160226 riga etics lcc karnutsch fhsalzburg -...

29
Fachhochschule Salzburg Where knowledge grows University of Applied Sciences

Upload: lamngoc

Post on 10-Aug-2019

212 views

Category:

Documents


0 download

TRANSCRIPT

Fachhochschule Salzburg

Where knowledge grows

University of Applied Sciences

Economy versus ecology

Markus Karnutsch MAUniversity of Applied Sciences SalzburgRiga, 26.02.2016

2

Life cycle analysis and Life cycle cost

Content

3

1. Ecological and economic analysis of insulation materials used in ETICS

2. Life-cycle-cost analysis of innovative conceptsfor apartment buildings

Funded by

4

1. Ecological and economic analysisTarget

TARGET:

• Ecological analysis of insulation materials

• Economical analysis of insulation materials

LIMITING CONDITION:

• Initial U-Value of 1.2 W/m².K (buildings after 1960)

PEC/GWP/AP

• PEC … Primary Energy Cons.• Total demand of energy resources for

manufacturing a product• Entity: MJ

• GWP … Global Warming Potential• Contribution to global warming• Entity: kg CO2 eq.

• AP … Acidification Potential• Interaction of NOx and SO2 with

constituents of the air• Acid rain• Entity: kg CO2 eq.

5Source: stiftung-mehrweg.de

6

Insulation materials

Insulation material  density 

 

[kg/m³] 

λ 

 

[W/mK] 

Stone wool (MW‐SW)  130  0.040 

Glas wool (MW‐GW)  80  0.039 

Polystyrene, expanded (EPS)  16  0.040   

Polystyrene, extruded (XPS)  40  0.030  

Insulation cork board (ICB)  120  0.040 

Wood fibres (WF)  160  0.040 

Hemp   30  0.040 

Source: IBO 2014; ON B8110-7

PECnr 

(NCV) 

[MJ] 

GWP100 

 

[kg CO2eq.] 

AP 

 

[kg SO2eq.] 

21.36  1.935  0.0141 

46.25  2.454  0.0153 

98.90  4.169  0.0149 

94.04  4.299  0.0177 

6.45  ‐1.224  0.0019 

14.40  ‐0.804  0.0040 

28.68  0.077  0.0047 

Comparison

PEC reference MJ/kg and MJ/m²

1.323

1.018

585 580

1.034

315

845

284

0

200

400

600

800

1.000

1.200

1.400

PEI n.e. (Hu)

MJ/

Original U-value = 1,2 W/(m²K) and target U-value = 0,1 (W/m²K)

Glaswolle MW-PT Fassadenplatte

Steinwolle

Mineralschaumplatte

Polystyrol expandiert (EPS) –F

Polyurethan-Hartschaum

Hanfdämmplatte m. Stützfasern

Holzfaserdämmplatte 160 kg/m³

Korkplatte

46,25

21,3612,34

98,90 94,04

28,68

14,46,45

0

20

40

60

80

100

120

PEI n.e. (Hu)

MJ/

kg

Glaswolle MW-PT Fassadenplatte

Steinwolle

Mineralschaumplatte

Polystyrol expandiert (EPS) –F

Polyurethan-Hartschaum

Hanfdämmplatte m. Stützfasern

Holzfaserdämmplatte 160 kg/m³

Korkplatte

/ Glas wool

/ Stone wool

/ Mineral foam

/ Polystyrene expanded

/ Polyurethan

/ Hemp

/ Wood fibres

/ Cork

/ Glas wool

/ Stone wool

/ Mineral foam

/ Polystyrene expanded

/ Polyurethan

/ Hemp

/ Wood fibres

/ Cork

Source: Prieler M. 2015 7

Comparison

GWP reference CO2 eq /kg and CO2 eq /m²

70,18

92,24

47,72

24,46

47,29

0,85

-47,17-53,86-80-60-40-20

020406080

100

GWP100

kg C

O2

eq./m

²

Original U-value = 1,2 W/(m²K) and target U-value = 0,1 (W/m²K)

