2013 nees webinar lowes lehman slides

Upload: mostafa-nouh

Post on 14-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    1/102

    Performance,Analysisand

    Design

    of

    Flexural

    Concrete

    Walls

    Reducing Earthquake Losses:

    From Research To Practice

    Reducing Earthquake Losses:

    From Research To Practice

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    2/102

    Performance,Analysisand

    DesignofFlexuralConcreteWalls

    DawnLehmanandLauraLowes

    UniversityofWashington,Seattle

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    3/102

    Acknowledgements UWResearchers

    Dr.AnnaBirely,TexasA&MUniversity

    Dr.JoshuaPugh,EDG,Inc.

    JacobTurgeon,Hammel,GreenandAbrahamson,Inc.

    UIUCResearchers

    Dr.DanielKuchma,UniversityofIllinois AnahidBehrouzi,UniversityofIllinois

    Dr.ChrisHart,ThorntonTomasetti

    KenMarley,WJE

    AndrewMock,UniversityofIllinois

    ProfessionalEngineers

    RonKlemencicandJohnHooper,MKA

    AndyTaylor,KPFF

    NeilHawkins,UWandUIUC

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    4/102

    Acknowledgements

    Fundedbythe

    National

    Science

    Foundation

    throughtheNEESRprogram

    SupplementalfundingprovidedbytheCharles

    Pankow Foundation

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    5/102

    ResearchObjectives

    1. Establish the seismicperformance of modern

    reinforced concrete walls.

    2. Develop response anddamage-prediction

    models for these systems.

    3. Advance seismic design

    of walled buildings.PhotocourtesyofMKASeattle

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    6/102

    CurrentDesign

    Process

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    7/102

    DefinitionofShearWallTerms

    Boundary

    Zone:Heavy Vertical

    And TransverseSteel

    Web:Light Vertical

    And TransverseSteel

    hw

    lw

    twlb

    (http://www.jacobsschool.ucsd.edu)

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    8/102

    AvoidingDamageinWalls:HighShear

    shear force V

    diagonal compression strut

    crushed web concrete

    From: Seismic Design of Cast-in-Place Concrete Special Structural Walls Moehle et al. 2011

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    9/102

    AvoidingDamageinWalls:InadequateConfinement

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    10/102

    WallDesigntoAchieveDuctileFlexureControlledResponse

    1. Proportionwall

    soshear

    stress

    demand

    islow

    forelasticforce (typicallywithsystemtorsion

    includedincalculation)

    2. Designflexuralreinforcementtoachievebasemomentcapacity(similartoacolumn)

    3. Designforsheardemandcorrespondingto

    flexuralyieldingofwall(capacitydesign)

    4. Detailboundaryelementwithrequired

    confinement

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    11/102

    AchievingFlexuralYielding

    Vu,CS oVu,CS

    (b) Wall elevation

    Vu,CSM

    u,CS

    Mu,CS Mn,CS

    (c) Shear (d) Moment

    capacity-amplified

    code forces

    code forces

    (a) Lateral forces

    Idealized Response: Flexural Yielding at Base of Wall

    From: Seismic Design of Cast-in-Place Concrete Special Structural Walls Moehle et al. 2011

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    12/102

    SpecialRCShearWalls(ACI21.7)1. Finddemands(ELForMRSA)

    2. Provideminimum

    reinforcement

    (21.7.2).

    3. Capacitydesign?

    No,designforPu,Mu andVu,basedonprescribedlateralloadsandshear (21.7.3).

    Yes,higherforshear4. Designanddetailforshear(21.7.4).

    5. Designanddetailforflexure(Pu andMu)

    LengthofBoundary

    Element

    ConfinementofBoundaryElement ifendcompressionhigh(21.7.6).

    6. Couplingbeamsoftenused (21.7.7).Diagonallyor

    conventionallyreinforced.

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    13/102

    DesignIssues/Uncertainties Demand

    Overstrength,torsion,nonlineardynamicamplificationeffects.

    Sheardemand/capacity

    Demanddependsonaccuracyofanalysis.

    ACI3812011givesmaximumshearstressof8fc (psi).

    Sometargetshearstresslevelsof46fc (psi)underelasticdemands(withtorsionincluded).

    Confinement Constructability

    Splices

    Typicallyeveryotherfloorandbase.

