1348713525_pspice for linear and switching electronic circuit

64
0 - 0 - PSpice FOR LINEAR AND SWITCHING ELECTRONIC CIRCUITS 2 nd Edition: 1999 SMPC

Upload: adithya-chandrasekaran

Post on 14-May-2017

231 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: 1348713525_Pspice for Linear and Switching Electronic Circuit

0

- 0 -

PSpice FOR LINEAR AND

SWITCHING ELECTRONIC CIRCUITS

2nd Edition: 1999

SMPC

Page 2: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 1 -

Table of Contents

1. Introduction to PSpice .................................................................2 1.1 SPICE ......................................................................................2 1.2 PSpice ....................................................................................2 1.3 Types of Analysis .................................................................2 1.4 Text-Editing Mode or Schematics-Entering Mode ?.........2

2. PSpice Code ..................................................................................3 2.1 General Structure..................................................................3 2.2 Example ..................................................................................3

3. Circuit Description ........................................................................5 3.1 Circuit Elements ....................................................................5 3.2 Independent Sources ...........................................................7 3.3 Dependent Sources...............................................................9 3.4 Model Description ...............................................................20

Diode ........................................................................................21 BJT............................................................................................23 MOSFET ...................................................................................27 Voltage Controlled Switch.....................................................29

4. Subcircuits ....................................................................................31 4.1 General Structure................................................................31 4.2 Example ................................................................................31

5. Analysis Request.........................................................................33 6. Output Request............................................................................38 Appendix: PSpice Modeling and Analysis of Switching Electronics............................................................................................................39

Simple Switching Circuit #1.....................................................42 Simple Switching Circuit #2.....................................................45 Solenoid Drive Circuit...............................................................46 Bridge Rectifier ..........................................................................48 Controlled Full-Wave Rectifier.................................................49 Buck Converter ..........................................................................51 Boost Converter with Step Load Change ..............................52 Frequency-Domain Analysis of Buck Converter ..................53 Energy Transfer Circuit.............................................................61 Turn-Off Snubber Circuit ..........................................................63

Page 3: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 2 -

1. Introduction to PSpice 1.1 SPICE (Simulation Program with Integrated Circuit Emphasis)

1) A general purpose circuit simulation program. 2) Originally developed as an instrumental tool for designing and

analyzing integrated circuits. 3) Initially developed in the early 1970s at the University of California,

Berkeley, and evolved into mainframe versions and PC-based versions. 4) Recognized as a standard circuit simulator from many universities and

industries.

1.2 PSpice

1) A PC-based version of SPICE developed for the use with IBM-PCs or compatibles

2) Introduced in 1984 by MicroSim and continuously upgraded thereafter.

1.3 Types of Analysis

1) Transient analysis computes the voltages and currents in the circuit as the time elapses, and yields the trajectory of the voltages and currents with respect the time.

2) AC analysis computes the frequency response of the circuit, and yields the Bode plot of the frequency response.

3) DC sweep consecutively computes the operating point of the circuit while incrementally changing the value of an independent voltage or current source.

4) Other types of analysis include transfer function, temperature analysis, sensitivity analysis, Monte Carlo analysis, noise analysis, Fourier analysis.

1.4 Text-Editing Mode or Schematics-Entering Mode ?

1) For educational purposes, the text-editing mode is far more beneficial than the schematics-entering mode.

2) For simulations requiring advanced commands and techniques, the text-editing mode is often convenient and advantageous.

Page 4: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 3 -

2. PSpice Code 2.1 General Structure

Title statement

Circuit description Power supplies/signal sources Circuit element description Model description

Analysis request Output request

End statement

2.2 Example: Response of an RLC circuit to a voltage source

?? PSpice code

PSpice code for an RLC circuit; Title Statement * ********** * * RLCCKT * * ********** *** Circuit Description *** VS 1 0 SIN(0 2V 4KHZ); Sinusoidal source *VS 1 0 PULSE(-5V 5V 0 5NS 5NS 0.5MS 1MS); Pulse source *VS 1 0 PWL (0 0V 1US 5V 1S 5V); Step source R1 1 2 1 ; circuit element L1 2 3 50UH ; circuit element C1 3 0 50UF ; Circuit element **************************** .TRAN 5US 2MS ; Analysis request .PRINT TRAN V(1) V(3) ; Output request .Probe ; Output request .END ; End statement

VS

R1 L1

C1

990118kjw010

1 22 3

Page 5: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 4 -

?? Simulation result

??PSpice Tips 1. The first line must be the title line, and it may contain any type of text. 2. The last line must be the .END command. 3. The order of the intervening lines does not affect the results of

simulations. 4. If a PSpice statement is more than one line, the statement can continue

to the next line. A continuation line is identified by a plus sign “+” in the first column of the next line.

5. A comment line may be included anywhere, preceded by an asterisk “*” at the beginning of the line, and by a semicolon “ ;” at the end of PSpice statement.

6. The number of blanks between items can be freely chosen. 7. The tabs and commas are equivalent to blanks. For example, “ “ and

“ , “ are equivalent. 8. PSpice statements or comments can be in either upper or lowercase

letters. 9. After execution, PSpice produces the output file that contains very

helpful information, including error messages and run-time statistics.

Page 6: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 5 -

3. Circuit Description 3.1 Circuit Elements

Name + node - node Value or other descriptions ------------------------------------------------------------------------------------- R1 1 2 0.5 Ohm

??Name for circuit elements

First letter Representat

ion

Elements

Passive element C Capacitor L Inductor K Coupled inductor R Resistor

Active elements D Diode M MOSFET Q BJT J JFET

Sources V Independent voltage source I Independent current source E Depend voltage source G Depend current source

Switches S Voltage controlled switch W Current controlled switch

??Nodes

1) PSpice adopts the standard convention in defining the polarity of the device; the current enters “+ node” and exits “ – node”, developing a positive voltage drop from the + node to – node.

Exceptions to this rule are the voltage sources and current sources, as shown in the next section.

2) Node numbers can be integers from 0 to 999 or alphabets or combination of them.

3) The node number need not be sequential. 4) The integer “0” is reserved to mean “Ground”.

