26!january!2015! dr.!andrew!rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf ·...

20
School of Engineering Sciences – Burnaby BC [email protected] 26 January 2015 Dr. Andrew Rawicz School Of Engineering Science Simon Fraser University Burnaby, Canada V5A 1S6 Re: ENSC 440/305W Project Proposal for an Energy Harvesting and Storing System Dear Dr. Rawicz, Please find an enclosed copy of our proposal for an Energy Harvesting and Storing System. The goal of POWER WALKER is to produce a renewable source of energy by means of walking. This document highlights the features of our product and how its use can minimize the problem of energy scarcity. Here, you will find a detailed analysis of the risks and benefits of our product, along with the associated costs, scope, timeline, market analysis and competition and our company profile. Our team of senior engineers who are dedicated to this project includes: Pouya Aein, Shelvin Chandra, Vani Choubey, Tommy Lu, Shervin Mirsaeidi and Arshit Singh. We are ecstatic to work on this project and hope you share the same enthusiasm. We look forward to your support over the term and if you have any questions or concerns, please contact us via email at [email protected]. Sincerely, Arshit Singh Chief Operating Officer Power Walker Enclosed: Proposal for an Energy Harvesting and Storing System

Upload: dangliem

Post on 11-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

        School  of  Engineering  Sciences  –  Burnaby  BC     [email protected]  

26  January  2015  Dr.  Andrew  Rawicz  School  Of  Engineering  Science  Simon  Fraser  University  Burnaby,  Canada  V5A  1S6    Re:  ENSC  440/305W  Project  Proposal  for  an  Energy  Harvesting  and  Storing  System    Dear  Dr.  Rawicz,    Please  find  an  enclosed  copy  of  our  proposal  for  an  Energy  Harvesting  and  Storing  System.  The  goal  of  POWER  WALKER  is  to  produce  a  renewable  source  of  energy  by  means  of  walking.  This  document  highlights  the  features  of  our  product  and  how  its  use  can  minimize  the  problem  of  energy  scarcity.  Here,  you  will  find  a  detailed  analysis  of  the  risks  and  benefits  of  our  product,  along  with  the  associated  costs,  scope,  timeline,  market  analysis  and  competition  and  our  company  profile.    Our  team  of  senior  engineers  who  are  dedicated  to  this  project  includes:  Pouya  Aein,  Shelvin  Chandra,  Vani  Choubey,  Tommy  Lu,  Shervin  Mirsaeidi  and  Arshit  Singh.  We  are  ecstatic  to  work  on  this  project  and  hope  you  share  the  same  enthusiasm.  We  look  forward  to  your  support  over  the  term  and  if  you  have  any  questions  or  concerns,  please  contact  us  via  email  at  [email protected].    Sincerely,      

 Arshit  Singh  Chief  Operating  Officer  Power  Walker        Enclosed:  Proposal  for  an  Energy  Harvesting  and  Storing  System  

Page 2: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  2    

   

A  Proposal  for  Energy  Harvesting  and  Storing  System                      

Page 3: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  3    

Executive  Summary  

“Invention  is  the  most  important  product  of  man's  creative  brain.  The  ultimate  purpose  is  the  complete  mastery  of  mind  over  the  material  world,  the  

harnessing  of  human  nature  to  human  needs.”  –  Nikola  Tesla  

 Today,  the  need  for  portable  off  –  grid  energy  is  critical.  Almost  1.4  billion  people  are  living  without  electricity  [1].  This  energy  poverty  has  left  millions  of  houses  unpowered  and  dark.  What  if  there  is  a  device  that  is  not  intrusive,  yet,  has  enough  stored  energy  to  power  an  LED  strong  enough  to  light  up  your  entire  room.  What  if  this  said  device  could  help  one  recharge  their  phone  when  it  is  completely  drained  of  its  battery?    

You  might  think  of  various  devices  such  as  alkaline  batteries,  portable  power  banks,  generator,  etc.  However,  the  flaw  in  these  devices  is  that  they  are  not  self-­‐sustaining  sources.  These  devices  are  either  not  portable  or  have  to  be  charged  or  fed  other  sources  of  energy.  This  is  a  cause  of  concern  for  someone  living  in  a  third  world  country  that  clocks  in  almost  16  hours  a  day  working.  Importability  and  energy  expense  is  not  an  option  for  someone  who  struggles  to  eat  three  meals  a  day.  