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    14/102

    Experimental Program

    UNIVERSITY of ILLINOIS

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    15/102

    TestProgram

    Rangeofconfigurations

    SimulatesACI31811

    Actualdetails(confinement/splices)

    Realisticdemands(shear/axial)(Courtesy of MKA, Seattle)

    CShaped

    Wall

    CoupledWalls

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    16/102

    PlanarWallTestSpecimens

    1/3scalemodelof

    bottom3storiesofa10storywall

    FullScale:

    12ft.storyheight18in.thick

    30ft.long

    Lab:4ft.storyheight

    6in.thick

    10ft.long

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    17/102

    A B

    A

    B

    LVL 3

    LVL 2

    LVL 1

    LVL 0

    1'-8" 1'-8"6'-8"

    A

    10'-0"

    MARK REINFORCEMENTEMBED

    LENGTH

    LAP

    LENGTHA (3) #4 @ 3" 1' - 8" 2' - 0"

    B (2) #2 @ 6" 7" 9"

    REINFORCEMENT SCHEDULE

    Section A

    B

    NOTES:

    Scale: Not to Scale

    #2 TIES @ 2" o.c. (TYP.)

    Detail B

    Scale: Not to Scale

    HOOKS OVERLAP TIE3" (TYP.)

    2(TYP

    .)

    PlanarWallTestSpecimens

    BoundaryElements(3.5%)

    SpliceatBaseofWall

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    18/102

    PlanarWallTestMatrix

    Moment-to

    Shear RatioDistribution of

    ReinforcementSplices?

    STUDY

    PARAMETERS

    Wall 1

    Wall 2

    Wall 3

    Wall 4

    Mb = 0.71hVbVb = 2.8f c = 0.7Vn

    UNIFORM

    NO

    YESBE at EDGE

    BE at EDGE

    BE at EDGE

    YES

    YES

    Mb = 0.50hVbV

    b

    = 4.0f c = 0.9Vn

    Mb = 0.50hVbVb = 4.0f c = 0.9Vn

    Mb = 0.50hVbVb = 4.0f c = 0.9Vn

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    19/102

    NEESandPriorTestsNEES Tests

    ACICompliant

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    20/102

    PlanarWallTestatMUSTSIM@UIUC

    Lowerstoriesofmid

    risebuildingstoriessimulatedinlab.

    Shearandmoment

    applied to

    varysheardemand Axialloadof0.1Agfc.

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    21/102

    PW2: heff =0.5h,concentratedBE,splice

    -300

    -200

    -100

    0

    100

    200

    300

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    Ba

    seShear(kips)

    Top Drift (%)

    W

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    22/102

    PW1: heff =0.7h, concentratedBE,splice

    -300

    -200

    -100

    0

    100

    200

    300

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    Ba

    seShear(kips)

    Top Drift (%)

    W

    Spalling above splice

    Spalling towards baseSteel fracture at base

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    23/102

    -300

    -200

    -100

    0

    100

    200

    300

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    Ba

    seShear(

    kips)

    Top Drift (%)

    W

    PW3: heff =0.5h;uniformreinf.;splice

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    24/102

    PW4: heff =0.5h, concentratedBE, nosplice

    BaseShear(

    kips)

    Top Drift (%)

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    25/102

    SummaryofTestResults

    Force-displacement envelopes

    for all specimens

    PW1: Low shear

    PW2: Splice

    PW3: Uniform

    reinforcement

    PW4: No splice

    TexasA&MSeminar 32

    PW 1 PW 2

    PW 3 PW 4

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    26/102

    VerticalStrain:+1.0%Drift

    PW11.5% drift

    PW21.1% drift

    PW31.25% drift

    PW41.0% drift

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    27/102

    ShearStrain:+1.0%Drift

    PW1 PW2 PW3 PW4

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    28/102

    2nd (Compressive)PrincipalStrain

    PW1 PW2 PW3 PW4

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    29/102

    CoupledWallTestSpecimen Geometrytakenfrombuildinginventory

    Couplingbeams(AR=2)and

    diagonalreinforcement. Codebaseddesign(IBC,ACI)

    Pierwallsarecapacity

    protectedforshear(IBC

    SeismicDesignManual). Seismicloadingresultsin

    yieldingincouplingbeams

    andwallpiers.