Page 7: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 6 -

??Value for circuit elements

Representation

Meaning

Scale suffixes P 1E-12 N 1E-9 U 1E-6 M 1E-3 K 1E3

MEG 1E6 G 1E9

Units V Volts A Ampere

OHM Ohm ? ?? H Henry F Farad Hz Hertz

??PSpice Tips 1. It is often helpful to use an explanatory name for meaningful nodes, for

example, “GND,” “OUTPUT,” “INPUT” etc. 2. The units can be omitted since they are only for explanatory purposes

and ignored inside PSpice. 3. Be careful not to confuse “M” with “MEG” in using suffixes.

Page 8: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 7 -

3.2 Independent Sources ??General form

Name +node -node Type Description ------------------------------------------------------------------------------- Vin 1 2 SIN (0 2V 4kHz)

Name Node assignmen

t

Type

Voltage

Source

Vname

Current

Source

Iname

DC: Constant SIN: Sinusoidal waveform Pulse: Periodic pulse signal PWL: Arbitrary waveform consisting of piecewise linear segments AC: Small-signal source needed for ac analysis

??Description Type Description Time-varying signal DC DC Value AC AC Magnitude

Phase

Sinusoid SIN (VO VM FREQ)

Pulse PULSE (VL VH TD TR TF TW TP)

Piecewise linear

PWL (T1 V1 T2 V2 - - - Tn Vn)

+node

99011901kjw01

-node

990119kjw03

VL

TD

TR

TW

VH

TFTP

V1

T1

T2

V2

Tn

Vn

990119kjw04

VOVM

1/FREQ

+node

99011901kjw01

-node

Page 9: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 8 -

??Example

PSpice code Waveform

V1 1 0 SIN (0 1 1kHz) V2 2 0 PULSE (-5V 5V 0 5NS 5NS 0.5MS 1MS)

V3 3 0 PULSE (0 5V 0 5NS 5NS 0.1MS 1MS) V4 4 0 PULSE (-5V 5V 0 0.4MS 0.4MS 0.01MS 0.81MS) V5 5 0 PWL (0 0V 1US 1V 1S 1V) V6 6 0 PWL (0 0V 0.1MS 0V

0.1001MS 1V 0.15MS 1V 0.15001MS 0 1S 0V)

Page 10: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 9 -

3.3 Dependent Sources ??General form

Time-domain form: Name + node - node VALUE={Arithmetic expression using the node voltage and branch current of the circuit} Frequency-domain form: Name + node - node LAPLACE { Input variable}={Transfer function between input variable and output of dependent source}

Name Node assignmen

t

PSpice code

Voltage Source

Ename

Current Source

Gname

Time-domain form: E1 3 0 VALUE={5*V(1,0)+1.5*V(2,0)} E2 3 0 VALUE={V(1,0)+1.3*I(VD)} G3 3 0 VALUE={SQRT(V(1,0))+1.3*V(2,0)} G4 3 0 VALUE={ABS(V(1,0))+COS(I(VD))}

Frequency-domain form:

E1 3 0 LAPLACE {V(1)}={5000/(S+500)} E2 3 0 LAPLACE {V(1)+V(2)} = {S*5000/(1+S/50+S*S/6000)} G3 3 0 LAPLACE {I(VD)}={5000/(1+S/50)} G4 3 0 LAPLACE {V(2)} = {((S+1)*(S+2))/(1+2*S+4*S*S)}

PSpice does not permit measuring the current through a passive component. A zero-valued voltage source,VD, can be used in measuring the current that will be used as a variable.

VD 3 0 DC 0

??Arithmetic operations

Symbol Operation Symbol Operation Symbol Operation

+ Addition ABS( X ) X PWR( X,Y ) YX _ Subtraction SQRT( X ) X

SIN( X ) )xsin(

* Multiplication EXP( X ) Xe COS( X ) )xcos(

/ Division LOG( X ) )X(ln TAN( X ) )xtan(

LOG10( X ) )Xlog( ARCTAN( X ) )x(tan 1?

+node

99011901kjw01

-node

+node

99011901kjw01

-node

Page 11: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 10 -

??Example: Generation of waveforms

PSpice code WAVEFORM GENERATION CIRCUIT * *************** * *** WAVEGEN *** * *************** ********* WAVEFORM 1 ********** V1 1 0 SIN (0 1 2kHz) R1 1 0 1 V2 2 0 SIN(0 1 50kHz) R2 2 0 1 E 3 0 VALUE={5*V(1,0)+1.5*V(2,0)} R3 3 0 1 .TRAN 1US 2MS .PROBE .END WAVEFORM GENERATION CIRCUIT ********* WAVEFORM 2 ********** V1 1 0 PULSE(0 1 0 1NS 1NS 0.5MS 1MS) R1 1 0 1 V2 2 0 SIN(0 1 50kHz) R2 2 0 1 E 3 0 VALUE={V(1,0)*1.3*V(2,0)} R3 3 0 1 .TRAN 1US 2MS .PROBE .END WAVEFORM GENERATION CIRCUIT ********* WAVEFORM 3 ********** V1 1 0 SIN(0 1 1kHZ) R1 1 0 1 V2 2 0 SIN(0 1 20kHz) R2 2 0 1 E 3 0 VALUE={V(1,0)*1.3*V(2,0)} R3 3 0 1 .TRAN 1US 2MS .PROBE .END

1 2 3

0 0 0

V1 R1 V2 R2 E R3

Signal sources

Page 12: 1348713525_Pspice for Linear and Switching Electronic Circuit

11

- 11 -

Simulation result

??PSpice Tips 1. Multiple simulations can be performed by stacking several independent

PSpice programs in series.

Page 13: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 12 -

??Example: Response of a voltage amplifier to a sinusoidal source

PSpice code VOLTAGE AMPLIFIER * **************** * *** VOLAMP01 *** * **************** .PARAM PRI = 0.1K *.STEP PARAM PRI LIST 0.1K 1K 10K VS 1 0 SIN (0 4.5V 4kHZ) RS 1 2 1K RI 2 0 {PRI} E0 0 3 VALUE={10*V(2,0)} RO 3 4 1K RL 4 0 1K .TRAN 1US 1M .PROBE .END

990204ggh01

RI EO

RO

RL

RS

1 2 3 4

Page 14: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 13 -

Simulation result

??PSpice Tips 1. .PARAM PRI = 1.1K; This statement assigns a numerical value or

arithmetic expression to a specific parameter. Once a parameter is defined, it can be used as a variable anywhere in PSpice code.

