20110901 argonne national labs dibble berkeley dibble-presentation… ·...

65
Please Bring Your “Out of the Box” Ideas to the High Pressure Combus<on Workshop High Pressure Combus<on Workshop At Argonne Na<onal Laboratories Aug 2011 Robert W. Dibble UC Berkeley Funded by DoE and KAUST

Upload: vudung

Post on 08-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Please  Bring  Your  “Out  of  the  Box”  Ideas    to  the  High  Pressure  Combus<on  Workshop    

High  Pressure  Combus<on  Workshop  At  Argonne  Na<onal  Laboratories  

 Aug  2011    

Robert  W.    Dibble  UC  Berkeley    

Funded  by  DoE  and  KAUST  

Buy  This  Book  !    

Out  of  the  Box  The  W  number    

3  Benjamin  Wolk  –  UC  Berkeley  

   

All    chemical  reac<ons  should  get  a  permanent  number  that  is    Decimal.    As  new  reac<ons  are  discovered,  they  can  be  assigned    Numbers  close  to  other  reac<ons.      Thus      CO  +  OH    =>  CO2  +  H            could  be    W  2.3                        hypothe<cal    new  reac<on    CO    +    OOH            =>        CO2    +      OH        could    be    W    2.3101    for  example    W    for  Westbrook,      Warnatz,    Wolfrum,  Woolbridge,  Wolker  And  Joe  Micheals    and  Jim  Miller  (because  “M”    is  “W”    upside  down  

Out  of  the  Box  

4  Benjamin  Wolk  –  UC  Berkeley  

1….Rudy  Marcus    visits  Berkeley    (Marcus  is  the  “M”  in  RRKM  )  He  Lectures  on      1…H2O(18)  in  ocean  is  different  than  H2O(18)  in  air    And      2……    CO  +  OH    =    CO2  +  O    “strange  reac<on”    He  was  so  excited  about  1,  that  he  never  got  to  2    

Rate  2  governs  at  low  temps;  Rates  1  and  3  govern  at  high  temperatures  

Ea  (kJ/mol)  A0  (cc/mol-­‐s)   b  

1 2 3 46

7

8

9

10

11

12

1000 K/T [-]

log(

k /c

m3 •

mol

-1 •

s-1

)

CO + OH = CO2 + H

Rate 1Rate 2Rate 3Sum

Rate  1  Rate  2  Rate  3    

Buy  This  Book  !    

REVIEW      1…Need  to  be  hot,    to  have  OH  radicals,                  OH  needs  to  Burn  out  fuel  before                  OH    can      burn  out  CO          CO+OH  =  CO2  +  H  2…do  not  be  too  hot  !  You  will  make  NO  3…Do  not  be  too  cold  !  need  to  be  hot  enough  to  have  OH  to  react  with  CO  4…buy  the  book  !        

Out  of  the  Box  

8  Benjamin  Wolk  –  UC  Berkeley  

1….Downsizing  is  leading  to  turbocharging,    Thus  higher  pressures,  thus  more  demand  on    Spark  electronics  and  electrodes.    Advanced    Sparking  systems  are  being  explored        “1kg  reduc+on  of  engine  mass,          2kg  reduc+on  in  vehicle  mass  “      

Out  of  the  Box    (about  1970)  

9  Benjamin  Wolk  –  UC  Berkeley  

Rolls-­‐Royce  Diesel  |  Rolls-­‐Royce.Edmunds.com  www.rolls-­‐royce.edmunds.com              Rolls-­‐Royce  Research,  Reviews  &  Latest  Prices!  Free  Info.  ►  Search  Results  The  Wankel  Rotary  Engine:  A  History  books.google.comJohn  B.  Hege  -­‐  2006  -­‐  174  pages  -­‐  Google  eBook  -­‐  Preview  The  work  done  by  several  companies  to  overcome  these  problems  is  described  in  detail,  as  are  the  economic  and  poli<cal  troubles  that  nearly  killed  the  rotary  in  the  1970s,  and  the  prospects  for  future  rotary-­‐powered  vehicles.  More  edi<ons  Add  to  My  Library▼  Popular  Science  -­‐  Feb  1971  -­‐  Page  80  books.google.comVol.  198,  No.  2  -­‐  162  pages  -­‐  Magazine  -­‐  Full  view  A  Diesel  Wankel  from  Rolls-­‐Royce  By  DAVID  SCOTT  /  PS  European  Editot  LJp  to  now,  all  Wankel  engines—  NSU,  Mazda,  Cur<ss-­‐Wright,  Mercedes-­‐Benz—have  been  preny  much  alike.  They  run  on  gasoline,  are  fired  by  spark  plugs,  ...  

