2840

Upload: sirio333

Post on 02-Mar-2016

62 views

Category:

Documents


0 download

TRANSCRIPT

  • University of Tsukuba

    Title

    Author(s),

    Citation

    Issue Date2013-03

    Text versionauthor

    URL http://hdl.handle.net/2241/118900

    DOI

    Right

  • Rotating Detonation EngineRDERDE

    RDE

    Multi-frame Short-time Open-shutter PhotographyMSOP

    2

    ir2

    2

    2

    nD ChapmanJouguet CJD nD

    CJn /DD ir 1 CJn /DD CJn /DD C2H4+3O22H2+O2 2C2H2+5O2+7Ar2 CJn /DD 1 ir ir

    2

    CJn /DD Yao and Stewart Sharpe

    2

    CJn /DD CJn DD 1 CJn DD

    CJn DD

    CJn DD

  • __________________________________________________________________________________________________________

    i

    1 1 1.1. 1

    1.1.1. 1

    1.1.2. 4

    1.2. 6

    1.2.1. 6

    1.2.2. 7

    1.2.3. 11

    1.3. 14

    1.3.1. 14

    1.3.2. 17

    2 18

    2.1. 18

    2.2. Multi-frame Short-time Open-shutter PhotographyMSOP 18

    2.3. 22

    2.4. 25

    2.5. 26

    2.5.1. 26

    2.5.2. 27

    2.5.3. 29

    2.5.4. 32

    2.6. 34

    3 Dn/DCJ 35

    3.1. 35

    3.2. 35

    3.3. 38

    3.4. 41

    3.5. 43

    3.5.1. 43

  • __________________________________________________________________________________________________________

    ii

    3.5.2. 45

    3.5.3. 48

    3.5.4. 50

    3.5.5. 51

    3.5.6. Dn/DCJ 55 3.5.7. Dn/DCJ 59 3.5.8. 62

    3.6. 66

    3.6.1. Dn/DCJ 66 3.6.2. Dn/DCJ 68 3.6.3. 70

    3.7. 75

    4 1 76

    4.1. 76

    4.2. 76

    4.3. 78

    4.4. 80

    4.5. 82

    4.5.1. 82

    4.5.2. 83

    4.5.3. 84

    4.6. 85

    4.7. Dn/DCJ 88 4.8. Dn/DCJ 91 4.9. 95

    4.9.1. 95

    4.9.2. 100

    4.9.3. Dn/DCJ 102 4.10. 105

    5 106 5.1. 106

    5.2. 109

  • __________________________________________________________________________________________________________

    iii

    111 113 123 A ChapmanJouguetCJ 128 B 131 C 136 D ChapmanJouguetCJ 142 E 148 F 151

  • __________________________________________________________________________________________________________

    iv

    1

    1.1

    ZND 2

    1.2 4 1.3 vp 38) 5

    1.4 7

    1.5 PBX9502

    62) 8

    1.6 PBX9502

    64) 8

    1.7 12

    1.8

    12

    1.9 92) 13

    1.10 2 14

    2

    2.1 Short-time Open-shutter PhotographySOP 19

    2.2 2 SOP 19

    2.3 Multi-frame Short-time Open-shutter PhotographyMSOP 21

    2.4 2MSOP 21

    2.5 22

    2.6 23

    2.7 2 24

    2.8 2

    25

    2.9 2

    27

    2.10 2

    28

    2.11 2

    40i r mm 29 2.12 MSOP 40i r mm 31

  • __________________________________________________________________________________________________________

    v

    2.13 irMSOP 50.1 mm 33 3

    3.1 2 2

    37

    3.2 2 37

    3.3 2

    39

    3.4 2

    C2H4+3O2 44

    3.5 2

    2H2+O2 44

    3.6 2

    2C2H2+5O2+7Ar 45

    3.7 2

    20i r mm2H2+O2 47 3.8 2

    C2H4+3O2 48

    3.9 2

    2H2+O2 49

    3.10 2

    2C2H2+5O2+7Ar 49

    3.11 2

    20i r mm 70.0 mmC2H4+3O2 50 3.12 2

    20i r mm 70.0 mm C2H4+3O2 51

    3.13 2

    20i r mm 70.0 mmC2H4+3O2 52 3.14 2

    20i r mm 70.0 mmC2H4+3O2 53 3.15 2 33.100.1 i rr

    20i r mm 70.0 mmC2H4+3O2 54

  • __________________________________________________________________________________________________________

    vi

    3.16 1 00.200.1 i rr 2 20.100.1 i rr CJn DD 20i r mm 70.0 mmC2H4+3O2 55 3.17 2

    CJn DD C2H4+3O2 56 3.18 2

    CJn DD 2H2+O2 57 3.19 2

    CJn DD 2C2H2+5O2+7Ar 57 3.20 CJn DD 58 3.21 2

    CJn DD 20i r mm 70.0 mmC2H4+3O2 60 3.22 2

    CJn DD 40i r mm 56.1 mm2H2+O2 60 3.23 2

    CJn DD 10i r mm 27.0 mm2C2H2+5O2+7Ar 61 3.24 Marker particle method 61

    3.25 2

    64

    3.26 2

    3.36i r C2H4+3O2 ir 65

    3.27 2

    5.27i r 20i r mm 65

    3.28 2

    01.3 mm 66 3.29 2

    CJn DD 67 3.30 CJn DD

    2 69

    3.31 2

    CJn DD 70

  • __________________________________________________________________________________________________________