    Additionaldesignparameters Nonlinearanalysesofthe

    designwereusedtoassess

    behavior(Mohr,2007)Coupling beams:

    aspect ratio = 2.0

    diag = 1.3%

    Vn = gcAf2.6

    Boundary Element

    long = 3.7% trans = 1.6%

    Web

    long = 0.27% horz = 0.27%

    0.54%

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    30/102

    WallPiersYield

    0.50%

    CB3

    -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    3rd

    Story Drift [ % ]

    Base

    Shear[kips

    ]

    0.50%

    -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    3rd

    Story Drift [ % ]

    Base

    Shear[kips

    ]

    CBYield

    Walls Yield

    CB1Yields

    0.75%

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    31/102

    InitialSpalling

    1.00%

    Initial Spalling

    CBYield

    Walls Yield

    1.50%

    C

    B3

    ModerateSpalling

    ModerateSpalling

    CB2

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    32/102

    ProgressionofDamage to2.25%

    2.20% 2.27%

    -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    3rd

    Story Drift [ % ]

    Base

    Shear[kips

    ]

    1.80%

    2.00%

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    33/102

    2.0% drift (Moderate

    Spalling near failure)

    0.50% drift

    (TWP Yields)

    ShearStrains1.00% drift

    (Initial Spalling)

    0 m 6 m

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    34/102

    PrincipalCompressiveStrains

    -6 m 0 m

    2.0% drift (Moderate

    Spalling near failure)0.50% drift

    (TWP Yields)1.00% drift

    (Initial Spalling)

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    35/102

    CouplingBeamRotation

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    36/102

    AxialForceinCompressionPier

    L

    CWP

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    37/102

    CshapedWallCrossSection

    4 x 6 Flanges (Coupled wall)

    10 x 6 Web (planar wall)

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    38/102

    1.44in(1.0%drift)

    -2 -1 0 1 2 3 4

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    % Drift

    Moment(kip-ft)

    Base Moment vs. 3rd Story Drift

    WestFlangeEastFlange3rd Story Shear and Base Moment:

    Fx = 217 kip

    My = 6,075 kip-ft

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    39/102

    2.16in(1.5%drift)

    -2 -1 0 1 2 3 4

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    % Drift

    Moment(kip-ft)

    Base Moment vs. 3rd Story Drift

    3rd Story Shear and Base Moment:Fx = 201 kip

    My = 5,765 k-ft

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    40/102

    3rd Story Shear and Base Moment:Fx = 198 kip

    My = 5,612 k-ft

    3.24in(2.25%drift)

    -2 -1 0 1 2 3 4

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    % Drift

    Moment(kip-ft)

    Base Moment vs. 3rd Story Drift

    WestFlangeEastFlange

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    41/102

    +5.1in(3.512%drift)

    -2 -1 0 1 2 3 4

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    % Drift

    Mome

    nt(kip-ft)

    Base Moment vs. 3rd Story Drift

    Pushed to 3.5% to

    evaluate post-lateral

    failure response. Retained almost 50% of

    strength

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    42/102

    EvaluationforPerformanceandDesign:

    ComparisonwithPriorTestData

    Wallace 2011

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    43/102

    SlenderWallExperimentalDataSet

    Assembledtoprovideinsightintothefactorsthat

    affectdamageanddriftcapacity

    Includes

    Datafrom49testsfrom15testprograms

    Dataforwallswithshearspanratio>2

    DataforrectangularandflangedRCwalls

    Doesnotinclude

    Wallslessthan2in.thick

    Wallswithopenings

    Wallssubjectedtomonotonicordynamicloading

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    44/102

    OverviewofSlenderWallDatabase(Birely2012)

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    45/102

    DamageModesforThisDiscussion

    Compression Failure Bar Rupture Failure

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    46/102

    TensileStrainatMn

    Compression

    Failure

    Bar RuptureFailure

    Wall that are tension controlled still fail

    in compression damage mode

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    47/102

    Confinement

    Resultssuggestyouneedalottomakea

    differenceindriftcapacity

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    48/102

    ShearDemandCapacityRatio

    Compression

    Failure

    Bar Rupture

    Failure

    Mixed

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    49/102

    Modelingthe

    NonlinearResponse

    ofWallsResponse

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    50/102

    NonlinearModelsTypicallyEmployedforSimulationofWalledBuildings

    Fiber Model (M,P) = function(,)

    Uniform Shear

    Model

    (V) = function()

    Lumped PlasticityModel (e.g., SAP2000)

    Distributed PlasticityModel (e.g., OpenSees)

    Planar Element(e.g., Perform)

    fiberandshear

    sections(typ.)