Add  to  My  Library▼  The  rotor  can  take  much  more  pressure,      say    400  bar        “Wankel  boos<ng  Wankel”      

HCCI  is  not  new  !      

Lohmann  HCCI  engine,  ca  1952  (>  1949)      no<ce:  no  spark  plug    carbureted,  70$  

ALL:    find  one  (or  earlier,  bulb  engines  ca  1900.    Also,  there  are  web  sites;  old  farm  machines  

Out  of  the  Box  

12  Benjamin  Wolk  –  UC  Berkeley  

   The  Argon  Engine  at  Argonne  Labs        Argon,    mono  atomic,    with  gamma=1.67  No  vibra<onal  or  rota<onal  degrees  of  freedom    Conver<ng  Chemical  energy  to  vibra<onal  energy  Is  wasteful,  thus,      nitrogen  in  engines  is  not  op<mal  

 

The  Argon  Engine  Project    

H2-­‐O2-­‐Ar  Internal  Combus<on  Engine:    the  Mechanical  Equivalent  of  a  Fuel  Cell  

   “We believe we can build the cleanest and most efficient

engine in history (~50% and zero emissions) by optimizing the working medium (argon instead of nitrogen)”    

   

Professors  Dibble  and  Chen  Collabora<on  with  Dr.  Aceves  at  LLNL    

UC  Berkeley      

April  1,  2008  

Low  temperature  combus;on  requires  high  dilu;on  levels  -­‐  A  challenge  at  high  load  

Prof.  Bengt  Johansson  Div.  of  Combus<on  Engines,  Dept.  of  Energy  Sciences    

Energy flow in an IC engine

FuelMEP

QhrMEP

IMEPgross

lMEPnet

BMEP

QemisMEP

QlossMEP

QhtMEP

QexhMEP

PMEP

FMEP

Combustion efficiency

Thermodynamic efficiency

Gas exchange efficiency

Mechanical efficiency

Net Indicated efficiency

Brake efficiency

Gross Indicated efficiency

FuelMEP

QhrMEP

IMEPgross

lMEPnet

BMEP

QemisMEP

QlossMEP

QhtMEP

QexhMEP

PMEP

FMEP

Combustion efficiency

Thermodynamic efficiency

Gas exchange efficiency

Mechanical efficiency

Net Indicated efficiency

Brake efficiency

Gross Indicated efficiency

ηηηηη MechanicaleGasExchangmicThermodynaCombustionBrake***=

15  Slide  from    Prof.  Bengt  Johansson  

Today’s engines have efficiency (30-40%)

due to the thermodynamics of air-fuel mixtures (specific heat ratio cp/cv = γ <

1.4 for air, 1.67 for Argon)

00.10.20.30.40.50.60.70.80.91

1 3 5 7 9 11 13 15 17 19compression ratio, CR

idea

l eng

ine

effi

cien

cy

1

11 −−= γCRefficiencyengine

g =1.3

g =1.4

gasoline engines

diesel

g  = cp/cv, specific heat ratio

CR

Effic

ienc

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19

compression ratio, CR

idea

l eng

ine

effi

cien

cy

We believe we can build the cleanest and most efficient

engine in history (~60% and zero emissions)

by optimizing the working medium (argon instead of nitrogen)

1

11 −−= γCRefficiencyengine

g =1.67

g =1.3

g =1.4

gasoline engines

diesel

H2-O2-Ar engines

g  = cp/cv, specific heat ratio

Effic

ienc

y

CR

H2-­‐O2-­‐Ar  Internal  Combus<on  Engine  System:    

The  Mechanical  Equivalent  of  a  Fuel  Cell    Salvador  M.  Aceves  (LLNL)      Robert  Dibble  (UC  Berkeley)    

Next  Steps  Stopped  by  Knock,    Thus  Convert  to  Diesel  Mode  Inhale  Argon  plus  10%  hydrogen  Inject  liquid  :    H2O2  or  N2O    or    ?  