Glaswolle MW-PT Fassadenplatte

Steinwolle

Mineralschaumplatte

Polystyrol expandiert (EPS) –F

Polyurethan-Hartschaum

Hanfdämmplatte m. Stützfasern

Holzfaserdämmplatte 160 kg/m³

Korkplatte

[WERT]1,935

1,006

4,169 4,299

0,077

-0,804-1,224

-2

-1

0

1

2

3

4

5

GWP100

kg C

O2

eq./

kg

Glaswolle MW-PT Fassadenplatte

Steinwolle

Mineralschaumplatte

Polystyrol expandiert (EPS) –F

Polyurethan-Hartschaum

Hanfdämmplatte m. Stützfasern

Holzfaserdämmplatte 160 kg/m³

Korkplatte

/ Glas wool

/ Stone wool

/ Mineral foam

/ Polystyrene expanded

/ Polyurethan

/ Hemp

/ Wood fibres

/ Cork

/ Glas wool

/ Stone wool

/ Mineral foam

/ Polystyrene expanded

/ Polyurethan

/ Hemp

/ Wood fibres

/ Cork

2,454

Source: Prieler M. 2015 8

Comparison AP

reference CO2 eq/kg and CO2 eq/m²

0,44

0,67

0,10 0,09

0,19

0,05

0,23

0,08

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

AP

kg S

O2

eq.

Original U-value = 1,2 W/(m²K) and target U-value = 0,1 (W/m²K)

Glaswolle MW-PT Fassadenplatte

Steinwolle

Mineralschaumplatte

Polystyrol expandiert (EPS) –F

Polyurethan-Hartschaum

Hanfdämmplatte m. Stützfasern

Holzfaserdämmplatte 160 kg/m³

Korkplatte

0,01530,0141

0,0021

0,0149

0,0177

0,0047 0,004

0,0019

00,0020,0040,0060,0080,01

0,0120,0140,0160,0180,02

AP

kg S

O2

eq /

kg

Glaswolle MW-PT Fassadenplatte

Steinwolle

Mineralschaumplatte

Polystyrol expandiert (EPS) –F

Polyurethan-Hartschaum

Hanfdämmplatte m. Stützfasern

Holzfaserdämmplatte 160 kg/m³

Korkplatte

/ Glas wool

/ Stone wool

/ Mineral foam

/ Polystyrene expanded

/ Polyurethan

/ Hemp

/ Wood fibres

/ Cork

/ Glas wool

/ Stone wool

/ Mineral foam

/ Polystyrene expanded

/ Polyurethan

/ Hemp

/ Wood fibres

/ Cork

Source: Prieler M. 2015 9

Economical comparison products

Price of different insulation products inclusive plaster

U-W

ert /

U-v

alue

[W/m

².K]

EPS = Polystyrene expandedICB = Insulation cork boardMW = Mineral woolWF = Wood fibresXPS = Polystyrene extruded

Source: Prieler M. 2015

€/m² (excl. VAT)

10

Conclusion

• Environmental effects of a substance may differ significantly

• EPS as economical and ecological compromise?!• Cradle to gate!

• Demolition & seperation of materials

• Oil is a limited ressource

• HTP, ODP, POCP, etc..

11

Content

12

1. Ecological and economic analysis of insulation materials used in ETICS

2. Life-cycle-cost analysis of innovative conceptsfor apartment buildings

Funded by

Life cycle cost analysisTarget

• Analysis of life-cycle-cost and primary energy demand of existing building standard and thecomparison with innovative building concepts

• Identification of cost drivers

13

14Source: Ipser C.

Life cycle of building projects

Plan

Build

Use

MaintainRepair

deconstruct

New development

15Source: Ipser C.

Why life cycle cost analysis?