    vii

    3.32

    71

    3.33 w 72

    3.34 CJn DD 2

    74

    4

    4.1 77 4.2 CJC 88 4.3 CJn DD

    C2H4+3O2 90

    4.4 CJn DD 2H2+O2 90

    4.5 CJn DD 2C2H2+5O2+7Ar 91

    4.6 CJn DD C2H4+3O2 93 4.7 CJn DD a~T

    C2H4+3O2 94

    4.8 CJn DD C C2H4+3O2 94 4.9 T~C2H4+3O2 96

    4.10 ~C2H4+3O2 96 4.11 fr~a C2H4+3O2 97

    4.12 n~u C2H4+3O2 97

    4.13 p~C2H4+3O2 98

    4.14 ~C2H4+3O2 98 4.15 YC2H4+3O2 99

    4.16 M C2H4+3O2 99

    4.17 CJn DD ~ ~ ~~ C2H4+3O2 101

    4.18 CJn DD *Q M C2H4+3O2 102 4.19 CJn DD M

    C2H4+3O2 104

  • __________________________________________________________________________________________________________

    viii

    A A.1 C2H4+3O2 129

    A.2 2H2+O2 129

    A.3 2C2H2+5O2+7Ar 130

    B

    B.1 Marker particle method 131

    B.2 2

    133

    D

    D.1 142

    D.2 CJ

    C2H4+3O2 144

  • ix

    2

    2.1 25

    3 3.1 36

    3.2 38

    4

    4.1 87

    4.2 C2H4+3O2 92

  • __________________________________________________________________________________________________________

    x

    A

    a

    B

    C ChapmanJouguet

    c

    D

    D e

    f f f1 ~ f5 6

    G

    g

    h

    K C.50

    k

    L

    l

    M

    M

    m 3.5

    n

    n

    P

    p

    Q* 4.51

    q

    q* 4.49

    R

    R 2

    r

    s

    T

    T t

  • __________________________________________________________________________________________________________

    xi

    u

    v

    W

    w

    X

    x

    Y

    y

    Z

    Z

    D.25 ChapmanJouguet 4.48 4.47 D.24

  • __________________________________________________________________________________________________________

    xii

    a

    asy

    B

    b

    CJ ChapmanJouguet

    CJp ChapmanJouguet

    c

    cr

    D

    eq

    exp

    f

    fr

    H

    i 2

    ig

    im

    ChapmanJouguet

    in

    ind

    int

    j

    mt

    n

    nd

    ng

    o 2

    out

    overall

    P

    p

    R

    s

    u

  • __________________________________________________________________________________________________________

    xiii

    v

    vN von Neumann

    w

    0

    1

    2, 2, 2 1.3 22 2 3, 3, 3 1.3 33 3 +

    0

    m

    ~ 4.40

  • 1

    __________________________________________________________________________________________________________

    1

    1

    1.1.

    1.1.1.

    5 ~ 7

    1.1 1.1

    1

    1)

    von NeumannvN

    1.1

    2)

  • 1

    __________________________________________________________________________________________________________

    2

    1) ChapmanJouguetCJCJ 1.1

    Zeldovich3)von Neumann4) Dring5)ZND

    CJ

    CJ CJ

    CJ CJ

    CJ CJ

    CJ

    ZND 1

    613)

    Propagation direction

    x

    p, T, M,

    Pressure, p

    Temperature, T

    Mach number, MM = 1

    Front shock

    Induction zone

    CJ point

    Induction length, lind

    Reaction zone

    Thermicity,

    Propagation direction

    x

    p, T, M,

    Pressure, p

    Temperature, T

    Mach number, MM = 1

    Front shock

    Induction zone

    CJ point

    Induction length, lind

    Reaction zone

    Thermicity,

    1.1

    ZND

  • 1

    __________________________________________________________________________________________________________

    3

    ZND

    1.2

    1.2

    1.2

    3

    1.2

    CJ 1430)

    CJ

    CJ

    CJ 1.8 CJ

    0.6 31,32)

    CJ

    ZND CJ

    2

    1.2 3

  • 1

    __________________________________________________________________________________________________________

    4

    1.1.2.

    Pulse

    Detonation EnginePDE 3337)PDE

    PDE PDE

    1 PDE 1.3 vp

    38)

    Zeldovich39) Heiser and Pratt40) 1 Wu et al.41) 2

    Wintenberger and Shepherd42)

    D

    Trajectory of triple point Cell width,

    Incident shock (weak shock)

    Transverse wave

    Propagation direction

    Mach stem (strong shock)

    Triple point

    : Front shock: Forward edge of reaction zone

    Micro explosion

    Trajectory of triple point Cell width,

    Incident shock (weak shock)

    Transverse wave

    Propagation direction

    Mach stem (strong shock)

    Triple point

    : Front shock: Forward edge of reaction zone

    Micro explosion

    1.2

  • 1

    __________________________________________________________________________________________________________

    5

    Humphrey cycleHBrayton cycle

    B

    Zeldovich39)PDE 1.3 1 PDE PDE

    NvN

    2CJ

    32 13 132N1 PDE 1

    1321 121 qhh outin inh outh q

    inh

    q outh 3h 3h 3 h 333 q333 sTh dd 1.3

    222 sss 333 sss sTh dd h s 333 hhh D > H > B

    p

    v

    1

    2

    von Neumann point

    Hugoniot adiabatic curve

    Frozen Hugoniot curve with fixed heat release

    Isentropic process

    CJ point

    Rayleigh line

    Detonation process

    Constant-volume combustion process

    Constant-pressure combustion process2'

    3'3

    2'', 3''

    N

    p

    v

    1

    2

    von Neumann point

    Hugoniot adiabatic curve

    Frozen Hugoniot curve with fixed heat release

    Isentropic process

    CJ point

    Rayleigh line

    Detonation process

    Constant-volume combustion process

    Constant-pressure combustion process2'

    3'3

    2'', 3''

    N

    1.3 vp 38)

  • 1

    __________________________________________________________________________________________________________

    6

    1.2.