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    51/102

    ForceBasedFiberTypeBeamColumnElement(OpenSees) Assume:linearmomentdistribution,constantaxialload >

    solveforsectionstrainandcurvaturetosatisfycompatibilityreqts.

    Flexural section

    Shear section

    Elastic section w/ reduced shear stiffness,

    per Oyen (2006)

    Fiber-type section

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    52/102

    FiberSection:ConcreteModel

    CyclicmodelperYassin (1994)

    Compression:

    ModifiedKentPark(Scottetal.1982)

    Unconfinedfibers:

    Confinedfibers:

    K,0,20 perSaatcioglu andRazvi (1992)

    Tension: Elasticstiffness:

    StrengthperWongandVecchio (2006):

    PostpeakstiffnessperYassin (1994):

    4

    57000

    0.05

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    53/102

    FiberSection:Steel Model

    MenegottoPintoFilippou

    model(1983)

    4

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    54/102

    ModelEvaluation Datasetof21walls

    Slenderwalls

    (M/hlw >

    1.5)

    Exhibitingflexuralfailure

    modes:

    Modelevaluatedonthe

    basisofsimulatedstiffness,

    strengthanddriftcapacity

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    55/102

    No.of

    I.P.

    No. of

    SpecsMean COV Mean COV Mean COV

    3 21 0.97 0.09 0.98 0.10

    Mesh

    Dependent5 21 1.00 0.08 0.99 0.10

    7 21 1.00 0.09 0.99 0.10

    ModelEvaluationforFlexuralFailure

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    56/102

    LocalizationofDamage/Deformation

    Specimen WSH4

    (Dazio et al. 2009)

    0.63%

    Inelastic Localization

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    57/102

    ToAchieveMeshObjectiveResults

    Regularizematerialresponse

    Thisistypicallydoneincontinuumanalysis.

    Useamaterialenergyandameshdependentlengthtodefine

    thepostpeak(softening)portionofthestressstraincurve.

    ColemanandSpacone (2001)proposedthisapproachforbeamcolumnelements,butprovidedlimited

    recommendationsforthematerialenergytobeused.

    Todetermine

    material

    energy

    Useexperimentaldatafromwalltests(concrete)andcoupon

    tests(steel)

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    58/102

    MaterialRegularization:PlainConcrete

    3-I.P. Element

    LIP,1

    LIP,1

    LIP,2

    Constant material energy

    Mesh dependent length

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    59/102

    MaterialRegularizationRecommendations

    Bare Bar Regularized

    ConcreteCrushingEnergy Unconfined:Gfc =2fc (N/mm)

    Calibratedusingdatafrom2planarwallspecimensconstructedentirelyofunconfinedconcrete.

    Confined:Gfcc =1.70Gfc Calibratedusingdatafor12planarwallspecimens

    constructed

    of

    unconfined

    and

    confined

    concrete.

    SteelPostYieldHardening ComputedusingASTMgagelengthformaterialtesting

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    60/102

    ImpactofRegularizationWSH4 Specimen (Dazio et al., 2009)

    No regularization of

    material response

    Regularization of

    material response

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    61/102

    SimulationUsingRegularizedModel Forcebasedbeam

    columnelement

    Fibertypeflexural

    section Concreteandsteel

    modelsareregularized

    Steelassumedtobuckle

    whenconcrete

    compressivestrength

    is

    lost

    Elasticshearsection

    (0.1GcAcv)

    3elementsusedtomodeleachwall

    specimen

    3to7sections/I.P.sper

    element

    WSH4 (Dazio et al. 2009):

    Crushing/Buckling Failure

    WSH1 (Dazio et al. 2009):

    Rupture Failure

    RW1 (Thompson and Wallace 2004):