Our  device  SolexPRO  is  the  answer  to  these  aforementioned  issues.  At  Power  Walker,  we  plan  to  implement  a  self-­‐sustaining  energy  harvesting  system.  This  system  will  convert  translational  kinetic  energy,  such  as  walking,  and  transform  it  into  electrical  energy.  The  electrical  energy  produced  will  then  be  stored  in  a  high  capacity  battery.    

Power  Walker  consists  of  six  senior  engineering  students  specializing  in  electronics,  computer  and  systems  engineering.  Together  we  encompass  a  well-­‐rounded  team  with  a  wide  area  of  skills  and  knowledge  in  analog,  digital  and  software  design,  as  well  as  in  administrative  and  organizational  work.  Two  different  prototypes  will  be  built  to  judge  to  output  power  efficiency.  This  approach  will  be  sufficient  to  demonstrate  all  the  necessary  functionality  and  it  will  also  enable  quick  changes  to  the  design,  if  necessary.  Based  on  the  results  our  final  product  will  be  built.    

Our  project  should  take  approximately  11  weeks  to  complete.  We  plan  to  have  our  final  design  completed  by  April  1st,  2015.  According  to  our  estimates,  the  project  budget  is  approximately  $650.  We  are  expecting  to  get  funding  from  ESSEF  and  other  organizations  that  may  be  interested  in  investing  in  our  project.  Our  goal  is  to  provide  sufficient  energy  to  areas  where  electric  resources  are  scarce,  without  compromising  sustainability.    

Page 4: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  4    

Table  of  Contents  Executive  Summary  ..........................................................................................................................  3  

Tables  of  Figures  and  Tables.............................................................................................................  6  

List  of  Figures  ................................................................................................................................  6  

List  of  Tables  .................................................................................................................................  6  

Introduction  ......................................................................................................................................  7  

Scope  ................................................................................................................................................  8  

System  Overview  ..............................................................................................................................  8  

SolexPRO  E  ....................................................................................................................................  8  

SolexPRO  F  ....................................................................................................................................  9  

Risk  and  Benefits  ............................................................................................................................  10  

Benefit  ........................................................................................................................................  10  

Risks  ............................................................................................................................................  10  

Market  Analysis  ..............................................................................................................................  10  

Existing  Solutions  ............................................................................................................................  11  

Inductive  Energy  &  Swing  Harvester  Technology  .......................................................................  11  

Reverse-­‐Electrowetting  Technology  ...........................................................................................  12  

InStep  Nanopower  with  Microfluidic  Device  ..............................................................................  12  

Shoe  Insert  with  Piezoelectric  Energy  Harvesters  ......................................................................  13  

Pizzicato  Excitation  Technology  ..................................................................................................  13  

Budget  and  Funding  .......................................................................................................................  14  

Budget  ........................................................................................................................................  14  

Funding  .......................................................................................................................................  16  

Timeline  ..........................................................................................................................................  16  

Company  Profile  .............................................................................................................................  17  

Tommy  Lu  –  CEO  .........................................................................................................................  17  

Shelvin  Chandra  –  CTO  ...............................................................................................................  17  

Vani  Choubey  –  CFO  ...................................................................................................................  17  

Pouya  Aein  –  CIO  ........................................................................................................................  17  

Shervin  Mirsaeidi  –  CTO  .............................................................................................................  18  

Page 5: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  5    

Arshit  Singh  –  COO  .....................................................................................................................  18  

References  ......................................................................................................................................  19  

   

 

     

Page 6: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  6    

Tables  of  Figures  and  Tables  

List  of  Figures    Figure  1:  Harvesting  Energy  using  Electromagnetic  Induction……………………………………………………8  Figure  2:  Harvesting  Energy  by  using  Fluids  and  Micro-­‐turbines………………………………………………..9  Figure  3:  Harvesting  Energy  using  Inductive  &  Swing  Harvester  Technology…………………………….12  Figure  4:  Harvesting  Energy  using  Reverse-­‐Electrowetting  Technology………………………………..….12  Figure  5:  Harvesting  Energy  using  Microfluidic  Device……………………………………………………………..13  Figure  6:  Harvesting  Energy  using  Piezoelectric  Energy  Harvesters………………………………………….13  Figure  7:  Harvesting  Energy  using  Pizzicato  Excitation  Technology…………………………………………..14  Figure  8:  Estimated  Gant  Chart………………………………………………………………………………………………..16  Figure  9:  Milestone  Dates…………………………………………………………………………………………….............16    

List  of  Tables  Table  1:  Cost  breakdown  for  items  used  specifically  used  for  SolexPRO  F  ..................................  14  Table  2:  Cost  breakdown  for  items  used  specifically  used  for  SolexPRO  E  ..................................  15  Table  3:  Cost  breakdown  for  items  used  for  both  the  prototypes  ...............................................  15    