2. RI 2 0 {PRI}; E0 0 3 VALUE={10*V(2,0)}; An expression using the parameters and other variables should appear within braces “{ }.”

3. .STEP PARAM PRI LIST 0.1K 1K 10K; This statement performs a series of simulations, each with a different value for “PRI” as listed in the statement.

Page 15: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 14 -

??Example: Frequency response of second-order filters

PSpice code FREQUENCY RESPONSE OF A SECOND-ORDER FILTER * ***************** * *** SFILTER01 *** * ***************** ***** LOW-PASS FILTER ***** .PARAM PR=1 .STEP PARAM PR 0.5 2.5 0.5 VS 1 0 AC 1 L 1 2 120UH C 2 0 211UF R 2 0 {PR} .AC DEC 20 10HZ 100kHZ .PROBE .END *FREQUENCY RESPONSE OF A SECOND-ORDER FILTER ***** HIGH-PASS FILTER ***** *.PARAM PR=1 *.STEP PARAM PR 0.5 2.5 0.5 *VS 1 0 AC 1 *C 1 2 211UF *L 2 0 120UH *R 2 0 {PR} *.AC DEC 20 10HZ 100kHZ *.PROBE *.END

0 0

1 2 1 2

VS

L

C R VS

C

L R

990208GGH01

Low pass filter High pass filter

Page 16: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 15 -

Simulation result

??PSpice Tips

1. .STEP PARAM PR 0.5 2.5 0.5 ; This statement sweeps the parameter

“PR” from 0.5 to 2.5 by a step of 0.5, and simulates the circuit for each value of “PR.”

2. VS 1 0 AC 1; A transfer function can be conveniently evaluated by 1) exciting the input with an ac source of unit amplitude and zero phase ,and 2) directly measuring the output.

Page 17: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 16 -

??Example: Time response of second-order filters

PSpice code

TIME RESPONSE OF A SECOND-ORDER FILTER * ***************** * *** SFILTER02 *** * ***************** ***** LOW-PASS FILTER ***** V1 1P 0 SIN(0 1 100HZ) R1 1P 0 1 V2 2P 0 SIN(0 1 10kHZ) R2 2P 0 1 E1 1 0 VALUE={5*V(1P,0)+5*V(2P,0)} L 1 2 120UH C 2 0 211UF R 2 0 1 .TRAN 2U 20MS .PROBE .END TIME RESPONSE OF A SECOND-ORDER FILTER ***** HIGH-PASS FILTER ***** V1 1P 0 SIN(0 1 100HZ) R1 1P 0 1 V2 2P 0 SIN(0 1 10kHZ) R2 2P 0 1 E1 1 0 VALUE={5*V(1P,0)+5*V(2P,0)} C 1 2 211UF L 2 0 120UH R 2 0 1 .TRAN 2U 20MS .PROBE .END

0 0 0 0

1P 2P 1 2 1 2

V1 R1 V2 R2 E1 E1

L

C R L

C

R

990208GGH01

Signal sources Low pass filter High pass filter

Page 18: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 17 -

Simulation result

??PSpice Tips

Page 19: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 18 -

0

1

VS

R1

2 3

RI1

990209GGH01

RI2

4 5

EO1 EO2

C2

R2C1

??Example: Application circuit of op amps

PSpice code

APPLICATION CIRCUIT USING OP AMPS * ***************** * **** OPAMP01 **** * ***************** VS 1 0 PULSE (-5V 5V 0 0.4MS 0.4MS 0.01MS 0.81MS) R1 1 2 10K C1 2 3 0.1U IC=0 RI1 2 0 1E6 EO1 0 3 VALUE={1E6*V(2,0)} C2 3 4 0.1U IC=0 R2 4 5 20K RI2 4 0 1E6 EO2 0 5 VALUE={1E6*V(4,0)} .TRAN 10U 100MS 95MS UIC .PROBE .END

Page 20: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 19 -

Simulation result

??PSpice Tips

3.4. Model Description

Page 21: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 20 -

??General form Component Name Terminals - - - - - - Model name .MODEL Model name Device type (Device parameters) ---------------------------------------------------------------------------------------------

Q1 Collector Base Emitter NBJT .MODEL NBJT NPN ( Is=1.8e-15 BF=100 VA= 50)

Name Device type

Typical PSpice code

Diode

Dname

D

D1 Anode Cathode DMOD .MODEL DMOD D ( Is N BV )

Is: Saturation current N: Emission coefficient (1- 2) BV: Breakdown voltage

BJT

Qname

NPN PNP

Q1 Collector Base Emitter NBJT .MODEL NBJT NPN ( Is BF VA ) Is: Saturation current

BF: Forward beta VA: Early voltage

JFET

Jnam

e

NJF PJF

J1 Drain Gate Source NJFET .MODEL NJFET NJF ( VTO BETA LAMBDA ) VTO: Zero-bias threshold voltage

BETA: Transconductance coefficient LAMBDA: Channel-length modulation

MOSFET

Mnam

e

NMOS PMOS

M1 Drain Gate Source Body MOSFET .MODEL MOSFET NMOS ( VTO KP LAMBDA ) VTO: Zero-bias threshold voltage

BF: Transconductance coefficient LAMBDA: Channel-length modulation

Voltage-controlle

d switch

Sname

VSWITCH

S1 + node – node + Vc – Vc SMOD Vc + Vc - Vc Pulse (VL VH TD TR TF TW TP) .MODEL SMOD VSWITCH ( Ron Roff )

Ron: Turn-on resistance Roff: Turn-off resistance

Undefined parameters assume the default values.

Page 22: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 21 -

Junction Diode ??General form

D1 Anode Cathode DMOD .MODEL DMOD D ( Is=1.8e-15 N=1 BV=4 )

??BJT parameters

Symbol Parameter Unit Default value

Typical value

Is Saturation current A 1E-14 1E-14 N Emission coefficient 1 1 – 2 BV Reverse breakdown

voltage V ∞ 50

??Example: Curve tracer to measure I-V characteristics of a diode

PSpice code I-V CURVE OF A DIODE * ************* * * DI-VCURVE * * ************* VD 1 0 DC 700mV R 1 2 0.0001 D1 2 0 DMOD .MODEL DMOD D(IS=1e-15 N=1 BV=4) .DC VD -5V 5V 10mV .PLOT DC I(D1) .PROBE .END

R

2

VD D1

1

0 990208GGH01

Page 23: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 22 -

Simulation result

??PSpice Tips 1. .DC VD -5V 5V 10mV; This statement sweeps “VD” from –5V to 5V

by a step of 10mV, and calculates the operating point of the circuit for each value of “VD.”