    Buckling/Rupture FailureSW6 (Vallenas et al. 1979): High

    Shear and Crushing/Buckling Failure

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    62/102

    FailureMode

    (3EL/7IP)Mean COV Mean COV Mean COV

    Crushing

    (12Specimen)0.94 0.04 0.98 0.10 1.02 0.17

    BucklingorRupture

    (9Specimens)0.99 0.06 0.99 0.10 1.12 0.25

    AllFlexure 0.96 0.04 0.98 0.06 1.06 0.17

    RegularizedLineElementModelResults

    CShapedWalls

    (6Specimen)0.97 0.07 1.07 0.11 0.99 0.17

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    63/102

    EvaluationofCurrent

    DesignProcedures

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    64/102

    EvaluationProcess

    Design8idealizedcorewallbuildingsranginginheight

    from16to30stories

    DesignusingcurrentCodesandstandardpractice:

    DemandsdefinedperASCE7(2010)

    WallssizedforshearperSeismicDesign

    of

    Cast

    in

    Place

    ConcreteSpecialStructuralWallsandCouplingBeams(NIST

    2011)

    Wallcapacities

    and

    detailing

    determined

    per

    ACI

    318

    (2011)

    EvaluatewallsusingtheFEMAP695Methodology(ATC

    2009)

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    65/102

    BuildingDesigns

    loading direction

    considered

    Seismic weight = 170 psf

    Gravity weight = 190 psf

    Wall axial load at base = 0.1fcAg

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    66/102

    NumericalModelUsedforEvaluation

    ag(t)

    CoreWall

    P-Column(Leaning)

    Regularizedfibertypeforce

    basedbeamcolumnelement

    1elementwith5integration

    pointsperstory

    Elastic,grosssectionshearstiffnessemployed(shear

    stiffness=GAcv)

    Impactoflargedisplacementson

    walldemands(i.e.pdeltaeffects)

    wasincluded

    2%Rayleighdampingemployed

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    67/102

    FEMAP695UsedforEvaluation

    SMT

    ST1

    T1= Cu Ta Determines

    1. Probability of collapse in

    the MCE, and

    2. If the design procedure (R-factor, etc.) is acceptable.

    CollapseMargin Ratio=

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    68/102

    Nonlinear

    Analysis

    Results(ELFProcedureDesigns)

    MCE

    DBEVn,pr

    Ground Motion Intensity Ratio = ST1/SMT

    flexural failure

    shear failure

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    69/102

    Developmentof

    ImprovedDesign

    ProceduresforWalls

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    70/102

    ConsiderationsforWallDesign

    Sheardesign

    Capacitydesignforshearisrequired

    Designforincreasedsheardemandtoensurethat

    shearcapacitynotexceededpriortoflexuralyielding

    Flexuraldesign

    Designenvelopetoensurethatflexuralyielding

    occursinexpectedlocations

    Rfactorcalibratedtoachievedesiredcollapse

    probability

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    71/102

    CapacityDesignforShear

    Sheardemandincreasedtoaccountfor

    FlexuralOverstrength

    DynamicAmplification

    Currentdesign

    method

    (ASCE

    7and

    ACI

    318)

    Vn Vuwith =0.6

    Capacitydesignforshear

    Vn VuwithVu

    = voVu

    Flex. Overstrength

    Dyn. Amplification

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    72/102

    FlexuralOverstrength

    ag(t)

    Shear, V Moment, M

    VE MEVu Mu

    RR

    Mu

    Mn

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    73/102

    FlexuralOverstrength

    ag(t)

    Shear, V Moment, M

    VE MEVu Mu

    RR

    Mu Mn

    Mpr= oMu

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    74/102

    FlexuralOverstrength

    ag(t)