Limits  of    MicroWave  Assisted  Combus<on  (mWASP)  in  Constant  Volume  Combus<on  Chamber  

High  Pressure  Combus<on  Workshop  At  Argonne  Na<onal  Laboratories  

 Aug  2011    

B.  Wolk,  A  DeFilippo,  JY  Chen,  R  Dibble  (UC  Berkeley)  A  Nishiyama,  Y  Ikeda  (Imagineering  Inc.)  

Funded  by  DoE  and  KAUST  

Limits  of    MicroWave  Assisted  Combus<on  (mWASP)  in  Constant  Volume  Combus<on  Chamber  

High  Pressure  Combus<on  Workshop  At  Argonne  Na<onal  Laboratories  

 Aug  2011    

B.  Wolk,  A  DeFilippo,  JY  Chen,  R  Dibble  (UC  Berkeley)  A  Nishiyama,  Y  Ikeda  (Imagineering  Inc.)  

Funded  by  DoE  and  KAUST  

Research  Into  Spark  Plugs  is  Electrifying  Topic    !  

21  

•  SwRI's  DCO™  Igni+on  System  tapped  for  R&D  100  Award  •  For  immediate  release  •  Download  this  image  •  San  Antonio  —  June  22,  2011  —  A  novel  igni<on  system  for  gasoline  engines  that  

creates  a  con<nuous  spark  of  variable  energy  and  dura<on  has  received  a  2011  R&D  100  Award.  R&D  Magazine  selected  Southwest  Research  Ins<tute's  Dual  Coil  Offset  (DCO™)  Igni<on  System  as  one  of  the  100  most  significant  technological  achievements  of  the  past  year.  

•  The  DCO  Igni<on  System  is  a  con<nuous  igni<on  system  that  uses  two  automo<ve-­‐style  igni<on  coils  connected  by  a  diode  to  create  a  con<nuous  spark  of  variable  dura<on  in  high-­‐dilu<on  engines.  It  has  been  shown  to  be  more  successful  than  other  spark  igni<on  systems  in  ini<a<ng  combus<on  and  allowing  the  engine  to  operate  at  high  dilu<on  rates.  A  high-­‐dilu<on  engine  uses  excess  air  or  high  levels  of  exhaust  gas  recircula<on  (EGR)  to  cool  combus<on  temperatures,  leading  to  cleaner  emissions  and  less  fuel  consump<on.  It  also  lessens  the  poten<al  for  engine  knock,  which  can  lead  to  severe  engine  damage.  

Electrically  Controlled  Combus<on    Op<miza<on  System  (ECCOS)

Combus<on  Characteris<cs                and  Engine  Performance  

Lean  Misfire  Limit  Comparison    at  690  kPa  BMEP  

ECCOS  Corona  Discharge  at  Various  Air  Pressures  

0  Bar,  200mj    6.9  Bar,  1600mj    

13.8  Bar,  1800mj      20.7  Bar,  1700mj    

Electrically  Controlled  Combus<on    Op<miza<on  System  (ECCOS)

about 2009 Bought out by Borg Warner “Anticipating need for sparks at higher pressures, lean burn, higher EGR”

Combus<on  Characteris<cs                and  Engine  Performance  

Historical notes: Isupport from California Energy Commission

Out  of  the  Box  

26  Benjamin  Wolk  –  UC  Berkeley  

1….Laser  Spark  Plug  at  Argonne  Labs    

MTZ:    June  2006  p476  ar;cle  by  Spicher  et  al.  from  Karlsruhe  

28  

Concept  of  new  plasma  genera<on  technique  

>  Plasma  absorb  the  light    >  It  is  difficult  to  make  stable          cold  pressure  plasma  in        atmospheric,  high  pressure  

Discharge  of  spark  igni<on  absorb  the  microwave    Plasma  is  made  by  spark  igni<on  before,  microwave  is  used  by  pumping  energy  

†Y.  Ikeda,  et.  Al.,  44th  AIAA  Aerospace  Sciences  Mee<ng  and  Exhibit,  9-­‐12January  2006,  Reno,  Nevada,  AIAA  Paper  No.2006-­‐965,  2006.    

Rela<on  between  incident  energy  and  transmined  energy  of  laser  induced  plasma  †  

Laser  

MW  

plasma  source  (spark  discharge)    

plasma  

Small  plasma  source  (spark)  +  Pumping  (MW)  

29  

Spark  discharge    Microwave  enhanced  plasma  

Spark  plug  for  automobile   Microwave  enhanced  plasma  

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000

Wavelength,  nm  

Intensity

,  a.u.  