Page 24: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 23 -

Bipolar Junction Transistor (BJT) ??General form

Q1 Collector Base Emitter NBJT .MODEL NBJT NPN ( Is=1.8e-15 BF=100 VA= 50)

??BJT parameters

Symbol Parameter Unit Default value

Typical value

Is Saturation current A 1E-16 1E-16 BF Forward beta 100 100 VA Early voltage V ∞ 100

??Example: Curve tracer to measure I-V characteristics of BJT

PSpice code I-V CURVES OF A BJT * ************* * * BJTCURVES * * ************* IB 0 1 DC 0A Q1 2 1 0 NBJT .MODEL NBJT NPN (Is=1.8e-15 Bf=100 VA=50) RC 3 2 0.001 VCE 3 0 DC 0V .DC VCE 0 10V 20mV IB 1u 10u 2u .PLOT DC I(RC) .PROBE .End

VCEQ1

RC

IB

0

1

2 3

Page 25: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 24 -

Simulation result

??PSpice Tips 1. .DC VCE 0 10V 10mV IB 1u 10u 2u ; This statement sweeps “IB” from 1u

to 10u by step of 2uA, and for each value of “IB” sweeps “VCE” from 0 to 10V by step of 10mV.

Page 26: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 25 -

??Example: Common emitter amplifier

PSpice code

COMMON EMITTER AMPLIFIER WITH EMITTER RESISTANCE * ************* * * CEAMP01 * * ************* VI 1 0 SIN(0 0.001 1000) RS 1 2 330 C1 2 3 100U RB 3 0 100K Q1 5 3 4 NBJT;COLLECTOR, BASE, EMITTER VCC 6 0 DC 5 RC 6 5 10K RE1 4 8 120 C2 8 0 100U RE 8 9 16K VEE 9 0 DC -5 C3 5 7 100U RL 7 0 220K .OP .MODEL NBJT NPN (IS=9.3E-15 BF=100 VA=100 ) .TRAN 0.1US 3MS .PROBE .END

990209GGH02

VS

1 RS 2 C1 3

RBRE1

REC2

VEE

RC

C3

RL

VCC

4

8

9

5 7

6

Page 27: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 26 -

Simulation result

??PSpice Tips

Page 28: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 27 -

Metal Oxide Silicon Field-Effect Transistor (MOSFET) ??General form

M1 Drain Gate Source Body MMOD .MODEL MMOD NMOS ( Is=1.8e-15 BF=100 VA= 50)

??MOSFET parameters Symbol Parameter Unit Default

value Typical value

VTO Zero-bias threshould voltaget

V 0 0.1

KP Transconductance coefficient

2E-5 2.5E-5

LAMBDA Channel length modulation

0 0.02

??Example: Common source amplifier

PSpice code COMMON SOURCE AMPLIFIER * ************* * * CSAMP01 * * ************* VS 1 0 SIN(0 0.05 1000) C1 1 2 15U R1 4 2 330K R2 2 0 220K RD 4 3 50K VDD 4 0 DC 18 M1 3 2 5 5 MMOD .MODEL MMOD NMOS (VTO=0.1 KP=2.5E-5 LAMBDA=0.02) RS 5 0 50K CS 5 0 15U C2 3 6 15U RL 6 0 50K .OP .TRAN 0.1US 3MS

990209GGH03

VS

1 2C13

R2

RD

C2

RL

VDD

5

4

6

R1

RS CS

Page 29: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 28 -

.PROBE

.END Simulation result

??PSpice Tips

Page 30: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 29 -

Voltage Controlled Switch ??General form

S1 +node -node +Vc -Vc SMOD Vcon +Vc -Vc Pulse (VL VH TD TR TF TW TP) .MODEL SMOD VSWITCH (Ron=0.01 Roff=1E6)

??Switch parameters

Symbol Parameter Unit Default value

Typical value

Ron On resistance ? 1.0 0.01 Roff Off resistance ? 1E6 1E6 Von Control voltage for on

state V 1.0 5

Voff Control voltage for off state

V 0.0 -5

??Example: Simple switching circuit

PSpice code EXAMPLE OF SIMPLE SWITCHING CIRCUIT * ******************** * *** SWITCH01.CIR *** * ******************** VS 1 0 DC 24 S1 1 2 11 0 SMOD D 0 2 DMOD IO 2 0 DC 2 VCON 11 0 PULSE ( -5 5 0 1NS 1NS 10MS 25MS ) .MODEL SMOD VSWITCH (RON=0.01 ROFF=1E6) .MODEL DMOD D(N=1) .TRAN 1US 70MS .PROBE .END

? ?11

0

Vcon

D

Io

Vs

SW

Page 31: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 30 -

Simulation result

??PSpice Tips

Page 32: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 31 -

4. Subcircuit 4.1 General Structure ??Defining subcircuit

.SUBCKT Name_of_subcircuit List_of_nodes Circuit description

Power supplies/signal sources Circuit element description Model description

.End ?? Invoking subcircuit

Xname List_ of_ nodes Name_of_subcircuit

4.2. Example: Application circuit of op amps ?? PSpice code

APPLICATION CIRCUIT USING OP AMPS * ***************** * **** OPAMP02 ** * ***************** ****** OP AMP SUBCIRCUIT ****** .SUBCKT OPAMP 2P 0P 3P RI 2P 0P 1E6 EO 0P 3P VALUE={1E6*V(2P,0P)} .ENDS OPAMP ******************************** VS 1 0 PULSE (-5V 5V 0 0.4MS 0.4MS 0.01MS 0.81MS) R1 1 2 10K C1 2 3 0.1U IC=0 X1 2 0 3 OPAMP; Statement invoking the subcircuit C2 3 4 0.1U IC=0 R2 4 5 20K X2 4 0 5 OPAMP; Statement invoking the subcircit .TRAN 10U 100MS 95MS UIC .PROBE .END

0

1

VS

R1

2 3

RI

990823GGH01

RI2

4 5

EO EO2

C2

R2C1

2P

0P

3P

Page 33: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 32 -

?? Simulation result

??PSpice Tips 1. The subcircuit can be placed anywhere in the main circuit.