    Shear, V Moment, M

    VE MEVu Mu MprVpr

    R/

    o

    Mpr= oMu

    Dynamic Amplification

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    75/102

    DynamicAmplification

    heff

    1

    stmode

    2

    nd

    mode

    total

    Base Moment Demand

    Base Shear Demand

    + + =elastic

    model

    DynamicAmplification

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    76/102

    y p

    h

    eff

    Mu

    Vu

    1

    stmode

    2

    nd

    mode

    totalu

    nreduced

    tota

    lreduced

    Assume all

    modes are

    reduced

    equally

    + + =

    DynamicAmplification

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    77/102

    y p

    Mu

    heff

    Vu

    1st

    mode

    2nd

    mode

    totalr

    educed

    Only 1st

    mode

    demands

    limited due

    to inelasticaction in 1st

    mode

    heff

    Mu

    Vu

    1stmode

    2nd

    mode

    totalunreduced

    totalreduced

    Assume all

    modes are

    reduced

    equally

    + + =

    + + =

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    78/102

    Designandanalyzeasetofprototypewalled

    buildings CompareshearfromITHAwithdesignshear

    Buildingdesigns

    64Buildings

    Buildingheights:N=6 24stories

    Fundamentalbuildingperiods:T1= 0.08N 0.20N Forcereductionfactors:R=2,3,4

    To

    Determine

    a

    Capacity

    Design

    MethodforShear

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    79/102

    IdealizedBuildings

    N = 16, 20, 24 storiesN = 6, 8, 12 stories

    loading

    direction

    Seismicweight=170psf

    Gravityweight=190psf

    Wallaxialloadatbase=0.1fc

    Ag

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    80/102

    SeismicDemandforITHA

    7syntheticgroundmotionrecords

    Providedconsistencyindemandbetweendesignspectrumusedfordesignandearthquakemotions

    usedforevaluation

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    81/102

    ShearDemandComparison

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    82/102

    ShearDemand

    Components:overstrength,o,anddynamicamplification,v

    o 1.4

    Dynamic Amplification, v

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    83/102

    DynamicAmplification,v Mostexistingmodelsresultinimpreciseprediction

    ofv

    andhighconservatismfortallerbuildings

    SEAOC(2008)

    NZ3101(2004)

    Priestleyetal.(2007)

    MRSAmethodbyEibl etal.(1998)isbestmodel

    1st modecontributiontoshearisreducedbyRandelastic/

    unreducedcontributionsfromallothermodesareused

    (Eibl etal.1988)

    Providesminimaldispersionandslightlyconservative

    estimatefor6 12storybuildingsbutlargerdispersion

    andinaccuracy

    for

    16+

    story

    buildings

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    84/102

    ModifiedMRSAMethod

    Eibl Method: Reduce 1st mode elastic shear contribution

    Proposed Modified MRSA Method: Reduce largest elastic shear

    contribution

    Eibl et al. (1988): MRSA Method

    Proposed Modified MRSA Method

    Building Height (Stories)

    RecommendedCapacityDesign

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    85/102

    ProcedureforShear

    Vn VuwithVu= voVu o=1.4toaccountforflexuraloverstrength

    v determinedusingModifiedMRSAmethod

    Sheardemandissummationofmodelcontributions

    withonlythemodethatcontributesthemosttothe

    baseshear(1st or2nd typically)reducedbyR

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    86/102

    ValidationofCapacityDesignProcedure

    Designnewsuiteofwalledbuildingsusingtwo

    proceduresforshear CapacitydesignforshearwithR=2,3,4

    CodebaseddesignforshearwithRASCE =5,6

    ConsiderDesignandMCEleveleventsusing

    syntheticgroundmotions

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    87/102

    ClarificationofRvs.RASCE

    R = 5Stories

    l f f

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    88/102

    ClarificationofRvs.RASCE

    R = 5

    RASCE = 5; R 3.3

    Scaling MRSA demands upso that Vbase,MRSA= Vbase,ELFRASCE = 5; R 3-3.5

    RASCE = 6; R 4-4.5

    Stories

    DesignLevelShearDemandCapacityRatio(10% probabilit of e ceedance in 50 ears)

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    89/102

    6-story

    (10% probability of exceedance in 50 years)

    8-story 12-story

    16-story 20-story 24-story

    MCELevelShearDemandCapacityRatio(2% probability of exceedance in 50 years)

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    90/102

    6-story

    (2% probability of exceedance in 50 years)

    8-story 12-story

    16-story 20-story 24-story

    Fl lD i

    fW ll

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    91/102

    Flexural Design ofWalls Goals:

    Determinepreferredenvelope(s)forflexuraldesign

    EstimateanRfactorforslenderwallsthatprovidesacceptableprobabilityoflossoflateralcapacity

    Method:

    Investigatedesignenvelopes(i.e.barcurtailments)forflexure

    Redesign64buildingsusingmultipledesignenvelopes ConsiderdistributionofcurvatureductilitydemandsatMCE