    1.2.1.

    1.4

    2327,4347)

    4856)

    1621)

    1.4

    CJ Kudo et al.57)Maeda et

    al.16) Pintgen and Shepherd44)

    58)

    1.2.2

    1.4a

    1.4b

    52)

    59)

    CJ

    52)

    1.4c

  • 1

    __________________________________________________________________________________________________________

    7

    1.2.2.

    CJ 60,61)

    60)

    62,63) 1.5

    PBX9502PBX Plastic Bonded Explosive

    62)

    1.5

    Projectile

    (a)

    (b)

    (c)

    ProjectileProjectile

    (a)

    (b)

    (c)

    1.4

  • 1

    __________________________________________________________________________________________________________

    8

    1.6 PBX9502

    64) 1.5

    1.6 PBX9502

    64) 2

    1.5

    1.5 PBX9502

    62)

  • 1

    __________________________________________________________________________________________________________

    9

    Eyring et al.65) Wood and Kirkwood66)

    Bdzil and Stewart67,68)

    ZND Wood and Kirkwood

    2

    3 1

    Bdzil and Stewart Whitham

    Geometrical Shock DynamicsGSD69) Detonation Shock DynamicsDSD70)

    DSD

    64,7173)DSD

    7476)

    70,74)

    1.1.1

    2 1

    Menikoff et al.77)

    1

    77)

    DSD

    2

    1

  • 1

    __________________________________________________________________________________________________________

    10

    53,64,7881)

    1 1

    53,7779)

    Yao and Stewart80)

    2 Sharpe81)

    1 1

    1.2.1

    Maeda et al.16)

    Maeda et al.

    Maeda et al.

    Kudo et al.57) C2H4+3O2

    2

  • 1

    __________________________________________________________________________________________________________

    11

    2 in,D CJ CJD

    8.0CJin, DD 8.06.0 CJin, DD 6.0CJin, DD 3 Kudo et al. 2

    2

    Thomas and Williams82) Edwards et al.83) 2C2H2+5O2Kudo et al.57) 2

    59)

    Thomas and Williams Edwards et al.Kudo et al. 2

    2

    2

    Thomas and Williams

    Edwards et al.

    1.2.3. PDE

    PDE

    PDE

    Rotating

    Detonation EngineRDE8492)RDE 1.7

    1.8 RDE

    RDE PDE

    4

    RDE

    1

    1.9 RDE 92)

  • 1

    __________________________________________________________________________________________________________

    12

    20 92)

    1.8

    Burnt gasGaseous

    detonation wave

    Combustible gas injection

    Contact surfaceShock wave

    Combustible gas layer

    Burnt gasGaseous

    detonation wave

    Combustible gas injection

    Contact surfaceShock wave

    Combustible gas layer

    1.7

  • 1

    __________________________________________________________________________________________________________

    13

    RDE RDE

    RDE

    RDE

    CJ 16,44,57)RDE

    RDE

    1.8 RDE

    RDE

    RDE

    2 1.10 2

    1.9 92)

  • 1

    __________________________________________________________________________________________________________

    14

    2

    2

    2

    2

    1.10

    3.5.2

    1.3.

    1.3.1. 1.10 2

    2 2

    2 Kudo et

    al.57)

    3

    Inner wall

    Outer wall

    Gaseous detonation wave

    Initial pressure of combustible gas mixtureHigh Low

    Shock waveReaction zone

    Re-initiation (transverse

    detonation wave)

    Propagation of detonation waveSteady Unsteady

    Gaseous detonation wave

    Shock wave

    Reaction zone

    Gaseous detonation waveInner radius

    Inner radius of annular channelLarge Small

    Inner wall

    Outer wall

    Gaseous detonation wave

    Initial pressure of combustible gas mixtureHigh LowInitial pressure of combustible gas mixtureHigh Low

    Shock waveReaction zone

    Re-initiation (transverse

    detonation wave)

    Propagation of detonation waveSteady UnsteadyPropagation of detonation waveSteady Unsteady

    Gaseous detonation wave

    Shock wave

    Reaction zone

    Gaseous detonation waveInner radius

    Inner radius of annular channelLarge SmallInner radius of annular channelLarge Small

    1.10 2

  • 1

    __________________________________________________________________________________________________________

    15

    1 2

    1.2.2 Kudo et al.57) 2

    2

    2

    Thomas and Williams82) Edwards et al.83)2

    2

    RDE

    RDE

    2

    RDE

    2 2

    1.2.2

    62,63)

    RDE

  • 1

    __________________________________________________________________________________________________________

    16

    RDE

    3 1

    1.2.2 ZND

    1

    2

    Yao and Stewart80)

    2 Sharpe81)

    1 1

    Yao and Stewart80) Sharpe81)

    3

    1 Multi-frame

    Short-time Open-shutter PhotographyMSOP93)2

  • 1

    __________________________________________________________________________________________________________

    17

    2

    2

    3

    2

    1.3.2. 1 2 2

    93) 3 2

    94,95)

    4

    1 5

  • 2

    __________________________________________________________________________________________________________

    18

    2

    2.1.