5 Analysis Request

Page 34: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 33 -

??General form .TRAN 1US 1MS .AC DEC 20 10HZ 100KHZ .DC VD -0.6 0.6 0.01 .OP

Analysis Typical PSpice code Transient analysis

.TRAN PSTEP TFINAL [TDELAY] * [ UIC] * PSTEP: Plot interval TFINAL: Final time of simulation TDELAY: Period for which no output is plotted UIC : Use initial condition * :optional

AC analysis

.AC DEC POINT FSTART FFINAL POINT: Number of data point per decade FSTART: Initial frequency of simulation FFINAL: Final frequency of simulation

DC sweep

.DC PARAM IVALUE FVALUE STEP PARAM: Parameter to be swept FSTART: Initial value of parameter FFINAL: Final value of parameter STEP: Size of step increase

Operating point

.OP Evaluates operating points of nonlinear devices and list them in the output file.

Page 35: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 34 -

??Example: First-order low pass filter

PSPICE Code

FIRST-ORDER LOW-PASS FILTER * ***************** * *** FFILTER01 *** * ***************** *VS 1 0 SIN (0 1 1KHZ); TRANSIENT RESPONSE VS 1 0 AC 1 ; AC RESPONSE R 1 2 1K C 2 0 0.16UF *.TRAN 1US 4MS ; TRANSIENT RESPONSE .AC DEC 20 10HZ 100kHZ ; AC RESPONSE .PROBE .END

0

1 2

VS C

R

990208GGH01

Page 36: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 35 -

Simulation result

??PSpice Tips

Page 37: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 36 -

??Example: BJT differential amplifier

PSpice code BJT DIFFERENTAIL AMPLIFIER * ************* * * DIFFAMP01 * * ************* *VD 1 0 DC 0;DC SWEEP VD 1 0 SIN(0 0.02 1kHZ);TRANSIENT ANALYSIS RD 1 0 1 VCC 7 0 DC 15 VEE 9 0 DC -15 E+ 2 0 VALUE={0.5*V(1,0)} Q1 3 2 4 NBJT R1 7 3 20k E- 5 0 VALUE={-0.5*V(1,0)} Q2 6 5 4 NBJT R2 7 6 20k Q3 4 8 9 NBJT Q4 8 8 9 NBJT R4 0 8 28.6K .MODEL NBJT NPN (Is=1.8E-15 Bf=100 VA=100) *.DC VD -0.6 0.6 0.01:DC SWEEP .TRAN 2U 3MS;TRANSIENT ANALYSIS .PROBE .End

0

VD RD E+

Q1 Q2

R1 R2 VCC

E-

R4

Q4 Q3

VEE

1 2 3 6

5

0

4

7

8

9

990208GGH02

Page 38: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 37 -

Simulation result

??PSpice Tips

Page 39: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 38 -

6. Output Request ??General form

.PRINT AC VDB(5) VP(5)

.PROBE

Output Features Print

Dumps the selected variables to the output file

Plot Plots the selected variables in the output file

Probe

Invokes the graphical waveform analyzer equipped with a post-processor that provides arithmetic manipulation of the output variables

Page 40: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 39 -

??Example: Squire wave and its spectrum

PSpice code

SQUARE WAVE AND ITS SPECTRUM * **************** * *** SPECTRUM *** * **************** .PARAM PMAG = 5 .PARAM PPER = 1MS .PARAM PI = 3.141592 VS 1S 0 PULSE ({-PMAG} {PMAG} 0 5NS 5NS {0.5*PPER} {PPER}) RS 1S 0 1 V1 1 0 SIN (0 {4*PMAG/(1*PI)} {1/PPER} R1 1 0 1 V3 3 0 SIN (0 {4*PMAG/(3*PI)} {3/PPER} R3 3 0 1 V5 5 0 SIN (0 {4*PMAG/(5*PI)} {5/PPER} R5 5 0 1 V7 7 0 SIN (0 {4*PMAG/(7*PI)} {7/PPER} R7 7 0 1 V9 9 0 SIN (0 {4*PMAG/(9*PI)} {9/PPER} R9 9 0 1 .TRAN 2US 3MS .PROBE .END

0

1S

VS RS

0

1

V1 R1

0

3

V3 R3

0

5

V5 R5

0

7

V7 R7

0

9

V9 R9

990208GGH02

Page 41: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 40 -

Simulation result

??PSpice Tips 1. Arithmetic manipulations available for post-processing are shown in the

“Probe Screen.”

Page 42: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 41 -

PSpice Modeling and Analysis of Switching Electronics

Page 43: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 42 -

Simple Switching Circuit # 1

??Circuit representation of PSpice code

24V 2A

ON

OFF

10ms25ms

? ?

11

0

Vcon

D

Io

Vs

SW

? ?

0

D

Io

Vs11 12

RD

VD

Page 44: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 43 -

??PSpice code

EXAMPLE OF SIMPLE SWITCHING CIRCUIT * ******************** * *** SWITCH01.CIR *** * ******************** VS 1 0 DC 24 SW 1 2 11 0 SMOD D 0 2 DMOD IO 2 0 DC 2 VCON 11 0 PULSE ( -5 5 0 1NS 1NS 10MS 25MS ) .MODEL SMOD VSWITCH (RON=0.01 ROFF=1E6) .MODEL DMOD D(N=1) .TRAN 1US 70MS .PROBE .END EXAMPLE OF SIMPLE SWITCHING CIRCUIT * ************** * *** CASE 2 *** * ************** VS 1 0 DC 24 M 1 11 2 2 IRF150 RD 12 11 5 D 0 2 DMOD IO 2 0 DC 2 VDRIVE 12 2 PULSE ( -8 8 0 1US 1US 10MS 25MS ) .MODEL DMOD D(N=1) .MODEL IRF150 NMOS (VTO=2.8 KP=30) .TRAN 1US 70MS .PROBE .END

Page 45: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 44 -

Simple Switching Circuit #2

??Circuit representation of PSpice code

??PSpice code

EXAMPLE OF SIMPLE SWITCHING CIRCUIT * ******************** * *** SWITCH02.CIR *** * ******************** VS 1 0 DC 50 SW 1 2 11 0 SMOD D 0 2 DMOD L 2 3 1MH VO 3 0 DC 20 VCON 11 0 PULSE ( -5 5 0 1NS 1NS 0.08MS 0.2MS ) .MODEL SMOD VSWITCH (RON=0.01 ROFF=1E6) .MODEL DMOD D(N=1) .TRAN 5US 0.6MS 0MS 10US .PROBE .END

50V 20V

1mH

ON

OFF

0.08ms0.2ms

0

11

? ? ?