0

1000

2000

3000

4000

5000

6000

100 200 300 400 500 600 700 800 900 1000

Wavelength,  nm  

Intensity

,  a.u.  

OH*  

OH*  

30  

Development  of  antenna  in  spark  plug    Prototype  of  spark  plug  having  a  microwave  antenna  

Spark  discharge  (0.1MPa)   MW  enhanced  plasma  (0.1MPa)   MW  enhanced  plasma  (1.0MPa)  

>  In  order  to  generate  and  sustain  plasma  in  engine  cylinder  without  changing  exi<ng  engine  system,  a  microwave  antenna  was  built  into  a  spark  plug.    

>  Antenna  was  made  by  tungsten  wire  having  diameter  of  1mm.  

>  Plasma  was  successfully  generated  elevated  pressure  condi<on  of  1.0  MPa  with  the  prototype  spark  plug.  

31  

Effect  of  microwave  igni<on    -­‐  Reduc<on  of  cyclic  varia<ons  -­‐  

16   18   20   22   24   26  A/F  

0  

5  

10  

COVI

MEP,  %

 

Engine speed A/F MW

qig

deg.BTDC Pmax

kPa IMEP kPa

Cpi %

2000rpm 20 Off 48 (MBT) 1506 270.7 9.49

2000rpm 20 On 56 (MBT) 2098 277.2 1.24

OK,  several  examples  of  novel  sparks:  Now:  

Internal  Combus<on  Engine  Opera<on  with  a  microWave  Assisted  Spark  Plug  

DeFilippo,  Chen,  and  Dibble    University  of  California  –  Berkeley  

Nishiyama    and  Ikeda  Imagineering,  Kobe,  Japan  

Spring  2011mee<ng  of  DoE  AEC  at  Sandia  Livermore  CA  

32  

A  microwave-­‐assisted  spark  plug  was  tested  on  a  CFR  single-­‐cylinder  engine  

33  

The  microwave  spark  plug  fires  a  regular  spark  and  emits  microwaves  

Spark control signal

MW control signal

Spark

MW out

6µsec

20µsec

Pulse shape of fixed duty type power supply

Over lap for output delay time

Magnetron  from  Microwave  Oven  

Power  Supply  

Coaxial  Converter  

34  

Magne

tron

 Pow

er  [kW]  

2.7  

0  

Lean  combus<on  improves  efficiency      

35  

Microwave  enhancement    extends  lean  Limit  

36  

At  lean  condi<ons,  microwaves  reduces  misfire  and  “par<al-­‐burn”    

37  

Spark    66°  BTDC  

At  stable  condi<ons,  combus<on  is  unaffected  by  microwave  enhancement  

38  

Spark    36°  BTDC  

“Flame  development  <me”  is  <me  from  spark  to  10%  of  cumula<ve  heat  release  

39  

10  %  of  total  

Spark  

c  

°CA10%  Heat  Release  

c  

flame  development  >me  

Our  mWASP  is  less  effec<ve  at  pressures  higher  than      ̴4.5  bar,      why?    

40  

Paschen  Curve    (1889)    

41  (  Torr  –  cm  )  

(  Volts    )  

Plasma  Growth  Region  

High-­‐energy  electrons  ionize  molecules  and  cause    chemical  reac<ons  

Dissocia>on  

O Oe  

e  

O O

e   e  

O O

e  

OO

e  

Ioniza>on  

O O

O O

O OO O

O O

…but  electrons  lose  energy  through  elas>c  

collisions  

e  

42  

e  

Included  ions:    CH4+,  O2+,  O+,  N2+,  NO+,        O2-­‐,  CHO+,  CO3-­‐,  etc.      