1. Evaluation of different planning variants

2. Comparison of investment alternatives

3. Sensitivity analysis

4. Calculation of key performance indicators

5. Planning of budget and cost control

6. Forecast of project financing cost

7. Surcharge criterion in tender procedures

Reference time point: present value

16

Follow-up cost Demolition

Source: C. Ipser

Life cycle cost – calculation method

Usage cost

Bui

ldin

g co

st

• LCC = building cost + present value follow-up cost• Follow-up cost = usage cost + cost for demolition

Administration Technical buildingmgmt.Maintenance

technics

Repair technics

Electicity

Refurbishmentexpansion

Refurbishmenttechnics

Cleaning

Water / grey water

Warm water Heating

Reference buildings

17

Source: Die Salzburg

A B

D C

A B C D

No. of apartments 27 10 42 55

Living space [m²] 1.860 613 2.906 3.381

Ø Living space / apartment [m²] 69 61 69 61

GFA heated [m²] 2.404 832 4.107 4.624

HWBSK [kWh/m².a] 36 33 38 14

PEBSK [kWh/m².a] 105 104 100 87

CO2EmissionSK [kg/m².a] 19 11 18 11

Energy supplyGas

Solarthermics

District heating

Solarthermics

Gas

Solarthermics

District heating

Solarthermics

Chosen key figures of the reference buildings (Source: FH Salzburg)

Reference buildings

18

Concept buildings

19

DNo. of apartments: 55

Living space [m²] :3.381

ANo. of apartments: 27

Living space [m²] :1.860 BNo. of apartments: 10Living space [m²] :613

CNo. of apartments: 31

Living space [m²] :2.906

Source: FH Salzburg

A „passive“

B „solar“

C „active“D „zero“

20

0

2

4

6

8

10

12

14

16

[kWh/m²BGF M]

0

2

4

6

8

10

12

14

16

[kWh/(m

²BGF M]

0

2

4

6

8

10

12

14

16

[kWh/m²BGF M]

0

2

4

6

8

10

12

14

16

[kWh/m²BGF M]

A

B

D C

Source: FHS

Primary energy monthly

20

Reference buildings - cost

21

Shell

Technics

Expansion

Source: dieSalzburg; FH Salzburg

22

Life cycle cost A[90 years]

Source: FH Salzburg

Dou

ble

build

ing

cost

Trip

lebu

ildin

gco

st

Qua

drup

elbu

ildin

gco

st

Qui

ntup

elbu

ildin

gco

st

23

Life cycle cost A[90 years]

Source: FH Salzburg 23

Life cycle cost – energy balance(89 years)

24

A “passive”

D “zero”

C “active”

B “solar”

Conclusion

25

• life cycle cost: 4-5x building cost

• Future building standards are only cost-effective if maintenance and repair of building technology is cost-effective

greater durability of building technology

• Follow-up cost of great importance for affordable living

• Zero-energy can be cost-effective (if a high degree of generatedenergy covers the proprietary requirements of the building)

• Cost effectiveness of concept „active“ depends on feed-in tariffs

Conclusion

26

• An overly technical system leads to high life-cycle cost

• Reduction of life-cycle cost through higher durability andseparability of building parts

• Electricity supply will be of great importance in order todecrease the primary energy use of a building

Food for thought

27

• Life cycle cost analysis is complex and a lot of work when it isdone Top-down (input, analysis, research of prices etc.)

• Which life span to choose (30, 50, 90 years)?

• How do I set the parameters (price increase, inflation, interest)?

• Life cycle cost analysis as an integral part of the planning process?

Contact

28

DI Markus Leeb Senior LecturerHead of DepartmentBuilding technology/Building physics

Tel: +43-(0)[email protected]

We thank all cooperation partners!

Markus Karnutsch MAJunior ResearcherTel: +43-(0)[email protected]

DI Tobias WeissSenior LecturerHead of DepartmentSustainable building

Tel: +43-(0)[email protected]

Manuela Prieler MA, MScJunior ResearcherTel: +43-(0)[email protected]

Trans4Tec

„Alternative ways to Zero-Energy-Buildings“

Cooperation Partners:BAUAkademie Lehrbauhof Salzburggizmocraft, design and technology GmbHHolzbauwirtschaft/HolzbauinnungInnovations- und Technologietransfer Salzburg GmbHKammer der Architekten und Ingenieurkonsulenten für Oberösterreich und SalzburgLand Salzburg – EnergieberatungZehentmayer Software GmbH

Project partners and funding

We thank all cooperation partners!

29