Vs

Vcon

D1 Vo

L

Page 46: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 45 -

Solenoid Drive Circuit

??Circuit representation of PSpice code

90V 200mH

10ms100ms

? ?

?

?

?

0

Vcon

Vcc

S1

S2

L

D2

D1

VDU

Page 47: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 46 -

??PSpice code

SOLENOID DRIVE CIRCUIT * ********************* * ***** SDRIVE01 ****** * ********************* VCC 1 0 DC 90 VDU 1 2 AC 0 S1 2 3 5 0 SMOD D1 0 3 DMOD L 3 4 200MH S2 4 0 5 0 SMOD D2 4 2 DMOD VCON 5 0 PULSE (-10 10 0 1U 1U 10MS 100MS) .MODEL SMOD VSWITCH (RON=0.001) .MODEL DMOD D .TRAN 0.1M 200MS .PROBE .END

Page 48: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 47 -

Bridge Rectifier

??Circuit representation of PSpice code

??PSpice code

BRIDGE RECTIFIER * ********************* * ***** BRECTI01 ****** * ********************* VS 1 0 SIN(0 110 60HZ) RS 1 2 10 D1 2 4 D1N4148 D2 3 0 DIN4148 D3 0 4 DIN4148 D4 3 2 DIN4148 CF 4 3 50UF RL 4 3 1K .MODEL DIN4148 D(IS=0.1PA RS=0 CJO=2P TT=12N BV=200 IBV=0.1P) .TRAN 0.1U 0.04 .PROBE .END

t602sin110 ??

?5.0

50uF?K1

Vs

Rs

D4

D2

D1

D3CF

RL

? ?

? ?

0 ?

Page 49: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 48 -

Controlled Full-Wave Rectifier

??Circuit representation of PSpice code

??PSpice code

CONTROLLED RECTIFIER .PARAM R=10 .PARAM VRMS=120 .PARAM ALPHA=60 .PARAM F=60 VS 1 0 SIN ( 0 {VRMS*SQRT(2)} 60 0 0 {ALPHA} ) D1 1 10 DMOD S1 10 2 D12 0 SMOD D3 0 11 DMOD

?10Vs

Q1 Q3

Q4 Q2

Q1,Q2

Q3,Q4

?60

?60

?

?

0

?

11

1312

10

D12

D34

Vcon34 Vcon12

S1

D1

D3

S3

S4

D4

S2

D2

RVs

Page 50: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 49 -

S3 11 2 D34 0 SMOD D4 4 12 DMOD S4 12 1 D34 0 SMOD D2 4 13 DMOD S2 13 0 D12 0 SMOD R 2 4 {R} VCON12 D12 0 PULSE (-10 10 0 1US 1US {.51/F} {1/F} ) VCON34 D34 0 PULSE (-10 10 {0.5/F} 1US 1US {0.51/F} {1/F} ) .MODEL DMOD D .MODEL SMOD VSWITCH (RON=0.001) .TRAN .1MS 200MS 166.7MS 0.1MS .PROBE .END

Page 51: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 50 -

Buck Converter

??Circuit representation of PSpice code

PSpice code

BUCK CONVERTER * ********************** * *** TIBUCK01.CIR *** * ********************** VS 1 0 DC 50 SW 1 2 11 0 SMOD D 0 2 DMOD L 2 3 1MH C 3 0 100UF R 3 0 4 VCON 11 0 PULSE ( -5 5 0 1NS 1NS 40US 100US ) .MODEL SMOD VSWITCH (RON=0.01 ROFF=1E6) .MODEL DMOD D(N=1) .TRAN 5US 5MS .PROBE .END

1mH

100uF ?450V

50us100us

VsVcon

L

C R

? ? ?

0

Page 52: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 51 -

Boost Converter with Step Load Change

??Circuit representation of PSpice code

??PSpice code

BOOST CONVERTER WITH STEP LOAD CHANGE * ***************** * *** TIBOOST1 **** * ***************** VS 1 0 DC 12 L 1 2 60UH SW1 2 0 22 0 SMOD D 2 3 DMOD C 3 0 120UF RL1 3 0 8 RL2 3 3P 4 SW2 3P 0 33P 0 SMOD VCON1 22 0 PULSE(-1 1 0 1NS 1NS 80E-6 200E-6) VCON2 33P 0 PWL ( 0 0 1N 5 6E-3 5 6.1E-3 -5 20E-3 -5) .MODEL SMOD VSWITCH (RON=0.01 VON=0.1 VOFF=-0.1) .MODEL DMOD D (N=0.1) .TRAN 100US 10MS .PROBE .END

12V

60uH

120uF?8

?4

80us

200us

Vs

L

C

D

SW1RL1

RL2

? ? ?

22

Vcon1

Vcon20

3P

33P

Page 53: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 52 -

Frequency-Domain Analysis of Buck Converter

??Small-signal model of buck power stage

0.05 37.5uH

0.02

400uF

5V

20uS

PWM

E/A

3.6

?116V

Qsw

Vramp

Vc

Z2

Vo=5V

Z1

980903ycy05

1:D

gv

dIL ˆ?

dVG ˆ? L Rl Li

oi

ov

Rc

C

R

980903ycy05

Page 54: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 53 -

??Circuit representation of PSpice code

??PSpice code

OPEN-LOOP BUCK POWER STAGE ********************** ** OBUCK01.CIR ** ********************** ************** INPUT PARAMETERS **************** ************** MEASUREMENT OPTIONS ************* .PARAM PAU=0 ;INPUT-TO-OUTPUT [VDB(5)] .PARAM PZO=0 ;OUTPUT IMPEDANCE [VDB(5)] .PARAM PDH=1 ;CONTROL-TO-OUTPUT [VDB(5)] ************************************************ *** OPERATING CONDITIONS .PARAM PVG=16 ;INPUT VOLTAGE .PARAM PVC=5 ;OUTPUT VOLTAGE .PARAM PIO=5 ;LOAD CURRENT *** POWER STAGE PARAMETERS .PARAM PL1=37.5U ;INDUCTOR .PARAM PRL1=0.05 ;ESR OF THE INDUCTOR .PARAM PC1=400U ;CAPACITOR .PARAM PRC1=0.02 ;ESR OF CAPACITOR .PARAM PRL=1 ;LOAD RESISTOR ********************************* ***** CALCULATED PARAMETERS ***** ********************************* .PARAM PD={PVC/PVG} *********************************************** ***********************************************