Widely  used  Race  Car  Igni<on  System  

43  

The  MSD  igni<on  system  did  not  outperform  the  standard  spark  plug  

44  

Conclusion:  Conven<onal  spark    plugs,  with  Mul<ple    Spark  Discharge  “  MSD  “  Does  not  improve    Igni<on    

Next  steps:  

•  Inves<gate  pressure  effects    – Boosted  pressure  in  CFR  – Combus<on  Bomb  

•  Expand  numerical  modeling  capabili<es  – Complete  chemical  mechanism  – 3-­‐D  igni<on  simula<on  

•  Upgrade  microwave  generator  by  factor  of  10    

45  

Experiment  Condi<ons  and  Metrics  

•  1.6  L  internal  volume  •  Premixed  methane-­‐air  •  Flame  Development  Time  (FDT)  – Time  from  spark  to  10%  of  total  heat  release  

•  Flame  Rise  Time  (FRT)  – Time  from  10%  to  90%  of  total  heat  release  

46  

Timing  Diagram  for  Spark  Event  and  MW  Emission  

47  

Pulsed  opera<on:  4  μs  ON,  12  μs  OFF  

 2.5  ms  0.25  ms  

2.45  GHz  magnetron  500  W  average  power  2.6  kW  peak  power    

(~30  mJ)  

(0.5  –  3.75  ms)  

“Flame  development  <me”  is  <me  from  spark  to  10%  of  cumula<ve  heat  release  

48  

10  %  of  total  

Spark  

c  

°CA10%  Heat  Release  

c  

flame  development  >me  

MW  Decreases  Flame  Development  Time  (0-­‐10%)  for  all  Equivalence  Ra<os  (1  bar)  

49  0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

0

10

20

30

40

50

60

70

80

90

100

Equivalence Ratio

Flam

e De

velo

pmen

t Tim

e [m

s]

Spark IgnitedMW Assisted (2.5 ms)

Flame  Rise  Time  (10-­‐90%)  Unaffected  by  mWASP  for  all  Equivalence  Ra<os  (1  bar)      

50  0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

0

20

40

60

80

100

120

140

160

180

Equivalence Ratio

Flam

e Ri

se T

ime

[ms]

Spark IgnitedMW Assisted (2.5 ms)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.50

10

20

30

40

50

60

70

80

90

Initial Pressure [bar]

Flam

e De

velo

pmen

t Tim

e [m

s]

Spark IgnitedMW Assisted (2.5 ms)

mWASP  Enhancement  of  FDT  (0-­‐10%)  diminishes  with  Pressure  

51  

φ  =  0.75  

φ  =  1.0  

4  bar  limit  !  

Boosted  HCCI  for  High  Power  Output    Using  Ion  Sensing  for  Ringing  Detec>on  

Robert Dibble Samveg Saxena

University of California

at Berkeley

Argonne  Na+onal  Laboratory  

August  29,  2011  

Argonne National Laboratory – August 29, 2011 Bob Dibble, Sam Saxena - Berkeley 53

Transporta+on  in  the  1800s  

 Most  vehicles  had     1  HP    Exhaust  emissions  

1000X  higher  than  today’s  vehicles  

 New  jobs  to  deal  with  “exhaust”  

  Lot’s  of  noise,  and  a  foul  odor  

 Growing  horse-­‐fuel  takes  up  1/3  of  available  cropland  

Source:  www.histografica.com  

Argonne National Laboratory – August 29, 2011 Bob Dibble, Sam Saxena - Berkeley 54

The  Limits  Constraining  HCCI  Power  Output  

0

1

2

3

4

5

6

7

8

0 5 10 15

Gross  IMEP

 (Bar)

Combustion  Timing,  CA50  (deg.  ATDC)

Phi=0.25 Phi=0.30

Phi=0.35 Phi=0.40

Phi=0.45 Phi=0.50

0.50

0.45

0.40

0.35

0.300.25

Ringing  Limited  Zone  

Low  Intake  

T  &  

Misfire  Limited  Zone  

Peak  Pressure  limited  zone  

Higher  Intake  Pressure  

Ion  Sensing  in  HCCI  Engines  

Ion  sensors  detect  electrons  from  chemi-­‐ioniza<on  reac<ons  

CH  +  O    CHO+  +  e-­‐  

CHO+  +  H2O    H3O+  +  CO  

Ion  sensing  vs.  Pressure  sensing  Require  a  sensor  for  detec<ng  

combus<on  <ming    

Pressure  Sensing  •  Global  measurement  

•  Expensive    

Ion  Sensing  •  Local  measurement  •  Inexpensive  

Ion  Sensing  ineffec<ve  at  low  ϕ,  but  useful  for  ringing  

•  Ion  sensors  can  effec<vely  detect  combus<on  <ming  in  HCCI  for  control  

•  Ineffec<ve  at  low  equivalence  ra<o,  where  there  is  a  low  concentra<on  of  ionized  species  