 

 

 

 

 

 

 

 

 

     

Page 7: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  7    

Introduction  

It  was  estimated  that  in  2012  approximately  1.4  billion  people  were  living  without  electricity  across  the  planet.  This  significant  figure  happens  to  be  approximately  18%  of  the  world’s  population.  Interestingly,  22%  percent  of  the  people  without  electricity  happened  to  be  living  in  developing  countries  [1].    Therefore,  it  is  evident  that  the  need  for  energy  is  rapidly  growing  more  than  ever.  Energy  is  harvested  and  converted  from  different  sources  that  vary  from  chemical  reaction  to  kinetic  motion.  For  instance,  daily  activities  such  as  walking,  running  and  playing  sports  generate  a  lot  of  kinetic  motion  that  could  be  used  as  a  free  source  of  energy  harvesting.  Therefore,  harvesting  energy  from  everyday  errands  activities  could  be  a  potential  solution  to  increasing  demand  for  energy.    

At  Power  Walkers,  the  goal  is  to  go  above  and  beyond  in  helping  to  make  the  world  a  better  place  by  providing  a  green  source  of  energy  to  the  ones  most  in  need.  Our  products  SolexPRO  F  and  SolexPRO  E  convert  kinetic  energy,  caused  by  the  walking  motion,  into  electrical  energy.  After  the  first  feasibility  study  on  the  product,  our  company  concluded  to  design  and  manufacture  two  possible  versions  of  it.  Based  on  these  two  versions,  the  product  with  the  most  effective  durability,  efficiency,  safety  and  user  satisfaction  will  be  chosen  for  the  final  production.    

SolexPRO  F  is  based  on  fluid  mechanical  system  that  is  designed  with  a  pump  inside  the  sole  of  a  shoe.  After  each  successive  step,  the  fluid  will  be  pumped  through  the  tube,  turning  a  small  turbine,  which  will  in  turn  create  an  electric  current.  The  energy  created  by  this  electric  current  will  then  be  stored.    

The  second  product,  SolexPRO  E,  will  involve  a  solenoid  and  a  magnet.  After  each  successive  step,  the  magnet  will  move  inside  the  solenoid,  which  will  result  in  the  production  of  an  electric  current.  The  energy  produced  by  the  electric  current  generated  will  then  be  stored.  

The  proposal  will  present  an  overview  of  the  system,  risk  benefits,  market  competition,  cost  analysis  and  project  timeline.      

Page 8: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  8    

Scope  

As  mentioned  above,  we  are  proposing  two  prototypes,  which  are  to  be  designed  and  built.  Subsequently,  it  will  be  determined  which  product  is  to  be  available  to  the  market  based  on  its  superiority  in  efficiency,  cost,  durability  and  safety.    

System  Overview  

Energy  is  harvested  by  implementing  a  mechanism  inside  a  pair  of  shoes  and  to  harvest  the  energy  when  the  user  walks/runs.  There  are  two  approaches  taken  to  convert  the  kinetic  energy  to  electricity:  use  of  electromagnetic  induction  and  micro  turbine  system.    

SolexPRO  E  

There  are  a  variety  of  methods  used  to  convert  energy  when  a  person  walks/runs.  With  that,  we  decided  to  use  a  unique  approach  similar  to  those  used  in  shaking  flashlights  to  harvest  energy  from  kinetic  to  electricity.  This  is  done  by  implementing  magnets  and  coil  inside  a  pair  of  shoes  as  demonstrated  in  Figure  1.  This  mechanism  produces  an  electric  current,  which  is  based  on  Faraday’s  law  of  induction  that  is  the  basic  law  of  electromagnetic  induction.  As  illustrated  in  figure  1  when  a  person  walks,  the  magnets  will  move  up  and  down  inside  a  coil,  which  will  result  in  a  current  that  can  be  stored  in  a  battery  placed  inside  the  sole.  

 

                                                         Figure  1:  Harvesting  Energy  using  Electromagnetic  Induction  

 

Page 9: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  9    

SolexPRO  F  

Our  second  product,  SolexPRO  F,  design  is  implemented  by  using  simple  pressure  to  pump  fluids  that  turn  multiple  micro-­‐turbines  which  will  result  in  a  current  that  will  be  stored  in  the  battery.  As  shown  in  figure  2,  the  heel  of  the  shoes  has  multiple  micro-­‐turbines,  which  are  turned  using  fluids.    Furthermore,  the  fluids  move  by  following  Bernoulli’s  principle,  which  states  that  the  flow  of  an  ideal  non-­‐conducting  fluid  is  an  increase  of  the  speed  of  the  fluid  that  happens  simultaneously  with  the  decrease  in  pressure  or  decrease  in  the  fluid’s  potential  energy  [2].  