    Multi-frame Short-time Open-shutter PhotographyMSOP93)

    2

    2

    MSOP

    2.2. Multi-frame Short-time Open-shutter PhotographyMSOP

    2

    Multi-frame Short-time Open-shutter Photography

    MSOP93)MSOP Short-time Open-shutter PhotographySOP

    2.1 SOP 2.1 2 expt

    expt s expt

    SOP

    SOP expt

    2.2 2 SOP

    2 60 mm

    20 mm 1 mm C2H4+3O2 30.8 kPa

    expt 4 s 2.2 SOP

  • 2

    __________________________________________________________________________________________________________

    19

    Outer wall

    Inner wall

    Triple point trajectories

    Strong luminescence by the shock wave reflected over the outer wall

    Outer wall

    Inner wall

    Triple point trajectories

    Strong luminescence by the shock wave reflected over the outer wall

    2.2 2 SOP

    2 60 mm 20 mm

    1 mm C2H4+3O2

    30.8 kPa 4 s

    Detonation wave at t

    Detonation wave at t+texp

    Reflected shock waves at t+texp

    Triple point trajectories recorded in texp(detonation cell structure)

    Reflected shock waves at t

    : Overexposure due tostrong luminescence by reflected shock waves

    Inner wall

    Outer wall

    Detonation wave at t

    Detonation wave at t+texp

    Reflected shock waves at t+texp

    Triple point trajectories recorded in texp(detonation cell structure)

    Reflected shock waves at t

    : Overexposure due tostrong luminescence by reflected shock waves

    Inner wall

    Outer wall

    2.1 Short-time Open-shutter PhotographySOP

  • 2

    __________________________________________________________________________________________________________

    20

    SOP

    SOP SOP

    1

    Multi-frame Short-time Open-shutter

    PhotographyMSOP 2.3 MSOP 2.3a

    SOP intt expt intt

    expt intt

    SOP SOP 2.3

    b1 MSOP MSOP

    MSOP SOP m SOP

    1m SOP SOP

    MSOP

    MSOP 2

    MSOP MSOP

    2.4 2 MSOP

    2

    20 mm 20 mm 1 mm C2H4+3O2 60.3 kPa expt 4 s 2.4 MSOP MSOP

  • 2

    __________________________________________________________________________________________________________

    21

    2.4 2 MSOP

    2 20 mm 20 mm

    1 mm C2H4+3O2

    60.3 kPa 4 s

    1st frame

    2nd frame

    3rd frame

    Nth frame

    tint

    texp

    tint tint tint

    texp

    texp

    texp

    Exposure

    Exposure

    Exposure

    Exposure

    1st frame

    2nd frame

    3rd frame

    Nth frame

    tint

    texp

    tint tint tint

    texp

    texp

    texp

    Exposure

    Exposure

    Exposure

    Exposure

    (a) SOP

    1st frame 2nd frame 3rd frame Nth frame

    +

    Superimposed-photograph

    + + + =

    1st frame 2nd frame 3rd frame Nth frame

    +

    Superimposed-photograph

    + + + =

    (b) SOP MSOP

    2.3 Multi-frame Short-time Open-shutter PhotographyMSOP

  • 2

    __________________________________________________________________________________________________________

    22

    2.3.

    2.5

    3 MSOP

    3

    Convex lens

    Convex lens

    Mirror

    Concave mirror

    Pinhole

    Knife edge

    Signal conditioner

    Pulse generator

    Observation chamber

    Dump tank

    Mixture tank

    Light source

    Rotary pump

    Vacuum gauge

    Pressure gauge

    High-speed video camera

    Ignition driver

    Optical system

    MSOP: w/o optical systemShadowgraph photography: w/ optical system (w/o knife edge)Schlieren photography: w/ optical system (w/ knife edge)Direct photography: w/o optical system

    Convex lens

    Convex lens

    Mirror

    Concave mirror

    Pinhole

    Knife edge

    Signal conditioner

    Pulse generator

    Observation chamber

    Dump tank

    Mixture tank

    Light source

    Rotary pump

    Vacuum gauge

    Pressure gauge

    High-speed video camera

    Ignition driver

    Optical system

    Convex lens

    Convex lens

    Mirror

    Concave mirror

    Pinhole

    Knife edge

    Signal conditioner

    Pulse generator

    Observation chamber

    Dump tank

    Mixture tank

    Light source

    Rotary pump

    Vacuum gauge

    Pressure gauge

    High-speed video camera

    Ignition driver

    Ignition driver

    Optical system

    MSOP: w/o optical systemShadowgraph photography: w/ optical system (w/o knife edge)Schlieren photography: w/ optical system (w/ knife edge)Direct photography: w/o optical system

    2.5

  • 2

    __________________________________________________________________________________________________________

    23

    2.6 25.8 mm

    20 mm x 16 mm 100 mm x 100 mm 2

    12 m

    CJ 2

    2 40 mm

    10 mm

    (a) (b)

    Spark plug Shchelkin spiral

    Rectangular cross-section tube(20 mm x 16 mm)

    Detonation tube ( 25.8 mm)

    To dump tank

    Housing

    Diaphragm (12 m)

    Curved channel(100 mm x 100 mm)

    Curved section

    Straight section

    590 mm

    60 mm

    Pressure transducer

    Detonation wave

    (a) (b)

    Spark plug Shchelkin spiral

    Rectangular cross-section tube(20 mm x 16 mm)

    Detonation tube ( 25.8 mm)

    To dump tank

    Housing

    Diaphragm (12 m)

    Curved channel(100 mm x 100 mm)

    Curved section

    Straight section

    590 mm

    60 mm

    Pressure transducer

    Detonation wave

    Spark plug Shchelkin spiral

    Rectangular cross-section tube(20 mm x 16 mm)

    Detonation tube ( 25.8 mm)

    To dump tank

    Housing

    Diaphragm (12 m)

    Curved channel(100 mm x 100 mm)

