2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

25
Emilio Di Lorenzo – Research engineer – Siemens Industry Software nv PhD candidate at KU Leuven and University of Naples "Federico II" [email protected] OFFSHORE WIND TURBINE MODELLING IN LMS SAMCEF TO DERIVE AND VALIDATE NEW PROCESSING APPROACHES Optiwind Open Project Meeting, Leuven, Belgium 02/12/2015 E. Di Lorenzo, S. Manzato

Upload: sirris

Post on 08-Apr-2017

541 views

Category:

Technology


0 download

TRANSCRIPT

Page 1: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

Emilio Di Lorenzo – Research engineer – Siemens Industry Software nv PhD candidate at KU Leuven and University of Naples "Federico II" [email protected]

OFFSHORE WIND TURBINE MODELLING IN LMS SAMCEF TO DERIVE AND VALIDATE NEW PROCESSING APPROACHES

Optiwind Open Project Meeting, Leuven, Belgium 02/12/2015

E. Di Lorenzo, S. Manzato

Page 2: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

Agenda

1. Introduction

2. Rotor analysis

1. MBC transformation

2. HPS method

3. Validation cases

4. Conclusions

3. Gearbox analysis

1. Operational Modal Analysis

2. Order-Based Modal Analysis

3. Validation cases

4. Conclusions

Page 3: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

Objectives

• Understand the problems and limitations of applying Operational Modal Analysis (OMA) techniques to wind turbines in operation

Deal with the time-variant nature of the structure Deal with presence of harmonics components

• Development of methodologies for automated data

processing for online structural health monitoring (SHM) applications

Page 4: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

Operational Modal Analysis - OMA

• Identification of modal parameters (natural frequencies, damping ratios, mode shapes) from response data measured in operating conditions

• Operational Modal Analysis = identifying H without knowing U (white noise assumption) based on Y

Unkown input Structure Measured output

U H

Y

310.000.00 s

0.34

-0.36

Rea

lg

1.00

0.00

Ampl

itude

Page 5: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

OMA: Limitations and solutions

Page 6: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

Agenda

1. Introduction

2. Rotor analysis

1. MBC transformation

2. HPS method

3. Validation cases

4. Conclusions

3. Gearbox analysis

1. Operational Modal Analysis

2. Order-Based Modal Analysis

3. Validation cases

4. Conclusions

Page 7: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

Rotor analysis

• Analyze the modal behaviour of Linear Time Periodic (LTP) systems.

• Analyze data with an harmonic dominance which masks the structural dynamics.

• Find modal parameters sensitive to small structural damages for SHM purposes.

Page 8: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

Multi-Blade coordinate transformation - MBC

• Method to describe the motions of individual blades in the same coordinate system as the structure supporting the rotor

• Offers physical insight into rotor dynamics and how rotor interacts with fixed-system entities

• Fundamental assumption: rotor must be isotropic

• Filters out all periodic terms except those which are integral multiples of ΩN, where Ω is the rotor angular speed and N is the number of blades G.S.Bir – Multiblade Coordinate Transformation and

its Application to Wind Turbine Analysis

Page 9: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

Multi-Blade coordinate transformation - MBC

∑=

=N

bibi q

Nq

1,,0

1

( )b

N

bibic nq

Nq ψ∑

=

=1

,, cos2

)(sin21

,, b

N

bibis nq

Nq ψ∑

=

=

Mode animation

Mode shapes in physical coordinates

Inverse MBC transformation

OMA

Mode shapes in multiblade coordinates

Modal frequencies & damping ratios

Accelerations in multiblade coordinates

MBC transformation

Accelerations of points on the

blades

Data from measurement campaign/aeroelastic code

Accelerations of points on the tower/nacelle

RESULTS

)sin()cos( ,,,0, bisbiciib qqqq ψψ ++=

Page 10: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

• Input at a single frequency will cause output at a single frequency

𝑢 𝑡 = 𝑢0 sin 𝜔𝑡

y 𝑡 = 𝑦0 sin 𝜔𝑡 − 𝜙

Harmonic Power Spectrum - HPS

Linear Time Invariant (LTI) system �̇� = 𝑨𝑥 + 𝑩𝑢 𝑦 = 𝑪𝑥 + 𝑫𝑢

Linear Time Periodic (LTP) systems �̇� = 𝑨(𝑡 + 𝑇𝐴)𝑥 + 𝑩(𝑡 + 𝑇𝐴)𝑢

𝑦 = 𝑪(𝑡 + 𝑇𝐴)𝑥 + 𝑫(𝑡 + 𝑇𝐴)𝑢

• Input at a single frequency will cause output at an infinite number of frequencies