 

                                                                           Figure  2:  Harvesting  Energy  by  using  Fluids  and  Micro-­‐turbines  

 

 

 

Page 10: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  10    

Risk  and  Benefits  

Benefit    

There  are  risks  and  benefits  associated  with  every  product  and  services,  such  as  daily  electronics  (i.e.  Cellphones),  automobiles  and  medications.  However,  in  most  cases,  the  benefits  outweigh  the  costs.  Therefore,  it  is  beneficial  for  the  user  to  use  the  product  and  services  even  with  the  associated  risks.      

At  Power  Walkers,  we  aim  to  provide  a  safe,  durable  and  comfortable  product  that  benefits  the  customers  on  a  daily  basis.  These  benefits  include,  but  are  not  limited  to,  the  following:  

● Harvesting  green  energy  ● On  the  go  emergency  power  source  ● Promoting  a  healthy  and  active  lifestyle  by  motivating  customers  to  engage  in  daily        

activities  such  as  walking/jogging  ● GPS  tracking  ● Biomedical  applications  (i.e.  body  fat  percentages)  

Risks  

While  there  are  minimal  risks  associated  with  our  product,  negative  outcomes  are  controlled  to  have  minimal  effects/impacts  towards  user,  in  the  event  that  a  problem  or  risk  takes  place.  For  example,  there  are  no  risks  of  getting  electrocuted  or  burned,  as  the  system  does  not  provide  enough  power  to  initiate  those  incidents.  Furthermore,  the  only  risk  associated  with  our  product  is  corrosion  of  insole  caused  by  excessive  use  that  may  expose  the  internal  system  and  harm  or  injure  the  customer’s  feet.  To  further  minimize  this  type  of  injury  to  the  user,  it  is  recommended  that  the  product  be  used  only  for  its  duration  of  lifetime.  

Market  Analysis  

Power  generating  shoes  have  a  wide  range  of  applications.  The  energy  generated  by  the  shoes  is  stored  in  a  battery,  which  can  power  countless  devices  such  as  cellphones,  smart  watches,  flashlights,  radios,  etc.    According  to  GSMA’s  real-­‐time  tracker  [3],  there  are  approximately  7.3  billion  mobile  devices  in  the  world  today,  many  of  which  are  owned  in  the  developing  world.  Here,  power  may  not  be  readily  available  and,  therefore,  power  generated  from  walking  would  be  greatly  beneficial.  This  will  allow  communities  that  do  not  have  adequate  energy  resources  to  improve  their  quality  of  life.  

   

Page 11: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  11    

Another  application  for  our  power  shoes  is  in  the  military.  “The  explosion  in  electronic  gear  in  the  modern  military,  from  radios  and  GPS  equipment  to  night-­‐vision  goggles,  means  a  typical  soldier  may  carry  a  dozen  devices  and  70  batteries  on  a  three-­‐day  patrol.  That  adds  weight—16  pounds  or  so—to  already-­‐overburdened  warriors.  A  typical  soldier  or  Marine  today  carries  more  than  100  pounds  on  his  back,  roughly  twice  as  much  as  dogfaces  did  in  World  War  II.  A  typical  infantry  company  of  roughly  150  soldiers  requires  more  than  6,600  batteries,  weighing  more  than  1,400  pounds,  for  72  hours  of  operation.  All  that  weight  slows  down  soldiers  on  foot,  tethers  them  to  constant  resupply,  and  contributes  to  a  rash  of  muscular  and  skeletal  injuries  caused  by  excessively  heavy  packs.”  [3].  With  a  renewable  energy  source,  soldiers  could  reduce  or  even  eliminate  the  number  of  batteries  carried.  

 Our  power  generating  shoes  can  also  be  used  in  everyday  recreation,  for  the  hiker  that  needs  emergency  power  or  the  student  that  needs  a  quick  cellphone  charge  to  last  the  day.  For  instance,  in  order  to  jump-­‐start  a  car,  several  pairs  of  insulation  shoes  will  generate  enough  energy  to  perform  this  task  and  the  need  to  provide  a  second  car  and  multiple  cables  will  no  longer  be  necessary.  In  other  words,  shoes  may  be  the  potential  remedy  to  any  event  or  situation  that  requires  emergency  power.    Imagine  jumpstarting  a  car  by  using  several  pairs  of  insulation  shoes,  the  possibilities  are  endless.  In  short,  areas  where  emergency  power  is  required,  our  shoes  can  be  a  potentially  remedy.    Lastly,  our  shoes  may  be  used  in  disaster  relief  situations  where  the  need  to  keep  constant  communication  is  vital,  allowing  victims  to  stay  in  touch  with  loved  ones  and  rescuers  to  coordinate  with  the  outside  world.  

