20.05.2015 quantum plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

25
Quantum Plasmo nics 第第第 第第第 第第 第第第 第第 第第第 第第

Upload: roland-mcdonald

Post on 18-Dec-2015

304 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Quantum Plasmonics

第七组马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Page 2: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Quantum plasmonicsM. S. Tame1*, K. R. McEnery1,2, ¸S. K. Özdemir3, J. Lee4, S. A. Maier1* and M. S. Kim2, 2013, Nature physics

surface plasmons: electromagnetic excitations coupled to electron charge density waves on metal–dielectric interfaces or localized on metallic nanostructuresenable the confinement of light to scales far below that of conventional optics;suffer from large losses

Quantum plasmonicsbuild devices that can exploit lossy nature for controlling dissipative quantum dynamicscombine modern plasmonics with quantum optics, study the fundamental physics of surface plasmons and the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale.

Page 3: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

quantum plasmonics: descripe surface plasmons using quantum mechanics

1950s, Bohm and Pines, with work by Pines providing the very first model for quantizing plasma waves in metals;

Hopfield, provided a quantum model for the polarization field describing the response of matter to light(did not consider loss);

Ritchie,a surface plasma wave (SPW);

Elson and Ritchie, used Hopfield's approach to provide the first quantizeddescription of SPWs as `SPPs‘;

Huttner and Barnett, `microscopic' quantization method, extending Hopfield'sapproach to polaritons in dispersive and lossy media(consider loss);

A `macroscopic' approach has been developed using Green's functions

Page 4: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Quantization of SPWsQuantize the electromagnetic field by accounting for the dispersive properties of the metal via the collective response of the electrons(1)classical mode description(2) discretization of classical modes(3) quantization via the correspondence principleSPP: solve Maxwell‘s equations , a general form of the vector potential A(r;t )→ a virtual square of area S = Lx *Ly is introduced on the surface. , a discretized form for A(r;t ) → Use the quantized Hamiltonian of a harmonic oscillator,including annihilation and creation operatorsonly change :the mode function uK(r) which represents the classical wavelike properties of the excitationLSP:u(r) differ from r

Page 5: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Optical confinement: traditional

+=

 

Page 6: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Optical confinement: plasmon

Optical fiber or cavity wall.

  Surface plasmon polariton.

 

Page 7: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Survival of entanglement

As shown in Figs, polarization-entangled photon converted into and back to from SPP remain polarization-entangled.

Reference:1. Paul G. Kwiat, etc, New High-Intensity

Source of Polarization-Entangled Photon pairs, Phys. Rev. Lett. 75, 4337(1995)

2. E. Altewisher, etc, Plasmon-assisted transmission of entangled photons, Nature 418, 304(2002)

Page 8: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Decoherence and loss

Reference:1. Giuliana Di Martino etc, Quantum Statistics of Surface Plasmon Plaritons in Metallic Stripe

Wave guides, Nano Lett. 12, 2504(2012)

Page 9: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Decoherence and loss

Page 10: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Wave-particle duality

Page 11: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Quantum size effectthe continuous electronic conductional band,

valid at macroscopic scales, break up into discrete states when dimensions are small enough, making the Drude model no longer valid

quantum tunnelling

Page 12: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

QR:quantum regime

Page 13: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Part III : Single emitters coupled to SPPs

1.Weak coupling regime:

2.Strong coupling regime:

Coherent energy transfer between emitter and Spp field

3. Some applications : Spp-induced Pucell effect, High-Q plasmonic cavity, nanoatenna,ect

Page 14: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Plasmon spectrum of GNP(black) and fluorescence spectrum of single molecule(red)

CCD image of singe molecule without GNP

Page 15: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

importance of the antenna resonance in the excitation enhancement

Page 16: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

16

Schematic figure of single emitter coupled with nanowire plasmon waveguide

Page 17: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺
Page 18: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

a high degree of correlation was seen between the time traces of the fluorescence counts from the quantum dot(red) and the end of the coupled wire(blue)

Second-order correlation function of quantum dot fluorescence.

Second-order correlation function between fluorescence of the quantum dot and scattering from the nanowire end

Page 19: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Simulation of the propagation of surface plasmom in this DBRs cavity.

Stop band

The resonance of cavity

Page 20: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

The modified fluorescence spectrum of QD in this cavity

The cavity-induced fluorescence enhancement

Page 21: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

The modified fluorescence spectrum of NV center in this cavity

Page 22: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Placing a silver/superconducting nanowire waveguide on top of a germanium field-effect transistor

Detection

Page 23: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Various types of external quantum sources (parametric down-conversion, an optical parametric oscillator, emitters in cryostats).

Embed emitters on the waveguides and excite them with an external classical source.

Fix NV centers onto the tip-apex of a near-field optical microscope.

Develop on-chip electrically driven SPP sources.

Page 24: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Manipulation

A range of waveguides

LRSPP ( Long - range surface plasmon - polariton ) waveguide

A combination of different waveguides

Hybrid platform of metallic and dielectric waveguides

Use nanoparticles supporting coupled LSPs

More complex waveguide structure

Page 25: 20.05.2015 Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺

Perspectives

Realize functioning reliable devices.

How to deal with loss.