2010_lecture_3_ho

19
Economics 101—Lecture 3 The Basic Model o Consumer Choice I George J. Mailath January 20, 2011

Upload: james-chai

Post on 08-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 1/19

Economics 101—Lecture 3The Basic Model o Consumer Choice I

George J. Mailath

January 20, 2011

Page 2: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 2/19

Consumer Preerences

A consumption bundle:

x  = (x 1, x 2, x 3, . . . , x n )

where x i  is the amount o good i  consumed (e.g., books,

pizzas, holidays, ancy dinners, operas, movies).

In many examples, n  = 2 (easier to draw pictures), and

then write (x , y ) or a consumption bundle.

I consumer (Bruce) preers a bundle x  to another bundlex , write x  x .

Page 3: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 3/19

“Rational” Choice

Plausible assumptions on behavior:

1 preerences are complete: Bruce can compare any two

bundles, i.e., or all x  and x , either x  x , or x  x , or

both (i.e., Bruce is indierent between x  and x , written

x  x ). I Bruce strictly preers x  to x  (i.e., x  x  but not

x  x ), then write x  x .

2 preerences are transitive: I x  x  and x  x , then

x x .

Page 4: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 4/19

Representing Preerences

Suppose choice set is {x 1,

x 2,

x 2} and x 1 x 2 x 3. (Forexample, x 1 is Tristan und Isolde  at the Metropolitan

Opera, x 2 is a day in the Philadelphia Museum o Art, and

x 3 is Swan Lake.)

I Bruce must choose rom {x 1, x 3}, he chooses x 1.

I Bruce must choose rom {x 2, x 3}, he chooses x 2.

The utility assignment U (x 1) = 3, U (x 2) = 2, and U (x 3) = 1

represents Bruce’s preerences, in the sense that more

preerred bundles are assigned a higher utility index.

The representing utility unction is not unique: V (x 1) = 10,

V (x 2) = 1, and V (x 3) = 0 represents the same preerences;

as does U 2 (i.e., utility is ordinal, not cardinal).

Page 5: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 5/19

Comparing Utility

Suppose Bruce and Sheila have the same preerences

over {x 1,

x 2,

x 3

} given by x 1

x 2

x 3

.Suppose Bruce reports a utility o 3 rom the bundle x 1,

while Sheila reports a utility o 6. Does this mean Sheila

likes the bundle x 1 twice as much as Bruce?

Page 6: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 6/19

Representing Choice

Bruce’s choice o x 1 rom {x 1, x 2, x 3} can be represented as

max

x ∈{x 

1,

2,

3

}

U (x ),

while his choice o x 2 rom {x 2, x 3} can be represented as

maxx ∈{x 2,x 3}

U (x ).

Page 7: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 7/19

Consumption bundles o goods

In general, we will consider consumption bundlesx  = (x 1, x 2, . . . , x n ) that satisy

x i  ≥ 0, or all i .

Preerences will be represented by a utility unction

U (x ) = U (x 1, x 2, . . . , x n ).

Examples:

1 U (x 1, x 2) = x 1 + x 2.

2 U (x 1, x 2) = x α1 x β2 , where α, β > 0 are constants.

3 U (x 1, x 2) = x α1 + x 2.

Page 8: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 8/19

Page 9: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 9/19

Indierence Curves

Suppose consumption bundles are in R2+.

Indierence curve through x  = (x 1, x 2) is the locus o points x 

yielding the same utility, i.e., is the locus o bundles x  that the

consumer fnds indierent to x :

U (x 1, x 2) = U (x ) = u .

Implicitly defnes a unction x 2 = f (x 1, u ) by

U (x 1, f (x 1, u )) = u .

Page 10: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 10/19

Indierence Curves

I U (x ) = x 1 + x 2, then f (x 1, u ) = u − x 1.

Page 11: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 11/19

Indierence Curves

I U (x ) = x 1x 2, then f (x 1, u ) = u /x 1.

Page 12: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 12/19

Indierence Curves

I U (x ) = x α + x 2, then f (x 1, u ) = u − x α1 .

Page 13: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 13/19

Better Than Sets and Quasiconvexity

A set X  is convex i or all x ∈ X , x  ∈ X , and all λ ∈ (0, 1),

λx  + (1− λ)x  ∈ X .

For any bundle x , the set o bundles that the consumer weakly

preers to x  is the weakly better than x  set.

The utility unction U  is quasiconcave i, or all x , the weakly

better than x  set is convex.

We say preerences are convex i there is a quasiconcave

representing utility unction, or equivalently, i all weakly better

than sets are convex.

Page 14: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 14/19

Marginal Rates o Substitution

Slope o an indierence curve: recall indierence curve through

the bundle x 

with utilityˉu  is the unction x 2 = f (x 1

,

ˉu ) satisying

U (x 1, f (x 1, u )) = u .

What is the slope o the indierence curve?

Dierentiating, ∂U 

∂x 1+

∂U 

∂x 2

∂f 

∂x 1= 0,

so∂f 

∂x 1

= −∂U /∂x 1

∂U /∂x 2

= −U 1(x )

U 2(x )

.

This is the (negative o) the MRS.

Note that∂f 

∂x 1=

dx 2dx 1

U (x )=u 

.

Page 15: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 15/19

Diminishing MRS

A unction f (x 1) is convex i or all x 1, x 1, and all λ ∈ (0, 1),

f (λx 1 + (1− λ)x 1) ≤ λf (x 1) + (1− λ)f (x 1).

f  is convex i f (x 1) ≥ 0 or all x 1. (This is the opposite o

concave.)

U  quasiconcave implies diminishing MRS, i.e., the indierence

curves are convex unctions.

Page 16: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 16/19

Example: Quasilinear utilityU (x 1, x 2) = u (x 1) + x 2, or some increasing u .

dx 2/dx 1 = −u  and so d 2x 2/dx 21 = −u .

What i u (x 1) = x α1 ?

Page 17: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 17/19

Example: perect complements

U (x 1, x 2) = min{αx 1, βx 2}, or some α, β > 0.

Page 18: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 18/19

Example: Cobb Douglas

U (x 1, x 2) = x α1 x β2 , or some α, β > 0.

Page 19: 2010_lecture_3_ho

8/7/2019 2010_lecture_3_ho

http://slidepdf.com/reader/full/2010lecture3ho 19/19

Example: Perect substitutes

U (x 1, x 2) = αx 1 + βx 2, or some α, β > 0.