Exist ing  Solutions  

Despite  there  being  a  vast  interest  by  many  researchers  in  harnessing  the  energy  dissipated  by  walking,  there  is  no  product  commercially  available  in  the  market  thus  far.  However,  there  are  a  few  innovations  that  are  on  the  verge  of  launching.  A  market  research  for  available  solutions  to  solve  our  proposed  problem  outlined  the  following:    

Inductive  Energy  &  Swing  Harvester  Technology      Researchers  from  HSG-­‐IMIT  in  Villingen-­‐Schwenningen,  Germany  have  equipped  sneakers  with  “Inductive  Energy  Harvesters”  in  the  soles  of  the  shoes.  With  each  step  a  person  takes,  they  generate  power  from  the  motion  created  between  the  magnets  and  coils  in  the  sole  of  the  shoe.  Additionally,  a  separate  "Swing  Harvester"  harnesses  the  energy  generated  by  the  walking  or  gait  action.  Even  with  both  harvesters  combined,  this  design  does  not  yet  provide  enough  energy  to  power  major  handheld  devices.  [4]    

Page 12: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  12    

 

Figure  3:  Harvesting  Energy  using  Inductive  &  Swing  Harvester  Technology  

 

Reverse-­‐Electrowetting  Technology      Engineers  from  the  University  of  Wisconsin  have  created  a  device  based  on  a  physical  phenomenon  called  reverse-­‐electrowetting.  In  the  shoe,  there  are  two  flexible  plastic  bladders,  one  under  the  heel  and  the  other  under  the  toe.  The  bladders  are  filled  with  a  mixture  of  oil  and  water  and  connected  by  a  thin,  snaking  tube.  The  tube  is  lined  with  a  thin  film  of  electrodes,  and  as  the  liquid  slides  back  and  forth,  the  electrodes  charge-­‐electrowetting  in  reverse.  A  small  battery  stores  the  energy,  and  it  can  be  accessed  by  way  of  a  micro-­‐USB  port  on  the  heel  of  the  shoe.  [5]    

 

Figure  4:  Harvesting  Energy  using  Reverse-­‐Electrowetting  Technology  

 

InStep  Nanopower  with  Microfluidic  Device      InStep  NanoPower  has  developed  an  inexpensive  simple  high-­‐power  energy  harvester  capable  of  converting  mechanical  energy  to  electrical  power  providing  up  to  20  Watts.  The  mechanical  energy  is  converted  to  electrical  energy  by  a  microfluidic  device  through  the  interaction  of  thousands  of  liquid  micro-­‐droplets  with  a  nanostructured  substrate.  [6]  

Page 13: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  13    

 

 

Figure  5:  Harvesting  Energy  using  Microfluidic  Device  

 

Shoe  Insert  with  Piezoelectric  Energy  Harvesters      SolePower  is  an  energy  harvesting  company  that  has  developed  a  patent-­‐pending  technology  that  captures  the  energy  in  a  footstep  and  converts  it  into  usable  electrical  power.  The  mechanism  is  embedded  within  a  waterproof  insole  that  can  be  slipped  into  any  shoe.  The  power  generated  is  stored  in  an  external  battery  and  accessed  via  micro  or  mini  USB  ports.  The  user  does  not  need  to  remove  the  insole,  and  does  not  need  to  attach  their  electronic  devices  to  their  footwear.    [7]  

 

Figure  6:  Harvesting  Energy  using  Piezoelectric  Energy  Harvesters  

 

Pizzicato  Excitation  Technology    To  address  the  issue  of  piezoelectric  energy  harvesters  having  a  very  narrow  operational  frequency  range  resulting  in  poor  power  in  real  operational  environment,  University  of  Exeter  has  developed  a  frequency-­‐up  conversion  mechanism  using  a  novel  “Pizzicato  excitation”  and  a  force  amplification  mechanism  using  an  improved  cymbal  transducer  to  ensure  piezo-­‐harvester  

Page 14: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  14    

to  be  capable  of  working  at  a  wide  range  of  vibration  frequency  and  increase  the  efficiency  of  piezo-­‐harvesters  for  low  frequency.      The  results  have  shown  that  they  are  able  to  harvest  2.2~2.5mJ/step  at  an  average  walking  speed  of  1  step/second  or  3  mph  and  to  power  a  customer  developed  wireless  sensor  node  at  every  1.1  second.  [8]  

 

 

Figure  7:  Harvesting  Energy  using  Pizzicato  Excitation  Technology  

   

Budget  and  Funding  

Budget    Table  1  and  Table  2  outline  the  list  of  items  and  associated  expenses  that  are  specifically  used  for  SolexPRO  F  or  SolexPRO  E.  After  developing  prototypes,  we  will  be  able  to  choose  the  method  that  creates  a  product  that  is  the  most  cost  effective,  efficient,  durable  and  requires  less  space.      

