to deal with radiation losses as well!

  • EE3113_L22 6

    Classes of amplifier operationIC

    VBECut-off region

    Quiescentpoint

    V*

    Linear regionIdeal transferfunction

    Input waveform

    Output waveform

    IC

    VBE

    Quiescentpoint

    Q0=180o

    IC

    VBE

    Quiescentpoint

    IC

    VBE

    Quiescentpoint

    Class AClass B

    Class AB Class C

  • EE3113_L22 7

    Efficiency of an amplifier

    %100S

    RF

    PP

    PowerSourcePowerRF

    ==h

    ILI0

    0

    Q0

    Qp 2p 3p

    Current through load

    ISIQ+I0

    0Q0

    Qp 2p 3p

    IQ

    Q0/2

    Current from the power supply

  • EE3113_L22 8

    )]2/sin(2)2/cos([2sin

    000

    00

    Q-QQQ-Q

    -=h

    Conduction angle, Qo

    Eff

    icie

    ncy

    , %h h=78.5%

    Q=180o

    Class B

    Class A

    Class AB

    Class C

  • EE3113_L23 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 23Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L23 2

    Biasing networks Biasing networks are needed to set appropriate

    operating conditions for active devicesThere are two types: Passive biasing (or self-biasing)

    resistive networks drawback: poor temperature stability

    Active biasing additional active components (thermally coupled) drawback: complexity, added power consumption

  • EE3113_L23 3

    Passive biasingVCC

    R1

    RFCR2

    IBI1

    RFOUT

    RFIN

    IC

    RFC

    CB

    CB

    Simple two element biasing

    blocking capacitors CBand RFCs to isolate RF path

    Very sensitive to collector current variations

  • EE3113_L23 4

    Passive biasingVCC

    R1

    RFCR2

    IBRFOUT

    RFIN

    IC

    RFCR3

    R4

    IX

    VX

    CB

    CB

    Voltage divider to stabilize VBE

    Freedom to choose suitable voltage and current settings (Vx, Ix)

    Higher component count, more noise susceptibility

    IB~10 IX

  • EE3113_L23 5

    Active biasingVCC

    RFCRC1

    RFOUT

    RFIN

    RFC

    VC1Q2

    Q1

    I1

    IB1

    IB1

    IC2

    RB1 RB2

    RE1

    RC2

    IC1

    CB

    CB

    Base current of RF BJT (Q2) is provided by low-frequency BJT Q1

    Excellent temperature stability (shared heat sink)

    high component count, more complex layout

  • EE3113_L23 6

    Active biasing in common base

    VCC

    RFC

    RC1

    RFOUT

    RFINRFC

    VC1Q2

    Q1

    I1

    IB1

    IB1

    IC2

    RB1 RB2

    RE1

    RC2

    IC1

    CB

    CB

    RFC

    VCC

    RFC

    RC1

    RFCQ2

    Q1

    RB1 RB2

    RE1

    RC2

    CB

    CB

    RFC

    VCC

    RFC

    RC1

    RFOUT

    RFINRFCQ2

    Q1

    RB1 RB2

    RE1

    RC2

    CB

    CB

    RFC

    DC path

    RF path

  • EE3113_L23 7

    FET biasingVDVG

    CB

    RFC

    CB

    RFC

    RFOUTRFIN

    VD

    VS

    CB

    CB

    RFC

    RFOUTRFIN

    RFCRFC

    VD

    RSCB

    CB

    RFC

    RFOUTRFIN

    RFC

    Bi-polar power supply

    Uni-polar power supply

    VG0

  • EE3113_L24 1

    EE 3113INTRODUCTION TO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 24Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L24 2

    RF Amplifier Objective:Design a complete class A,

    single-stage RF amplifier operated at 1 GHz which includes biasing, matching networks, and RF/DC isolation.

    MN1 MN2BJTRFin RFout

    biasing

  • EE3113_L24 3

    Strategy Design DC biasing conditions Select S-parameters for given bias and

    operating frequency Build input and output matching networks

    for desired frequency response include RF/DC isolation simulate amplifier performance on the

    computer (OptoteksMMICAD or HPsLibra package)

  • EE3113_L24 4

    Overall approach

    PA RFsource

    DC bias

    InputMatching Network (IMN)

    OutputMatching Network (IMN)

    LoadPL

    GS GL

    Gin Gout

    PA PL

    GS GL

    Gin Gout

    [ ]SZS

    VSZL

    b1` a1 b2b1` a2`

    b2 a2a1` b2`

    ZS

    VSZL

    b1`b1`

    a1`

    GS

    Gin

    For power considerations, matching networks are assumed lossless

  • EE3113_L24 5

    Power Relations

    222

    2

    2221

    2

    |1||1|)||1(||)||1(

    LinS

    SLT S

    SG

    G-GG-G-G-

    =

    Transducer Power Gain

    Available Power Gain ( )*outL G=G

    211

    2

    221

    2

    |1||||1|||)||1(

    Sout

    SA S

    SG

    G-G-G-

    =

    Operating Power Gain ( )*inS G=G

    222

    2

    221

    2

    |1||||1|||)||1(

    Lin

    L

    SS

    GG-G-

    G-=

  • EE3113_L25 1

    EE 3113INTRODUCTION TO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 25Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L25 2