    Curved section

    Straight section

    590 mm

    60 mm

    Pressure transducer

    Detonation wave

    2.6

  • 2

    __________________________________________________________________________________________________________

    24

    2.7 2 2

    ir or

    2 5 ir 5 mm10 mm20 mm40 mm 60 mm

    20 mm MSOP

    1 mm

    2.1 p T

    CJ CJD CJ C2H4+3O2 T

    p p A A.1 p CJD

    CJ 2

    CJD

    2

    Shimadzu HPV-2

    4 s/frame MSOP 312 x 260 0.3 mm

    Type 2 (ri = 10 mm, ro = 30 mm)

    ri

    50 mm

    ro

    O

    Type 3 (ri = 20 mm, ro = 40 mm)

    ri

    50 mm

    ro

    O

    Type 5 (ri = 60 mm, ro = 80 mm)

    ri

    10 mm

    ro

    O

    ri

    50 mm

    ro

    O

    Type 1 (ri = 5 mm, ro = 25 mm)

    Type 4 (ri = 40 mm, ro = 60 mm)

    ri

    30 mm

    ro

    O

    Channel width: 20 mm

    Channel depth: 1 mm

    Type 2 (ri = 10 mm, ro = 30 mm)

    ri

    50 mm

    ro

    O

    Type 2 (ri = 10 mm, ro = 30 mm)

    ri

    50 mm

    ro

    O

    ri

    50 mm

    ro

    O

    Type 3 (ri = 20 mm, ro = 40 mm)

    ri

    50 mm

    ro

    O

    Type 3 (ri = 20 mm, ro = 40 mm)

    ri

    50 mm

    ro

    O

    ri

    50 mm

    ro

    O

    Type 5 (ri = 60 mm, ro = 80 mm)

    ri

    10 mm

    ro

    O

    Type 5 (ri = 60 mm, ro = 80 mm)

    ri

    10 mm

    ro

    O

    ri

    10 mm

    ro

    O

    ri

    50 mm

    ro

    O

    Type 1 (ri = 5 mm, ro = 25 mm)

    ri

    50 mm

    ro

    O

    ri

    50 mm

    ro

    O

    Type 1 (ri = 5 mm, ro = 25 mm)

    Type 4 (ri = 40 mm, ro = 60 mm)

    ri

    30 mm

    ro

    O

    Type 4 (ri = 40 mm, ro = 60 mm)

    ri

    30 mm

    ro

    O

    ri

    30 mm

    ro

    O

    Channel width: 20 mm

    Channel depth: 1 mm

    2.7 2

  • 2

    __________________________________________________________________________________________________________

    25

    2.1

    Gas mixture p [kPa] T [K] [mm] CJD [m/s] C2H4+3O2 20.3 ~ 80.6 298 1 0.51 ~ 2.42 2121 ~ 2316

    2.4.

    2 2

    2.8

    2 2

    i CJD

    nD in,D

    i iiin, rD i in,D CJin, DD Kudo et al.57)

    1 stable mode: 8.0CJin, DD 2 critical mode: 8.0CJin, DD 6.0CJin, DD 3 unstable mode: 6.0CJin, DD

    O Straight section

    Curved section

    Outer wall

    inner wall

    Detonation wave

    Dn,i = rii

    DCJ

    ri i

    Dn

    O Straight section

    Curved section

    Outer wall

    inner wall

    Detonation wave

    Dn,i = rii

    DCJ

    ri i

    Dn

    2.8 2

  • 2

    __________________________________________________________________________________________________________

    26

    2.5.

    2.5.1. 2

    2.9 2

    CJD

    NASA CEA96)

    CJD

    p 5%2

    1 mm

    2

    A A.1 Nakayama et al. 93)

    A A.1 p

  • 2

    __________________________________________________________________________________________________________

    27

    2.5.2. 2.10 ir ir 2 ir

    2.10 .i constr .i constr 3 .i constr

    .i constr

    .i constr ir 1 32i r 21i r 2 3221 i r

    10 20 30 40 50 60 70 80 900

    500

    1000

    1500

    2000

    2500

    3000

    p- [kPa]

    DC

    J [m

    /s]

    : Theoretical (298.15 K): Experimental (ri = 5 mm): Experimental (ri = 10 mm): Experimental (ri = 20 mm): Experimental (ri = 40 mm): Experimental (ri = 60 mm)

    2.9 2

  • 2

    __________________________________________________________________________________________________________

    28

    2.11 in,D ir 40 mm

    in,D CJD CJin, DD

    CJin, DD

    CJin, DD

    0.0 0.5 1.0 1.5 2.0 2.5 3.00

    10

    20

    30

    40

    50

    60

    70

    80

    [mm]

    r i [m

    m]

    : Stable, : Critical, : Unstable

    Stablezone

    Transitionzone

    Unstablezone

    ri/ = 32

    ri/ = 21

    0.0 0.5 1.0 1.5 2.0 2.5 3.00

    10

    20

    30

    40

    50

    60

    70

    80

    [mm]

    r i [m

    m]

    : Stable, : Critical, : Unstable

    Stablezone

    Transitionzone

    Unstablezone

    ri/ = 32

    ri/ = 21

    2.10 2

  • 2

    __________________________________________________________________________________________________________

    29

    2.5.3. 2.12 MSOP 2.12a 2.12b 2.12c 2.11 ir 40 mm

    2

    2.12a

    2.11 CJin, DD

    2

    concave front focusingkinked front evolution wrinkled front

    0 20 40 60 80 1000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Dn,

    i/DC

    J [-]

    i []

    : = 1.10 mm (stable mode): = 1.48 mm (critical mode): = 2.36 mm (unstable mode)

    2.11 2

    40i r mm

  • 2

    __________________________________________________________________________________________________________

    30

    evolution 3

    97)