Equipment  List   Estimated  Unit  Cost   Units  

PEX  tubes  [9]   $50   1  

Micro-­‐hydro  water  turbines  [10]   $15   3  

 Table  1:  Cost  breakdown  for  items  used  specifically  used  for  SolexPRO  F  

 

 

 

 

Page 15: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  15    

 

Equipment  List     Estimated  Unit  Cost   Units  

Solenoids  [11]   $5   10  

Magnets   (1/2’’   in   diameter   and   ½”in  length)  [12]  

$3.25/piece   10  

Magnets   (1/2’’in   diameter   and   3/4”in  length)  [13]  

$2/piece     10  

Spring  [14]   $12   10  

AC  motor  [15]   $50   1  

Rectifier  [16]   $5   2  

 Table  2:  Cost  breakdown  for  items  used  specifically  used  for  SolexPRO  E  

 There  will  be  other  equipment,  which  both  the  prototypes  will  be  using.  The  following  table  outlines  the  list  of  required  items  and  the  expenses  associated  with  them.    

Equipment  List     Estimated  Unit  Cost   Units  

Supercapacitors  [17]   $15   4  

Dr.  Scholls’  insoles  [18]   $25   2  

Shoes  [19]   $100   1  

Flashlight  [20]   $20   2  

USB  associated  parts  [21]   $20   1  

 Table  3:  Cost  breakdown  for  items  used  for  both  the  prototypes  

 On  adding  up  all  the  estimated  cost,  we  are  expecting  to  spend  $647.5.  The  above  tables  are  subjected  to  change  as  more  parts  might  be  required,  which  will  depend  as  we  progress  through  our  project.    

Page 16: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  16    

We  are  planning  to  buy  all  the  products  locally  or  ordering  it  online  in  order  to  keep  the  cost  minimum.    

Funding    So  far,  we  have  applied  for  funding  from  ESSS.  We  will  be  contacting  Rory  Green,  Associate  Director  of  Development  at  SFU,  in  order  to  apply  for  funding  from  different  companies.  We  believe  our  product  has  potential  to  lure  organizations  to  invest  in  our  project.  

Timeline    Our  estimated  time  line  is  projected  in  the  following  Gantt  chart.  It  is  to  be  kept  in  mind  that  this  timeline  is  subject  to  change  as  the  project  progresses.    

Figure  8:  Estimated  Gant  Chart  

 In  the  next  figure,  the  milestones  associated  with  our  project  are  shown.  These  milestones  indicate  the  necessary  completion  dates  for  various  aspects  of  the  project.    

                 

Figure  9:  Milestone  Dates  

Page 17: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  17    

Company  Profi le  

Tommy  Lu  –  CEO  Tommy  is  a  fifth  year  Systems  Engineering  Student  who  has  worked  on  various  projects  throughout  his  undergraduate  career  including  an  air  hockey  robot,  a  VGA  text  editor  application  and  a  third-­‐order  Butterworth  Filter.  He  has  strong  interpersonal  skills,  which  will  be  crucial  to  maintaining  a  cohesive  work  environment.  In  his  spare  time,  Tommy  enjoys  snowboarding,  deep  conversations  and  a  good  novel.  

Shelvin  Chandra  –  CTO  Shelvin  is  a  third  year  Computer  Engineering  student  with  knowledge  and  experience  in  both  hardware  and  software  design  and  applications.  He  has  programming  experience  in  C\C++,  Java,  and  VHDL.  Additionally,  he  brings  to  the  team  his  three-­‐year  experience  as  a  Mechanical  Designer  where  he  was  involved  in  different  engineering  projects,  leading  some  of  them  and  participating  as  a  key  team  member  in  others.  He  is  always  eager  to  learn  about  new  technologies  and  take  up  the  challenge  to  the  next  level.  