VG

G1

G1D

EVD

EVG VDL1RL1

RC1

C1

RL

IO

IDH VDH

? ? ? ? ?4P

0

51

C1

980903ycy06

Page 55: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 54 -

VG 1 0 AC {PAU} ***** PWM SWITCH ***** G1 1 0 VALUE={PIO*V(C1,0)} G1D 1 0 VALUE={PD*I(VD)} EVD 2 0 VALUE={PD*V(1,0)} EVG 3 2 VALUE={PVG*V(C1,0)} VD 3 4 AC 0 ;DUMMY SOURCE TO MEASURE IL RL1 4 4P {PRL1} L1 4P 5 {PL1} ***** OUTPUT CAP ***** RC1 5 51 {PRC1} C1 51 0 {PC1} IO 0 5 AC {PZO} ***** LOAD ***** RL 5 0 {PRL} ***** DUTY CYCLE PERTURBATION ***** IDH C1 0 AC 0 VDH C1 0 AC {PDH} .OPTIONS PIVTOL=10E-20 .AC DEC 100 10HZ 0.1MEGHZ .PROBE .PRINT AC VDB(5) VP(5,0) .END

Page 56: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 55 -

??Small-signal model of buck converter with an integrator

??Circuit representation of PSpice code

??PSpice code

VOLTAGE-MODE CONTROLLED BUCK CONVERTER ******************* ** VBUCK01.CIR ** ******************* ************************************************ *** POWER STAGE: BUCK WITH SINGLE-STAGE OUTPUT *** FILTER

1:D

gV

dIL ˆ?

dVG ˆ?

L Rl Li

oi

oV

Rc

C

R

d Fm

CV3

980903ycy06

10K

VG

G1

G1D

EVD

EVG VDL1RL1

RC1

C1

RL

IO

? ? ? ? ?4 P

0

5 1

IDH

EDD

C1

CV3 RV1

EOV

RVO

IFV

RVI

VTM

EVO

V5

V3

V6

V1

V11

980903ycy06

Page 57: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 56 -

*** CONTROL: VOLTAGE MODE CONTROL *** COMPENDATION:SIMPLE INTEGRATOR *** DATE OF UPDATED: 12/29/96 ************************************************ ************** INPUT PARAMETERS **************** ************** MEASUREMENT OPTIONS ************* .PARAM PAU=0 ;AUDIOSUSCEPTIBILITY [VDB(5)] .PARAM PZO=0 ;OUTPUT IMPEDANCE [VDB(5)] .PARAM PTM=1 ;OVERALL LOOP GAIN [VDB(5)] ************************************************ *** OPERATING CONDITIONS .PARAM PVG=16 ;INPUT VOLTAGE .PARAM PVC=5 ;OUTPUT VOLTAGE .PARAM PIO=5 ;LOAD CURRENT *** POWER STAGE PARAMETERS .PARAM PL1=37.5U ;INDUCTOR .PARAM PRL1=0.05 ;ESR OF INDUCTOR .PARAM PC1=400U ;CAPACITOR .PARAM PRC1=0.02 ;ESR OF CAPACITOR .PARAM PRL=1 ;LOAD RESISTOR *** PWM GAIN *** .PARAM PFM=0.2778 ************** CALCULATED PARAMETERS ********** *** DUTY CYCLE *** .PARAM PD={PVC/PVG} ;D *********************************************** VG 1 0 AC {PAU} ***** PWM SWITCH ***** G1 1 0 VALUE={PIO*V(C1,0)} G1D 1 0 VALUE={PD*I(VD)} EVD 2 0 VALUE={PD*V(1,0)} EVG 3 2 VALUE={PVG*V(C1,0)} VD 3 4 AC 0 ;DUMMY SOURCE TO MEASURE IL RL1 4 4P {PRL1} L1 4P 5 {PL1} ***** OUTPUT CAP ***** RC1 5 51 {PRC1} C1 51 0 {PC1} IO 0 5 AC {PZO} ***** LOAD ***** RL 5 0 {PRL} ***** OUTPUT VOLTAGE FEEDBACK ***** EVO V11 0 VALUE={(PAU+PZO)*V(5,0)} VTM V11 V1 AC {PTM} RV1 V1 V3 10E3 RVI V3 0 1E6 EOV 0 V6 VALUE={1E6*V(V3,0)} CV3 V3 V5 0.2U RVO V5 V6 10 IFV V5 0 AC 0 *** PWM *** EDD C1 0 VALUE={PFM*V(V5,0)} IDH C1 0 AC 0

Page 58: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 57 -

.OPTIONS PIVTOL=10E-20 .AC DEC 50 10HZ 0.1MEGHZ .PROBE .PRINT AC VDB(5) VP(5,0) .END

??Buck converter with three-pole two-zero compensation

??Circuit representation of PSpice code

1:D

gV

dIL ˆ?

dVG ˆ?