𝑢 𝑡 = 𝑢0 sin 𝜔𝑡

y 𝑡 = 𝑦0 sin 𝜔𝑡 − 𝜙 + 𝑦1 sin (𝜔 + 𝜔𝐴𝑡) − 𝜙 + ⋯

𝜔𝐴 =2𝜋𝑇𝐴

Page 11: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

Harmonic Power Spectrum - HPS

Linear Time Invariant (LTI) system �̇� = 𝑨𝑥 + 𝑩𝑢 𝑦 = 𝑪𝑥 + 𝑫𝑢

Linear Time Periodic (LTP) systems �̇� = 𝑨(𝑡 + 𝑇𝐴)𝑥 + 𝑩(𝑡 + 𝑇𝐴)𝑢

𝑦 = 𝑪(𝑡 + 𝑇𝐴)𝑥 + 𝑫(𝑡 + 𝑇𝐴)𝑢

𝑢 𝑡 = 𝑢0 sin 𝜔𝑡

y 𝑡 = 𝑦0 sin 𝜔𝑡 − 𝜙 + 𝑦1 sin (𝜔 + 𝜔𝐴)𝑡 − 𝜙 + ⋯ y 𝑡 = 𝑦0 sin 𝜔𝑡 − 𝜙

u𝑛 𝑡 = � 𝑢(𝑡)𝑒 𝑖𝜔+𝑖𝑛𝜔𝐴 𝑡𝑑𝑡∞

−∞

y𝑛 𝑡 = � 𝑦(𝑡)𝑒 𝑖𝜔+𝑖𝑛𝜔𝐴 𝑡𝑑𝑡∞

−∞

Power Spectrum (LTI system) Harmonic Power Spectrum (LTP system)

𝑢 𝑡 = 𝑢0 sin 𝜔𝑡

M. S. Allen et al. – Output-Only Modal Analysis of Linear Time Periodic Systems with Application to Wind Turbine Simulation Data

EMP

Page 12: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

Harmonic Power Spectrum - HPS

Mode animation

Time periodic mode shapes

Harmonic Power

Spectrum (HPS)

Modal frequencies & damping ratios

Exponentially Modulated

Periodic (EMP) signal

Accelerations of points on the wind turbine under random

excitation

Data from measurement campaign/aeroelastic code

RESULTS

OMA

Summation over the

harmonics

Mode shapes at different harmonics

Page 13: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

Reference wind turbines

NREL 5-MW WIND TURBINE Rated rotor speed 12.1 rpm Generator rated power 5 MW Tower Height 87.6 m Tower Mass 347*103 kg Nacelle Mass 240*103 kg

NREL 5-MW Wind Turbine

DTU 10-MW WIND TURBINE Rated rotor speed 9.6 rpm Generator rated power 10 MW Tower Height 119 m Tower Mass 628*103 kg Nacelle Mass 446*103 kg

DTU 10-MW Wind Turbine

2D WIND TURBINE m1 = m2 = m3 41,7*103 kg mT 446*103 kg k1 = k2 = k3 2,006*108 Nm/rad kH 2,6*106 N/m kV 5,2*108 N/m

2D Wind Turbine

Page 14: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

2D Wind Turbine

1.500.00 Hz

0.01e-3

1.00e-12Lo

g

g2

180.00

-180.00

°

Before MBC - bladeAfter MBC - bladeTower

1.500.00 Hz

0.01e-3

0.10e-12

Log

g2

180.00

-180.00

°

Before MBC - bladeAfter MBC - bladeTower

• Crosspower comparison before and after MBC transformation • Isotropic rotor vs. Anisotropic rotor (k3=0.85*k1) • Same considerations can be done by applying HPS method • Very good match between MBC and HPS results has been found

Isotropic rotor Anisotropic rotor

Page 15: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

2D Wind Turbine

No transformation

• White noise input • Extract displacement from the model and

apply OMA technique • Estimate modal parameters by means of

Operational Polymax

MBC transformation

HPS method

MBC AutoMAC HPS AutoMAC

MAC: (MBC) vs. (HPS selection)

Mode #

Freq [Hz]

