14d probability theory
TRANSCRIPT

7/31/2019 14D Probability Theory
1/22
PROBABILITY THEORY
There are lots of situations where you can't know an outcome for sure. Probability is
used in this case, to analyze the different possibilities, and how likely each of them is.
Weigh the possible outcomes of a decision by assigning probabilities to payoff values and
finding expected values.
a. Find the expected payoff for a game of chance. For example, find the expected
winnings from a state lottery ticket or a game at a fastfood restaurant.b. Evaluate and compare strategies on the basis of expected values. For example,
compare a highdeductible versus a lowdeductible automobile insurance policy using
various, but reasonable, chances of having a minor or a major accident.
Use probabilities to make fair decisions (e.g., drawing by lots, using a random number
generator).
Analyze decisions and strategies using probability concepts (e.g., product testing, medical
testing, pulling a hockey goalie at the end of a game).

7/31/2019 14D Probability Theory
2/22
THREE VIEWS
1 Subjective ViewProbability is a measure of the strength of ones
expectation that an event will occur.
Example: I think there is a 95% likelihood of Exitobeing a success.
Others may have adifferent view!

7/31/2019 14D Probability Theory
3/22
THREE VIEWS
2 Logical (Mathematical) View
The probability of an event, say A, occurring is givenby the number of events favouring A (nA) divided bythe total number of equally likely events (nS) = nA/nS.
Example: The probability of picking the Ace of Spadesfrom a pack of shuffled cards is 1/52.
This is independentof people!

7/31/2019 14D Probability Theory
4/22
THREE VIEWS
3 Empirical (Experimentation) View
The probability of an event A occurring, p(A), is avalue approached by the ratio nA/n as the totalnumber of observations, n, approaches infinity.
Example: The probability of occurrence of a planecrash from past data.
The value may beneither subjective
nor logical.

7/31/2019 14D Probability Theory
5/22
EXPERIMENTS AND EVENTS
Experiment:A procedure for carrying out a trial in order toobserve an event or outcome.
Event:An observable happening or outcome.

7/31/2019 14D Probability Theory
6/22
SIMPLE EVENT & COMPOUND EVENT
Simple eventsEvent E1 observe a 1Event E2 observe a 2Event E3 observe a 3
Event E4 observe a 4
Event E5 observe a 5Event E6 observe a 6
Compound eventsEvent A observe an odd number
Event B observe an even numberEvent C observe a number < 3
A compound event can be decomposed into simpler events.

7/31/2019 14D Probability Theory
7/22
EULER DIAGRAMS
SAMPLE POINTRepresentation of
a simple event
SAMPLE SPACESet of all sample
points

7/31/2019 14D Probability Theory
8/22
EXAMPLES EULER DIAGRAMS
Simple eventsEvent E1 observe a 1Event E2 observe a 2Event E3 observe a 3Event E4 observe a 4
Event E5 observe a 5Event E6 observe a 6
Compound eventsEvent A observe an odd number
Event B observe an even numberEvent C observe a number < 3
1 Plot the sample space and events A, B, C.
2 Compute the probabilities of events A, B, C.

7/31/2019 14D Probability Theory
9/22
SUMMARY OF PROBABILITIES
Rule 1:Probability assigned to an event lies between 0 and 1.
0 p(Ei) 1
Rule 2:Sum of probabilities over the sample space = 1.
p(Ei) = 1
Rule 3:Probability of a sure event = 1.
p(S) = 1

7/31/2019 14D Probability Theory
10/22
COMBINED EVENTS
p(A or B) = probability of occurrence of Event A orprobability of occurrence of Event B orprobability of occurrence of Events A & B
Union of two events: use addition rule
p(A and B) = probability of occurrence of Event A andprobability of occurrence of Event B
Intersection of two events: use multiplication rule

7/31/2019 14D Probability Theory
11/22
ADDITION RULE OF PROBABILITY
The probability of the union of two events A and B
p(A or B) = p(A) + p(B) p(A and B)
EXAMPLE: Rolling a dieEvent A: Occurrence of an even number (E2, E4, E6)Event B: Occurrence of a number < 5 (E1, E2, E3, E4)
Compute p(A or B) after drawing the Euler diagram.