    2.12b2

    2.11 CJin, DD

    2.12c2

    2

    2.11 CJin, DD 0.4

    2

  • 2

    __________________________________________________________________________________________________________

    31

    (a) = 1.10 mm

    Stable mode

    O

    (c) = 2.36 mm

    Unstable mode

    O

    (b) = 1.48 mm

    Critical mode

    O

    (a) = 1.10 mm

    Stable mode

    O

    Stable mode

    OO

    (c) = 2.36 mm

    Unstable mode

    O

    Unstable mode

    OO

    (b) = 1.48 mm

    Critical mode

    O

    Critical mode

    OO

    2.12 MSOP 40i r mm

  • 2

    __________________________________________________________________________________________________________

    32

    2.5.4. 2.13 ir MSOP 1.50 mm 2.13a 2.13b

    2.13c~ 2.13e

    2.13a 2

    2.13b

    2 2.13c~

    2.13e 2

    ir 2.13c~ 2.13e

    2

    2

    2

    2

    1.2

  • 2

    __________________________________________________________________________________________________________

    33

    (a) ri = 60 mm

    O

    Stable mode = 1.51 mm

    Critical mode

    O

    = 1.48 mm

    (b) ri = 40 mm

    O

    Unstable mode = 1.54 mm

    (c) ri = 20 mm

    O

    Unstable mode = 1.50 mm

    (d) ri = 10 mm

    O

    Unstable mode = 1.50 mm

    (e) ri = 5 mm

    (a) ri = 60 mm

    O

    Stable mode = 1.51 mm

    (a) ri = 60 mm

    O

    Stable mode = 1.51 mm

    OO

    Stable mode = 1.51 mm

    Critical mode

    O

    = 1.48 mmCritical mode

    OO

    = 1.48 mm

    (b) ri = 40 mm

    O

    Unstable mode = 1.54 mm

    OO

    Unstable mode = 1.54 mm

    (c) ri = 20 mm

    O

    Unstable mode = 1.50 mm

    OO

    Unstable mode = 1.50 mm

    (d) ri = 10 mm

    O

    Unstable mode = 1.50 mm

    OO

    Unstable mode = 1.50 mm

    (e) ri = 5 mm 2.13 ir MSOP 50.1 mm

  • 2

    __________________________________________________________________________________________________________

    34

    2.6.

    Multi-frame Short-time Open-shutter PhotographyMSOPMSOP 2

    ir

    2

    2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    35

    3 Dn/DCJ

    3.1.

    2 MSOP

    2 1 mm

    MSOP 1 mm

    2

    2

    2

    or 2

    3.2.

    2.5 2.6

    2.7 2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    36

    1 mm 16 mm

    3.1 C2H4+3O2 2H2+O2

    2C2H2+5O2+7Ar 3 2 T

    p p A A.1~ A.3 p CJD CJ 2

    2 2

    Shimadzu HPV-2 2 s/frame C2H4+3O2 2C2H2+5O2+7Ar 2H2+O2

    250 ns 312 x 260

    0.3 mm

    3.1

    Gas mixture p [kPa] T [K] [mm] CJD [m/s] C2H4+3O2 20.4 ~ 100.9 298 6 0.40 ~ 2.41 2212 ~ 2387

    2H2+O2 30.0 ~ 190.1 296 2 0.73 ~ 4.82 2680 ~ 2932 2C2H2+5O2+7Ar 15.0 ~ 150.1 294 2 0.23 ~ 3.00 1847 ~ 2033

    2.5 2.6

    2 2

    2

    3.1 2 2

    2

    2

    3.2 2 20 mm

    16 mm 50 mm 24

    2

    2.7

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    37

    1 mm 16 mm

    3.2 2C2H2+5O2+7Ar 2

    T p

    p 1 mm 4 A A.3 p CJD CJ

    2

    Channel depth: 16 mm

    20 mm27.7 mm

    R = 50 mm

    2480 mm

    Channel depth: 16 mm

    20 mm27.7 mm

    R = 50 mm

    2480 mm

    3.2 2

    Transition region

    Fully-developed region

    Planar detonation wave

    Converging detonation wave

    (arc-like, negatively-curved)

    R = 1/R

    (a) 2

    Outer wall

    Inner wall

    Negatively-curved detonation waveDetonation wave

    (b) 2

    Transition region

    Fully-developed region

    Planar detonation wave

    Converging detonation wave

    (arc-like, negatively-curved)

    R = 1/R

    Transition region

    Fully-developed region

    Planar detonation wave

    Converging detonation wave

    (arc-like, negatively-curved)

    R = 1/R

    (a) 2

    Outer wall

    Inner wall

    Negatively-curved detonation waveDetonation wave

    Outer wall

    Inner wall

    Negatively-curved detonation waveDetonation wave

    (b) 2

    3.1 2 2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    38

    2 2

    2

    Shimadzu HPV-2 1 s/frame 250 ns 312 x 260

    0.1 mm

    3.2

    Gas mixture p [kPa] T [K] [mm] CJD [m/s] 2C2H2+5O2+7Ar 11.5 ~ 39.9 297 1 1.00 ~ 4.04 1828 ~ 1977

    3.3.

    2

    3.3

    3.3 2

    r

    2

    rd td d

    ,P r rDnsin 3.1

    dd1

    sin1sintan

    2

    rr

    3.2

    nD

    iin, rD 3.13.2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    39

    rDDr

    r n

    2n

    2

    dd 3.3

    nD r3.3

    r

    r

    r

    rrDDr

    i

    dn

    2n

    2

    i

    3.4

    2 nD

    nD

    nD

    nD

    9395)