S2S 0,37

B_as 0,84

B_coll 0,84

B_as 0,92

Mode #

Freq [Hz]

S2S 0,37

B_bw 0,74

B_coll 0,86

B_fw 1,06

Parked Operating (Ω=0.16 Hz)

Page 16: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

2D Wind Turbine

Tower S2S mode Collective Edge mode

Backward Whirling

mode

Forward Whirling

mode

Backward Whirling Mode

f=0.37 f=0.74 f=0.86 f=1.06

Page 17: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

2D Wind Turbine

Backward Whirling Mode

k1= 0.98*k1

• Isotropic conditions: Backward and forward whirling mode shapes have a constant amplitude for each blade and the phase lag between the blades is equal to 120°

• Anisotropic conditions: These properties are lost. The damaged blade amplitude is higher than the others. The phase lag is not anymore equal to 120°

Page 18: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

DTU 10-MW wind turbine

10 MW HAWT vs

Antonov An-225 Mriya

Rotor Diameter 178.3 m vs

Wing Span 88.4 m

Page 19: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

DTU 10-MW wind turbine: modeling

TOWER • 10 – segments tower • Steel S355 • Diameters linearly variable from the base to the top • Thickness constant in each segment.

BLADES • Bladed rotor concept • Distributed properties assigned along the blades.

DRIVETRAIN • A rigid drivetrain has been written in Samcef code • The rigid connection can be exchanged with a flexible one • Several kinematic chains have been investigated.

CONTROLLER Generator Torque Law • Below rated conditions

• Gain speed to reach the rated speed. • Above rated conditions

• Keep the power produced constant. Pitch controller law • Pitch to feather • Pitch to stall

FFA – W3 – xxx

NACA 0015 cylinder

Page 20: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

DTU 10-MW wind turbine: OMA in parked conditions

Turbulence: Kaimal Model Turbine class: 1A Wind speed: 10 m/s

Turbine instrumented with virtual accelerometers

Mode DTU [Hz]

SWT [Hz]

Error [%]

1st Tower FA 0.249 0.247 < 1 %

1st Tower S2S 0.251 0.251 < 1 %

1st flap with yaw 0.547 0.549 < 1 %

1st flap with tilt 0.590 0.598 1.3 %

1st collective flap 0.634 0.636 < 1 %

1st edge with tilt 0.922 0.942 2.2 %

1st edge with yaw 0.936 0.959 2.4 %

2nd flap with yaw 1.376 1.413 2.7 %

2nd flap with tilt 1.550 1.573 1.5 %

2nd collective flap 1.763 1.812 2.7 %

Page 21: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

DTU 10-MW wind turbine: OMA in parked conditions

Ice density

Ice but one Germanischer Lloyd WindEnergie GmbH: Guideline for the Certification of Wind Turbines, Edition 2010

5.000.08 Hz

-40.00

-100.00

dBg2

no iceice

5.000.00 Hz

-40.00

-100.00

dBg2

no iceice

5.000.00 Hz

-40.00

-90.00

dBg2

no iceice

Page 22: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

DTU 10-MW wind turbine: OMA in power production

1st Backward Whirling Mode 1st Forward Whirling Mode 1st Tower modes

2nd Backward Whirling Mode

2nd Forward Whirling Mode

ROTATING – MBC

1st Flap Yaw

Page 23: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

DTU 10-MW wind turbine: OMA in power production

3.500.00 Hz

0.01

0.01e-6

Log

g2

0.16

OperatingParked

1.400.10 Hz

3.36e-3

1.98e-6

Log

g23p 6p0.80 1.12

F Before MBCF After MBC

• Crosspower comparison: parked vs operating conditions • All pairs of asymmetric rotor edgewise modes in parked conditions become pairs of

rotor whirling modes owing to the rotation

Page 24: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

Conclusions

Two methods for taking into account the time varying nature of the wind turbine have been implemented and applied to different test cases:

Multi-Blade Coordinate transformation (MBC) Harmonic Power Spectrum method (HPS)

Conventional OMA techniques can be applied to estimate the modal parameters

FUTURE DIRECTIONS • Further studies will be done regarding SHM techniques for wind turbine

blades • Applicability of the implemented methods will be tested in case of real

experimental data

Page 25: 2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens

Emilio Di Lorenzo – Research engineer – Siemens Industry Software nv PhD candidate at KU Leuven and University of Naples "Federico II" [email protected]

Questions?