    Stability of active device

    1||,1||

  • EE3113_L25 3

    Constant Gain AmplifierG L` =0

    Z0

    GSVS G0( =0)S12

    GL ZL

    G S` =0 GS GL

    Gin=S11 Gout=S22

    222

    22

    21211

    2

    |1|||1

    |||1|

    ||1

    L

    L

    S

    STU S

    SS

    GG-

    G-

    G-G-

    =

    )()()()( 0 dBGdBGdBGdBG LSTU ++=

  • EE3113_L25 4

    Constant gain circles in the SC

    211

    max ||11S

    GS -=

    222

    max ||11S

    GL -=

    )||1(|1|

    ||1 2112

    11

    2

    max

    SSG

    Gg

    S

    S

    S

    SS -G-

    G-==

    )||1(|1|

    ||1 2222

    22

    2

    max

    SSG

    Gg

    L

    L

    L

    LL -G-

    G-==

    normalize

    )||1(|1|

    ||1 22

    2

    maxii

    iii

    i

    i

    ii SSG

    Gg -

    G-G-

    == This can be written as a circle equation

    (see page 511)

  • EE3113_L25 5

    Circle equation and graphical display222 )()(iii g

    Ig

    Ii

    Rg

    Ri rdd =-G+-G

    )1(||1 2*

    iii

    iiig gS

    Sgd

    i --=

    )1(||1

    )||1(12

    2

    iii

    iiig gS

    Sgr

    i ----

    =

    -1dB0dB

    1dB

    2dB2.6dB

    S11*

    GL=0.49dB

    GL

    S22*

    Constant source gain circlesConstant load gain circle

    See Ex. 9.7 (p. 512)

  • EE3113_L25 6

    Trade-off between gain and noise

    0.2

    0.5

    1.0

    2.0

    5.0

    +0.2

    -0.2

    +0.5

    -0.5

    +1.0

    -1.0

    +2.0

    -2.0

    +5.0

    -5.0

    0.0

    Fk=1.6dB

    G=8dB

    VS W Rin

    =2

    Maximum gain and minimum noise figure are mutually exclusive

    0 50 100 150 200 250 300 3501.3

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    2

    2.1

    2.2

    2.3

    Input and output VSWR as a function of GS position

    Angle a , deg.

    Input

    and o

    utp

    ut

    VSW

    Rs

    VSWRout

    VSWRin

    Noise figure

    Constant gain

  • EE3113_L26 1

    EE 3113INTRODUCTION INTO RF

    CIRCUIT DESIGN

    Lecture Notes for A-term 1999LECTURE 26Prof. R. Ludwig

    Department of Electrical and Computer EngineeringWorcester Polytechnic Institute

    Worcester, MA 01609copyright 1999, R. Ludwig

    Copyright, 1998 R. Ludwig

  • EE3113_L26 2

    RF Amplifier Design Project

    Amplifier design passive bias network stability analysis of BJT (k-factor) no feed-back (S12=0) -> unilateral design class A (low-efficiency) BJT configuration S-parameter description (given bias, frequency) discrete, two-element matching networks

  • EE3113_L26 3

    Results of constant gain analysis0.2

    0.5

    1.0

    2.0

    5.0

    +0.2

    -0.2

    +0.5

    -0.5

    +1.0

    -1.0

    +2.0

    -2.0

    +5.0

    -5.0

    0.0

    -1dB

    0dB0.2dB

    GGS opt

    = S11*

    0.2

    0.5

    1.0

    2.0

    5.0

    +0.2

    -0.2

    +0.5

    -0.5

    +1.0

    -1.0

    +2.0

    -2.0

    +5.0

    -5.0

    0.0

    -1dB

    0dB

    0.5dB

    GGL opt

    = S22*

    Input gain circles Output gain circles

  • EE3113_L26 4

    Required Matching Networks0.2

    0.5

    1.0

    2.0

    5.0

    +0.2

    -0.2

    +0.5

    -0.5

    +1.0

    -1.0

    +2.0

    -2.0

    +5.0

    -5.0

    0.0

    0.2dB

    0.2

    0.5

    1.0

    2.0

    5.0

    +0.2

    -0.2

    +0.5

    -0.5

    +1.0

    -1.0

    +2.0

    -2.0

    +5.0

    -5.0

    0.0

    0.5dB

    Input matching network Output matching network

    L, C elements

  • EE3113_L26 5

    What to do next?

    Additional design improvements multi-stage (dual) configuration microstriplinerealization triple and higher order matching network electric circuit transistor model with feed-back

    (bilateral design approach)

  • EE3113_L26 6

    Most recent MQP project

  • EE3113_L26 7

    Actual realization

  • EE3113_L26 8

    Circuit board cutter

  • EE3113_L26 9

    EE 3113 COURSE GOALS MATCHING NETWORK STRATEGY

    input matching conjugate complex output matching

    TRANSISTOR & DIODE CHARACTERIZATION S-parameter description (supplied by manufacturer) small signal, RF circuit model (BJT, GaAs FET, PIN,

    Schottkydiode) DC biasing

    NETWORK DESCRIPTION two-port model (S-parameter, Z, Y, hybrid, etc.)

  • EE3113_L26 10

    SIGNAL FLOW CHART MODELING S-PARAMETER THEORY

    definitions (based on matched port terminations) measurements with network analyzer

    SMITH CHART reflection coefficient/impedance representation impedance transformation as a function of either

    length or frequency

    TRANSMISSION LINE FUNDAMENTALS distributed circuit theory loaded and source transmission line

    lec01.pdflec02lec03lec04lec05lec06lec07lec08lec09lec10lec11lec12lec13lec14lec15lec16lec17lec18lec19lec20lec21lec22lec23lec24lec25lec26