    mrrDDDD

    iin,asyn,asyn,n 3.5

    dr

    Dndt

    Straight section

    Curved section

    Outer wall

    Inner wall

    Initial line

    Dndt

    rj = 1 rj = 14 rj = 15

    rdt

    rj = 2 rj = 13

    Detonation wave at t

    Detonation wave at t+dt(r+dr)dt

    P

    r

    -di

    dtri

    rj = 0

    rdDn,idt

    O

    dr

    Dndt

    Straight section

    Curved section

    Outer wall

    Inner wall

    Initial line

    Dndt

    rj = 1 rj = 14 rj = 15

    rdt

    rj = 2 rj = 13

    Detonation wave at t

    Detonation wave at t+dt(r+dr)dt

    P

    r

    -di

    dtri

    rj = 0

    rdDn,idt

    O

    3.3 2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    40

    asyn,D m asyn,D r nD

    3.53.43.5 nD r nD r in,D asyn,D

    3.3

    r r 15 asyn,D m

    3.43.5 r r 94) asyn,D 0.005 CJD m 0.05 asyn,D

    m CJD 2 asyn,D m ir

    2 p r CJasyn, DD asyn,D m

    asyn,D CJD

    2 nD

    nD nD in,D

    1dd1

    dd1 2

    n

    r

    rr

    rrD 3.6

    3.63.3 nD 3.6 ddr r 2 ddr 93,94)

    j1j2j1jj

    2

    2

    j1jj d

    d21

    dd

    rrrr 3.7

    3.7 22 dd r 93,94)

    22d

    d 1jjj1j1jj

    1jj

    j1j

    j1j

    j2

    2 rrrrr 3.8

    3.73.8

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    41

    ddr 22 dd r 3.43.5 r

    23

    22

    2

    222

    dd

    dd

    dd2

    rrrrrr 3.9

    ddr 3.3 22 dd r 3.3 3.4

    3.5

    3.9

    3.4.

    2

    nD nD 93)

    2

    ir

    2

    rr p T CJD CJD

    nD irr CJD 4

    CJi1n ,,, DrrfD 3.10 ir r ir irr 2 ir irr

    2

    3.10

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    42

    i

    i2

    CJ

    n ,rrrf

    DD

    3.11 in,D ir 3.43.11

    r

    r

    r

    r

    r

    r

    rrr

    rrfrrrf

    rr

    rrD

    DDD

    rr

    rrDDr

    i

    i

    i

    d11,,

    d11

    d

    21

    2

    i

    i2

    2

    i

    ii2

    2

    i

    21

    2

    CJ

    n

    2

    CJ

    in,2

    i

    n

    2n

    2

    i

    3.12

    3.12 2f ir

    3.9 3.12 ddr 22 dd r ir irr r3.12

    ddr 22 dd r 3.93.9 ir irr r

    rrrrf 1,i

    i3 3.13

    3.13

    i

    i4

    1

    i

    1i

    i

    i3

    i

    i3 ,,, r

    rrfrrr

    rrrf

    rrrrf

    3.14

    3.14 irr 3.11

    ,i

    5CJ

    n rfDD 3.15

    3.15

    CJn DD ir CJn DD ir 3 nD CJn DD ir 3 nD

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    43

    1.2.2

    nD 62,63)3.15 CJn DD ir CJn DD

    nD ir CJn DD CJn DD ir CJn DD CJD 2

    3.5.

    3.5.1. 2

    3.4 ~ 3.6 CJD

    NASA CEA96) CJD

    2 16 mm

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    44

    20 40 60 80 100 120 140 160 180 2000

    500

    1000

    1500

    2000

    2500

    3000

    3500

    p- [kPa]

    DC

    J [m

    /s]

    : Theoretical (298.15 K): Experimental (ri = 5 mm): Experimental (ri = 10 mm): Experimental (ri = 20 mm): Experimental (ri = 40 mm): Experimental (ri = 60 mm)

    3.5 2

    2H2+O2

    10 20 30 40 50 60 70 80 90 100 1100

    500

    1000

    1500

    2000

    2500

    3000

    p- [kPa]

    DC

    J [m

    /s]

    : Theoretical (298.15 K): Experimental (ri = 5 mm): Experimental (ri = 10 mm): Experimental (ri = 20 mm): Experimental (ri = 40 mm): Experimental (ri = 60 mm)

    3.4 2

    C2H4+3O2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    45

    3.5.2. 3.7 2

    4 s ir 20 mm 2H2+O2 2.4

    3.7a 2

    2.12a MSOP

    3.7b

    2.12b

    MSOP

    0 20 40 60 80 100 120 140 1600

    500

    1000

    1500

    2000

    2500

    p- [kPa]

    DC

    J [m

    /s]

    : Theoretical (298.15 K): Experimental (ri = 5 mm): Experimental (ri = 10 mm): Experimental (ri = 20 mm): Experimental (ri = 40 mm): Experimental (ri = 60 mm)

    3.6 2

    2C2H2+5O2+7Ar

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    46

    3.7c 2

    2.12c MSOP

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    47

    (c)

    (b)

    (a)

    O

    = 0.73 mm

    O

    = 1.56 mm

    Unburnt gas pockets

    O

    = 4.09 mm

    Transverse detonation wave

    Re-initiation

    (c)

    (b)

    (a)

    O

    = 0.73 mm

    OOO

    = 0.73 mm

    O

    = 1.56 mm

    Unburnt gas pockets

    OOO

    = 1.56 mm

    Unburnt gas pockets

    O

    = 4.09 mm

    Transverse detonation wave

    Re-initiation

    OOO

    = 4.09 mm

    Transverse detonation wave

    Re-initiation

    3.7 2

    20i r mm2H2+O2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    48

    3.5.3. 3.8 ~ 3.10 ir 2.5.2 2.10 .i constr C2H4+3O2 23i r 2H2+O2 22i r 2C2H2+5O2+7Ar 24i r C2H4+3O2 13i r 2H2+O2 14i r 2C2H2+5O2+7Ar 13i r ir 2 2313 i r

    23i r 3.5.8

    0.0 0.5 1.0 1.5 2.0 2.5 3.00

    10

    20

    30

    40

    50

    60

    70

    80

    ri/ = 23

    [mm]

    r i [m

    m]