Vani  Choubey  –  CFO  Vani  is  a  fourth  year  Computer  Engineering  student  and  president  of  Women  in  Engineering  Group  at  SFU.  In  terms  of  software  skills,  she  is  very  well  versed  with  C++  and  Ruby  on  Rails.  She  also  experienced  in  working  with  different  operating  system,  such  as  Ubuntu,  Centos,  Windows  and  Mac  OSX.  In  terms  of  hardware  skills,  she  is  adept  in  working  with  VHDL,  electric  circuits  and  FPGAs.  She  has  loads  of  experience  in  working  in  team.  She  is  friendly,  hardworking  and  always  ready  to  help.  

Pouya  Aein  –  CIO  Pouya  is  a  fourth  year  Systems  Engineering  Student  with  extensive  experience  in  sustainable  energy  specifically  in  Marine  and  Aerospace  industries.  He  worked  as  a  Systems  Engineer  at  Corvus  Energy  where  he  helped  to  develop  sustainable  energy  source  (Industrial  Batteries)  for  hybrid  vessels  by  developing  tools  and  automation  techniques  to  ease  off  product  work  flow.  In  addition,  Pouya  is  familiar  with  different  CAD  software  and  product  data  management  tools  used  in  development  and  manufacturing  industries  such  as  Solidworks,  AutoCAD,  Simulink,  Labview,  EPDM,  WPDM,  LTSpice  and  NetSuite.  You  will  find  Pouya  a  well-­‐spoken  person  with  the  ability  to  prioritize,  delegate,  motivate  and  establish  instant  credibility  within  a  team.            

Page 18: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  18    

Shervin  Mirsaeidi  –  CTO  Shervin  is  a  fourth  year  Systems  Engineering  student  who  has  worked  on  different  design  projects  involving  software  and  hardware  components.  Some  of  his  projects  include  AM  radio,  air  hockey  robot,  tic-­‐tac-­‐toe  board  game  and  bank  account  management  software.  He  also  brings  a  breath  of  experience  in  software  engineering,  namely  Java  and  SQL  programming,  bash  scripting  and  testing  of  enterprise  applications.  From  his  experience  at  BlackBerry  and  various  group  design  projects  at  SFU,  Shervin  has  an  excellent  ability  to  collaborate  with  peers  and  team  members  to  accomplish  project  goals.      

Arshit  Singh  –  COO  Arshit  is  a  fourth  year  Electronics  Engineering  student  who  is  also  pursuing  a  minor  in  Business  Administration.  His  academic  intellect  encompasses  a  multitude  of  technical  skills  that  comprise  of  microprocessor  development,  advanced  circuitry  and  microelectronic  equipment,  PLC  programming  as  well  as  soft  skills  like  a  good  team  player,  good  listening  skills  and  patience.  As  a  COO,  Arshit  will  be  managing  the  project  resources  and  tasks  distribution  while  making  sure  the  project  finishes  on  time.  Arshit  is  also  an  avid  music  enthusiast,  likes  to  read  and  spend  time  with  the  family.                                              

Page 19: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  19    

References    [1]     B.  K.  Sovacool,  "Deploying  Off-­‐Grid  Technology  to  Eradicate  Energy  Poverty,"  Science,  

pp.  47-­‐48,  2012.    

[2]     "Global  Data,"  20  January  2015.  [Online].  Available:  www.gsmaintelligence.com.  

[3]    

 

[4]  

 

[5]  

 

 

[6]  

 

[7]  

 

[8]  

 

K.  Johnson,  "Fighting  Form:  Military  Takes  On  Battery  Fatigue,"  18  June  2012.  [Online].  Available:  http://www.wsj.com/articles/SB10001424052702304371504577405982280891076.  

T.  Krupenkin,  "Australian  Popular  Science,"  07  December  2011.  [Online].  Available:  http://www.popsci.com.au/tech/capturing-­‐electricity-­‐with-­‐a-­‐shoe,376719.  [Accessed  18  January  2015].  

A.  Newcomb,  "ABC  News,"  16  January  2015.  [Online].  Available:  http://abcnews.go.com/Technology/smart-­‐shoes-­‐made-­‐harvesting-­‐walking-­‐energy/story?id=28278160.  [Accessed  19  January  2015].  

"InStep  NanoPower,"  [Online].  Available:  http://www.instepnanopower.com/2_Technology/Technology.aspx.  [Accessed  18  January  2015].  

"Energy  Harvesting  Journal,"  06  June  2013.  [Online].  Available:  http://www.energyharvestingjournal.com/articles/5504/power-­‐generating-­‐shoe-­‐insert.  [Accessed  19  January  2015].  