    Note:designwithR=3andemploysyntheticgroundmotionsuite

    Rfactor

    Designnewsetofbuildingsusingpreferreddesignmethod EmployP695Methodology

    EstimateRfactorrequiredtoachieve20%probabilityoflossoflateral

    loadcarryingcapacityunderMCE

    Fl l D i E l

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    92/102

    FlexuralDesignEnvelopes

    MRSA Moment Envelope

    Mu Mu

    Mu Mu

    Fl l D i E l

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    93/102

    FlexuralDesignEnvelopes

    MRSA Moment Envelope

    Mu Mn

    Constant

    Mu Mn

    MRSA/ELF

    Mu Mu

    Paulay/Priestley (1992)

    Mn Mn

    Dual Hinge

    (Panagiotou and

    Restrepo, 2009)

    0.5H

    I t f Fl l D i E l

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    94/102

    ImpactofFlexuralDesignEnvelopes DesignsemployR=3

    Analysesaredonefor

    MCEintensitylevel

    Analysesaredone

    usingsynthetic

    groundmotionsuite

    P695 Methodology for Estimation of R

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    95/102

    P695MethodologyforEstimationofR Evaluate6,12 and20storysimplifiedbuildingdesigns

    6 and12storybuildingshaveplanarwalls

    20storybuildinghascshapedwalls

    Sheardesign:

    Capacitydesignforshear

    Overstrength:0 =1.4

    Dynamicamplification:ModifiedMRSAMethod

    Flexuraldesign:

    R=3

    BothPaulay/Priestely andDualHingeenvelopesemployed

    EstimationofrequiredRusingP695Methodology

    UseP695 groundmotionstoincluderecordtorecordvariability

    EstimateRfactorrequiredtoachieve20%probabilityoffailureatMCE

    P695 Evaluation Results

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    96/102

    P695Evaluation Results

    Prob. of

    Failure

    P695 Evaluation: Capacity Designed Walls

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    97/102

    P695Evaluation:CapacityDesignedWalls

    Slender planar

    walls: R 2.5

    Slender core

    walls: R 3.5

    Prob. of

    Failure

    = R

    required to

    achieve 20%

    probability of

    failure

    SummaryofRecommendedDesign

    A h

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    98/102

    Approach

    ShearDesign

    CapacityDesignforShear

    Overstrength:0 =1.4

    Dynamicamplification:ModifiedMRSAMethod FlexuralDesign

    DesignEnvelope:Paulay/PriestleyorDualHinge

    Planarwalls:R 2.5

    Corewalls:R 3.5 } ASCE 7-10:RASCE = 5,6(RASCE 4.0)

    (RASCE 5.0)

    Conclusions about Wall Performance

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    99/102

    ConclusionsaboutWallPerformance Wallsmayexhibitcompressioncontrolledfailureevenif

    tensilestrainsatnominalstrength,Mn,arelarge(

    t>0.02

    reqd fortensioncontrolledresponse)

    Highaxialloadsmaydevelopinacoupledwallsystem

    Presence

    of

    a

    splice

    affects

    the

    location

    of

    inelastic

    action

    and

    damagepattern

    Ahighsheardemandcapacityratioincreasesthelikelihoodof

    acompressioncontrolledfailure

    Cshapedwallsandsymmetricflangedwallsingeneralexhibit

    higherdriftcapacitiesandretainmoreflexuralstrength(post

    failure)thanplanarwalls.

    Conclusions about Wall Analysis

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    100/102

    ConclusionsaboutWallAnalysis Regularizationofmaterialresponseisrequired

    forpredictionofdriftcapacitybecauseresponseiscompressioncontrolledwith

    localizedsoftening

    Regularizedlineelementmodelsprovide

    accurateandprecisesimulationofstiffness,

    strength

    and

    drift

    capacity

    Conclusions about Wall Design

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    101/102

    ConclusionsaboutWallDesign CurrentUScodedesignunderestimatesshear

    demandinwalls Anoverstrengthfactor,0 =1.4andthe

    ModifiedMRSAmethodcanbeusedto

    estimatesheardemandinwalls

    Smallerforcereductionfactors,Rfactors,are

    requiredtolimitflexuraldamageatMCE

    CrossSectional Shape

    Please enter your questions in

    Questions?Questions?

  • 7/30/2019 2013 NEES Webinar Lowes Lehman Slides

    102/102

    Cross SectionalShape

    Symmetric Flanged

    Asymmetric Flanged

    Rectangular

    Pleaseenteryourquestionsin

    thechatwindowaddressed

    toAllPanelists