7/31/2019 14D Probability Theory
12/22
ADDITION RULE OF PROBABILITY
EXAMPLE: Rolling a dieEvent A: Occurrence of an even number (E2, E4, E6)Event B: Occurrence of a number < 5 (E1, E2, E3, E4)Compute p(A or B) after drawing the table of events.
Events A and B Event B and Not A
Event A and Not B Not A and Not B
Event A Not Event A
Event B
Not Event B

7/31/2019 14D Probability Theory
13/22
COMPLEMENT RULE OF PROBABILITY
The complement of A is Not A
p(Not A) = 1  p(A)
EXAMPLE: Rolling a dieEvent A: Occurrence of an even number (E2, E4, E6)Event B: Occurrence of a number < 5 (E1, E2, E3, E4)Compute p{Not (A or B)} from the Euler diagram;
from the table of events.

7/31/2019 14D Probability Theory
14/22
EVENTS THAT ARE MUTUALLY EXCLUSIVE
Two events that have no sample points in common aresaid to be mutually exclusive.
Example: Draw the Euler diagram for rolling a die with
Event A = occurrence of an odd numberEvent B = occurrence of an even number
Addition rule of probabilityp(A or B) = p(A) + p(B) p(A and B) becomesp(A or B) = p(A) + p(B)

7/31/2019 14D Probability Theory
15/22
EVENTS THAT ARE COLLECTIVELY EXHAUSTIVE
Events for which the probability of their union = 1are called collectively exhaustive events.
Example: Rolling a die with
Event A = occurrence of an odd numberEvent B = occurrence of an even number
p(A) + p(B) = 1

7/31/2019 14D Probability Theory
16/22
ADDITION RULE OF PROBABILITY: 3 EVENTS
The probability of the union of three events A, B and C
p(A or B or C) = p(A) + p(B) + p(C) p(A and B) p(A and C) p(B and C)
+ p(A and B and C)
EXAMPLE: Rolling a dieEvent A: Occurrence of an even number (E2, E4, E6)
Event B: Occurrence of a number < 5 (E1, E2, E3, E4)Event C: Occurrence of a number > 2 (E3, E4, E5, E6)Compute p(A or B or C) after drawing the Eulerdiagram.

7/31/2019 14D Probability Theory
17/22
MULTIPLICATION RULE OF PROBABILITY(Statistically independent events)
Two events, A and B, are statistically independent if theprobability of one events occurring is unaffected by the
occurrence of the other.Example: Drawing two cards from a pack with replacement
p(A) = p(AB)where p(AB) is probability of A occurring given that B hasoccurred.
EXAMPLE: Rolling a die and tossing a coin togetherEvent A: Occurrence of a headEvent B: Occurrence of the number 4Compute p(A) and p(AB) after drawing the Eulerdiagram. Are the events statistically independent?

7/31/2019 14D Probability Theory
18/22
MULTIPLICATION RULE OF PROBABILITY(Statistically dependent events)
Two events, A and B, are statistically dependent if theprobability of one events occurring is affected by the
occurrence of the other.Example: Drawing two cards from a pack without replacement
p(A) p(AB)where p(AB) is probability of A occurring given that B hasoccurred.
EXAMPLE: Students in the MBA programmeEvent A: Student having taken a loanEvent B: Student being a juniorCompute p(A), p(B) and p(AB) after drawing the tableof events see next slide.

7/31/2019 14D Probability Theory
19/22
17 students
MULTIPLICATION RULE OF PROBABILITY(Statistically dependent events)
46 students 37 students
23 students
Junior student Senior student
Loantaken
Loannot
taken
EXAMPLE: Students in the MBA programmeEvent A: Student having taken a loanEvent B: Student being a juniorCompute p(A), p(B) and p(AB) after drawing the table of events.
Total:40
Total:60
Total:63
Total:83

7/31/2019 14D Probability Theory
20/22
MULTIPLICATION RULE OF PROBABILITY(Statistically dependent events)
CONDITIONAL PROBABILITY RULE
p(AB) = p(A and B)/p(B)
p(BA) = p(A and B)/p(A)Apply this to the previous slide.
MULTIPLICATION RULE OF PROBABILITYGiven two events A and B, the probability ofoccurrence of both A and B jointly is given by:
p(A and B) = p(A) * p(BA) = p(B) * p(AB)

7/31/2019 14D Probability Theory
21/22
MULTIPLICATION RULE OF PROBABILITYThree events
MULTIPLICATION RULE OF PROBABILITYGiven three events A, B and C, the probability ofoccurrence of A, B and C jointly is given by:
p(A and B and C) = p(A) * p(BA) * p(CA and B)
Example: Sampling without replacement
EXERCISE 3 OF HANDOUT

7/31/2019 14D Probability Theory
22/22