"University  of  Exeter,"  [Online].  Available:  http://emps.exeter.ac.uk/engineering/research/structures-­‐dynamics/energyharvesting/projects/.  [Accessed  20  January  2015].  

[9]     "Potable  PEX  Tubing,"  Magic  Touch  Distribution,  [Online].  Available:  http://www.pexsuperstore.com/pex-­‐tubing/potable-­‐pex-­‐tubing.html.  [Accessed  22  January  2015].  

[10]     "Micro-­‐hydro  water  turbine  generator,"  eBay  Inc.,  [Online].  Available:  http://www.ebay.com/itm/1PC-­‐DC-­‐12V-­‐DC-­‐generator-­‐10W-­‐micro-­‐hydro-­‐water-­‐turbine-­‐generator-­‐water-­‐10W-­‐12V-­‐/301440398748.  [Accessed  21  January  2015].  

[11]     "Copper  Wire-­‐Coiled  20G  X  7.5M,"  HOME  DEPOT  INC.,  [Online].  Available:  http://www.homedepot.ca/product/copper-­‐wire-­‐coiled-­‐20g-­‐x-­‐75m/966628.  [Accessed  21  January  2015].  

Page 20: 26!January!2015! Dr.!Andrew!Rawicz ...whitmore/courses/ensc305/projects/2015/2prop.pdf · Reverse]Electrowetting!Technology!.....!12! InStep!Nanopower!with!Microfluidic! Device

    Harnessing  Human  Nature  to  Human  Needs    

COPYRIGHT  ©  2015  POWER  WALKER   Page  20    

[12]     "Rod  Magnets,"  Amazing  Magnets,  LLC,  [Online].  Available:  https://www.amazingmagnets.com/sf-­‐rod-­‐magnets.aspx?Unit=fractional.  [Accessed  22  January  2015].  

[13]     "Zinc  Plated  Compression  Springs  (6-­‐Pack),"  The  Home  Depot  Inc.,  [Online].  Available:  http://www.homedepot.com/p/Unbranded-­‐Zinc-­‐Plated-­‐Compression-­‐Springs-­‐6-­‐Pack-­‐16087/2020.  [Accessed  22  January  2015].  

[14]     "Motors  -­‐  AC,  DC,"  Digi-­‐Key  Corporation.,  [Online].  Available:  http://www.digikey.ca/product-­‐search/en/motors-­‐solenoids-­‐driver-­‐boards-­‐modules/motors-­‐ac-­‐dc/983125.  [Accessed  23  January  2015].  

[15]     "  Diodes,  Rectifiers  -­‐  Arrays,"  Digi-­‐Key  Corporation,  [Online].  Available:  http://www.digikey.com/product-­‐search/en/discrete-­‐semiconductor-­‐products/diodes-­‐rectifiers-­‐arrays/1377014.  [Accessed  23  January  2015].  

[16]     "Supercapacitors,"  Mouser  Electronics,  Inc.  -­‐  A  TTI  and  Berkshire  Hathaway  company,  [Online].  Available:  http://ca.mouser.com/Power/Supercapacitors/_/N-­‐6uivw.  [Accessed  20  January  2015].  

[17]     "Insoles,  Inserts  &  Orthotics,"  Bayer  and  its  affiliates  ,  [Online].  Available:  http://www.drscholls.com/productsandbrands/Index.aspx.  [Accessed  22  January  2015].  

[18]     "SAM  EDELMAN  Becker  Camouflage  Loafers,"  Lord  &  Taylor,  [Online].  Available:  http://www.lordandtaylor.com/webapp/wcs/stores/servlet/en/lord-­‐and-­‐taylor/becker-­‐camouflage-­‐loafers?utm_campaign=ShopStyle.com&cj_linkd=11129663&cj_webid=2178999&cj_sid=1248959542&cj_affid=1909792&cj_affname=ShopStyle.com&site_id=2178999&affiliateref=cj&u.  [Accessed  23  January  2015].  

[19]     "Shake  Flashlight,"  Amazon.com,  Inc.  or  its  affiliates,  [Online].  Available:  http://www.amazon.com/Forever-­‐Light-­‐Shake-­‐Flashlight/dp/B000BPJ262.  [Accessed  23  January  2015].  

[20]    

 

"  Evaluation  and  Demonstration  Boards  and  Kits,"  Digi-­‐Key  Corporation,  [Online].  Available:  http://www.digikey.ca/product-­‐search/en/programmers-­‐development-­‐systems/evaluation-­‐and-­‐demonstration-­‐boards-­‐and-­‐kits/2622039?k=usb%20board.  [Accessed  23  January  2015].