L R l Li

oi

oV

Rc

C

R

dFm

C3

*3RR2 C1 C2

R1

980903ycy07

VG

G1

G1D

EVD

EVG VDL1RL1

RC1

C1

RL

IO

? ? ? ? ?4P

0

51

IDH

EDD

C1

CV3 RV1

EOV

RVO

IFV

RVI

VTM

EVO

V5

V3

V6

V1

V11

RV2 CV1 RV3 CV2

V4 V2

980903ycy07

Page 59: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 58 -

??PSpice code

VOLTAGE-MODE CONTROLLED BUCK CONVERTER ******************* ** VBUCK02.CIR ** ******************* ************************************************ *** POWER STAGE: BUCK WITH 1-STAGE OUTPUT FILTER *** CONTROL : VOLTAGE MODE CONTROL *** COMPENSATION: THREE-POLE TWO-ZERO *** DATE OF LAST UPDATE: 12/29/96 ************************************************ ************** INPUT PARAMETERS **************** ************** MEASUREMENT OPTIONS ************* .PARAM PAU=0 ;AUDIOSUSCEPTIBILITY [VDB(5)] * .PARAM PZO=0 ;OUTPUT IMPEDANCE [VDB(5)] * .PARAM PTM=1 ;OVERALL LOOP GAIN [VDB(C3)] * ************************************************ *** OPERATING CONDITIONS .PARAM PVG=16 ;INPUT VOLTAGE .PARAM PVC=5 ;OUTPUT VOLTAGE .PARAM PIO=5 ;LOAD CURRENT *** POWER STAGE PARAMETERS .PARAM PL1=37.5U ;INDUCTOR .PARAM PRL1=0.05 ;ESR OF INDUCTOR .PARAM PC1=400U ;CAPACITOR .PARAM PRC1=0.02 ;ESR OF CAPACITOR .PARAM PRL=1 ;LOAD RESISTOR *** PWM GAIN *** .PARAM PFM=0.48 *** VOLTAGE COMPENSATION PARAMETERS .PARAM PKM=2500 ;INTEGRATOR GAIN .PARAM PWZ1={6.28*800} ;FIRST COMPENSATION ZERO .PARAM PWZ2={6.28*1000} ;SECOND COMPENSATION ZERO .PARAM PWP1={6.28*18000} ;FIRST COMPENSATION POLE .PARAM PWP2={6.28*25000} ;SECOND COMPENSATION POLE ********************************* ***** CALCULATED PARAMETERS ***** ********************************* .PARAM PD={PVC/PVG} ;D .PARAM PRV3=2200 .PARAM PCV2={1/(PRV3*PWP1)} .PARAM PRV1={1/(PCV2*PWZ2)-PRV3} .PARAM PC1PC3={1/(PKM*PRV1)} .PARAM PCV3={PWZ1*PC1PC3/PWP2} .PARAM PCV1={PC1PC3-PCV3} .PARAM PRV2={1/(PWZ1*PCV1)} ************************************************ VG 1 0 AC {PAU} ***** PWM SWITCH ***** G1 1 0 VALUE={PIO*V(C1,0)} G1D 1 0 VALUE={PD*I(VD)}

Page 60: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 59 -

EVD 2 0 VALUE={PD*V(1,0)} EVG 3 2 VALUE={PVG*V(C1,0)} VD 3 4 AC 0 ;DUMMY SOURCE TO MEASURE IL RL1 4 4P {PRL1} L1 4P 5 {PL1} ***** OUTPUT CAP ***** RC1 5 51 {PRC1} C1 51 0 {PC1} IO 0 5 AC {PZO} ***** LOAD ***** RL 5 0 {PRL} ***** OUTPUT VOLTAGE FEEDBACK ***** EVO V11 0 VALUE={(PAU+PZO)*V(5,0)} VTM V11 V1 AC {PTM} CV2 V1 V2 {PCV2} RV3 V2 V3 {PRV3} RV1 V1 V3 {PRV1} RVI V3 0 1E6 EOV 0 V6 VALUE={1E6*V(V3,0)} CV1 V3 V4 {PCV1} RV2 V4 V5 {PRV2} CV3 V3 V5 {PCV3} RVO V5 V6 10 IFV V5 0 AC 0 *** PWM *** EDD C1 0 VALUE={PFM*V(V5,0)} IDH C1 0 AC 0 ***** COMPESATION PARAMETERS ***** VCV1 RC1 0 DC {-PCV1} RRC1 RC1 0 1 VCV2 RC2 0 DC {-PCV2} RRC2 RC2 0 1 VCV3 RC3 0 DC {-PCV3} RRC3 RC3 0 1 VRV1 RR1 0 DC {-PRV1} RRR1 RR1 0 1 VRV2 RR2 0 DC {-PRV2} RRR2 RR2 0 1 VRV3 RR3 0 DC {-PRV3} RRR3 RR3 0 1 .OPTIONS PIVTOL=10E-20 .AC DEC 50 10HZ 0.1MEGHZ .PROBE .PRINT AC VDB(5) VP(5,0) .END

Page 61: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 60 -

Energy Transfer Circuit

??Circuit representation of PSpice code

??PSpice code

ENERGY TRANSFER CIRCUIT * ************************* * **** ENERGY01.CIR **** * ************************* .PARAM PVCC=24 .PARAM PD=0.45 .PARAM PC=5uF

24V100uH

1:1

5uF

45us

100us 980903ycy08

0

25

431

10

Vcc

VconSW Rcon

D

CLp Ls

980903ycy08

Page 62: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 61 -

.PARAM PFREQ=10KHz

.PARAM PLm=100uH

.PARAM PLs=100uH VCC 1 0 DC {PVCC} LP 1 2 {PLm} IC=0 LS 5 3 {PLs} IC=0 K LP LS {1-1P} SW 2 0 10 0 SMOD D 3 4 DMOD C 4 5 {PC} IC=0 RCON 0 5 10MEG VCON 10 0 PULSE( 0 5 0 {0.001/PFREQ} {0.001/PFREQ} {PD/PFREQ} {1/PFREQ}) .MODEL SMOD VSWITCH (RON=0.001 ROFF=10E6 VON=5 VOFF=0) .MODEL DMOD D(N=1) .TRAN 100US 500US 0 100US UIC .PROBE .END

Page 63: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 62 -

Turn-Off Snubber Circuit

??Circuit representation of PSpice code

??PSpice code

TURN-OFF SNUBBER CIRCUIT * ********************* * **** OFFSNUB1 **** * ********************* .PARAM PVS=80 .PARAM PIL=5 .PARAM PRS=256 .PARAM PCS=3.90625nF

80V

5A

?256

3.90625nF

5us

10us980903ycy09

1

23

0

Vs

DL IL

Ds

RsIBJT

980903ycy09

Page 64: 1348713525_Pspice for Linear and Switching Electronic Circuit

- 63 -

VS 1 0 DC {PVS} DL 2 1 DMOD IL 1 2 {PIL} DS 2 3 DMOD RS 2 3 {PRS} CS 3 0 {PCS} IBJT 2 0 PWL (0 5 0.5E-6 5 1E-6 0 5E-6 0) .MODEL DMOD D(CJO=0.001fF,RS=0.01,IS=1E-6) .TRAN 0.01US 1.5US UIC .PROBE .END