–  Saxena,  et  al.  Increasing  signal-­‐to-­‐noise  ra<o  of  sparkplug  ion  sensors…,  33rd  Interna<onal  Combus<on  Symposium  

•  Ringing  occurs  at  higher  equivalence  ra<os  -­‐    Ion  signal  useful  for  detec<ng  ringing  

–  Saxena,  et  al.  Characteriza<on  of  HCCI  ringing  behavior  using  ion  sensors,  accepted  for  2011  SAE  Powertrains,  Fuels,  Lubricants  Mee<ng  -­‐  SAE  2011-­‐01-­‐1777  

Please  Bring  Your  “Out  of  the  Box”  Ideas    to  the  High  Pressure  Combus<on  Workshop    

High  Pressure  Combus<on  Workshop  At  Argonne  Na<onal  Laboratories  

 Aug  2011    

Robert  W.    Dibble  UC  Berkeley    

Funded  by  DoE  and  KAUST  

Buy  This  Book  !    

REVIEW      1…Need  to  be  hot,    to  have  OH  radicals,                  OH  needs  to  Burn  out  fuel  before                  OH    can      burn  out  CO          CO+OH  =  CO2  +  H  2…do  not  be  too  hot  !  You  will  make  NO  3…Do  not  be  too  cold  !  need  to  be  hot  enough  to  have  OH  to  react  with  CO  4…buy  the  book  !        

0

10

20

30

40

50

60

70

80

-­‐10 0 10 20 30 40

Pressure  (B

ar)

Crank  Angle  Degree  (CAD  ATDC)

PressureIon

Ringing

Require  effec<ve  sensing  to  avoid  ringing  damage  to  an  engine  

  Ringing  –  pressure  waves  coinciding  with    excessive  heat  release  rates  

  Can  damage  an  engine  over  <me  –  ECU  must  measure  ringing  intensity  

  Most  acous<c  wave  energy  near  5  to  6  kHz  (dampened  by  cylinder  block/lining,  thus  require  in-­‐cylinder  sensor)  

  Pressure  pulsa<ons  can  be  order  of  magnitude  larger  than  knocking  

Argonne National Laboratory – August 29, 2011 Bob Dibble, Sam Saxena - Berkeley 62

Ringing  Intensity  vs.  Ion  Ringing  Intensity  

2

max

max

Ion

Ion RI

in

atm

P dP dtIon

α⎛ ⎞⋅ ⋅⎜ ⎟⎝ ⎠≈

2

maxmax

max

1RI2

dPdt RTP

βγ

γ

⎛ ⎞⎜ ⎟⎝ ⎠≈

Ringing  Intensity  

Ion  Ringing  Intensity  

J.A.  Eng  SAE  2002-­‐01-­‐2859  

 Requires  expensive  in-­‐cylinder  P  sensing  

S.  Saxena  SAE  2011-­‐01-­‐1777  

 No  in-­‐cylinder  P  required  

Argonne National Laboratory – August 29, 2011 Bob Dibble, Sam Saxena - Berkeley 63

Power  output  increases  with  higher  Pin,  max  at  intermediate  CA50  

ϕ=0.45,  1800  RPM  Overall  Trends:  

 

 IMEP  increases  with  higher  Pin  

 IMEP  is  highest  at  intermediate  CA50s  

0

1

2

3

4

5

6

7

8

0 5 10 15

Gross  IMEP

 (Bar)

Combustion  Timing,  CA50  (deg.  ATDC)

Pin=1.0 Pin=1.2

Pin=1.4 Pin=1.6

Pin=1.8 Pin=2.0

2.0

1.81.6

1.41.2

1.0

Argonne National Laboratory – August 29, 2011 Bob Dibble, Sam Saxena - Berkeley 64

Ringing  becomes  a  more  significant  constraint  at  higher  Pin  ϕ=0.45,  1800  RPM  

Overall  Trends:    

 Ringing  decreases  with  lower  Pin  

 Ringing  decreases  with  delayed  CA50  

0

5

10

15

20

25

0 5 10 15

Ringing    In

tensity

 (MW/m

2 )

Combustion  Timing,  CA50  (deg.  ATDC)

Pin=1.0 Pin=1.2

Pin=1.4 Pin=1.6

Pin=1.8 Pin=2.0

2.01.8

1.6

1.4

1.2

1.0 Ringing  Limit

Out  of  the  Box  

65  Benjamin  Wolk  –  UC  Berkeley