    : Stable, : Critical, : Unstable

    ri/ = 14

    Stablezone

    Unstablezone

    Transitionzone

    0.0 0.5 1.0 1.5 2.0 2.5 3.00

    10

    20

    30

    40

    50

    60

    70

    80

    ri/ = 23

    [mm]

    r i [m

    m]

    : Stable, : Critical, : Unstable

    ri/ = 14

    Stablezone

    Unstablezone

    Transitionzone

    3.8 2

    C2H4+3O2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    49

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.50

    10

    20

    30

    40

    50

    60

    70

    80

    Transitionzone

    [mm]

    r i [m

    m]

    ri/ = 24: Stable, : Critical, : Unstable

    ri/ = 14Stablezone

    Unstablezone

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.50

    10

    20

    30

    40

    50

    60

    70

    80

    Transitionzone

    [mm]

    r i [m

    m]

    ri/ = 24: Stable, : Critical, : Unstable

    ri/ = 14Stablezone

    Unstablezone

    3.10 2

    2C2H2+5O2+7Ar

    0 1 2 3 4 50

    10

    20

    30

    40

    50

    60

    70

    80

    [mm]

    r i [m

    m]

    ri/ = 22: Stable, : Critical, : Unstable

    ri/ = 13Stablezone

    Unstablezone

    Transitionzone

    0 1 2 3 4 50

    10

    20

    30

    40

    50

    60

    70

    80

    [mm]

    r i [m

    m]

    ri/ = 22: Stable, : Critical, : Unstable

    ri/ = 13Stablezone

    Unstablezone

    Transitionzone

    3.9 2

    2H2+O2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    50

    3.5.4. 3.11 2 ir 20 mm 0.70 mm C2H4+3O2 r r ir2

    or 2

    3.12 2

    3.11 r ir

    2 i

    -35-30-25-20-15-10-501.0

    1.2

    1.4

    1.6

    1.8

    2.0

    -i []

    r/r i

    [-]

    Outer wall

    Inner wall

    ri = 20 mm, = 0.70 mm: i = 10.7: i = 34.5: i = 57.7: i = 80.9: i = 103.7: i = 127.1: i = 150.0: i = 173.0

    3.11 2

    20i r mm 70.0 mmC2H4+3O2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    51

    3.3 2

    3.11 3.12

    3.5.5. 3.11 3.12 2

    3.4

    3.4

    3.5

    3.13 2

    3.43.5

    3.11 r r ir 3.12 in,D iin, rD

    1.0 1.2 1.4 1.6 1.8 2.00.0

    0.5

    1.0

    1.5

    r/ri [-]

    [1

    05 ra

    d/s]

    ri = 20 mm, = 0.70 mm: Experimental (i = 115.1): Experimental (i = 127.1): Experimental (i = 138.8): Average (= 1.0231105 rad/s)

    Inner wall Outer wall

    3.12 2 20i r mm 70.0 mmC2H4+3O2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    52

    asyn,D m CJasyn, 980.0 DD 10.8m 3.13 asyn,D m2

    3.43.5

    3.14 2

    nD 3.11

    nD

    nD r CJD ir 3.6

    3.13 3.5 nD 2 3.14 asyn,D m

    2

    nD 3.53.5

    nD 3.53.4

    -35-30-25-20-15-10-501.0

    1.2

    1.4

    1.6

    1.8

    2.0

    r/r i

    [-]

    -i []

    ri = 20 mm, = 0.70 mm: Experimental (i = 115.1): Experimental (i = 127.1): Experimental (i = 138.8): Fitting

    (Dn,i = 0.87235DCJ, Dn,asy = 0.980DCJ, m = 8.10, = 1.0231105 rad/s)

    Outer wall

    Inner wall

    3.13 2 20i r mm 70.0 mmC2H4+3O2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    53

    3.43.52 nD

    3.9 nD 3.133.43.5 2

    3.15 2 3.43.5

    3.13

    1 3.13

    2 3.13 5 3.3 5j 33.100.1 i rr 2 CJasyn, 995.0 DD 50.7m 12

    2 33.100.1 i rr 2 3.16

    1.0 1.2 1.4 1.6 1.8 2.00.80

    0.85

    0.90

    0.95

    1.00

    1.05

    r/ri [-]

    ri = 20 mm, = 0.70 mm: Experimental (i = 115.1): Experimental (i = 127.1): Experimental (i = 138.8): Fitting

    (Dn,i = 0.87235DCJ, Dn,asy = 0.980DCJ, m = 8.10)

    Dn/D

    CJ [

    -]

    Inner wall Outer wall

    3.14 2

    20i r mm 70.0 mmC2H4+3O2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    54

    12 nD nD CJD 1 CJn DD 00.200.1 i rr 2 CJn DD21 20.100.1 i rr 3.16 CJn DD

    CJn DD 0.05 0.003

    CJn DD

    CJn DD

    -7-6-5-4-3-2-101.0

    1.1

    1.2

    1.3

    1.4

    r/r i

    [-]

    -i []

    ri = 20 mm, = 0.70 mm: Experimental (i = 115.1): Experimental (i = 127.1): Experimental (i = 138.8): Fitting (1)

    (Dn,i = 0.87235DCJ, Dn,asy = 0.980DCJ, m = 8.10, = 1.0231105 rad/s)

    : Fitting (2)(Dn,i = 0.87235DCJ, Dn,asy = 0.995DCJ, m = 7.50, = 1.0231105 rad/s)

    Inner wall

    3.15 2 33.100.1 i rr

    20i r mm 70.0 mmC2H4+3O2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    55

    3.5.6. Dn/DCJ 3.17 ~ 3.19 CJn DD 3.8 ~ 3.10 ir

    CJn DD C2H4+3O2 10 2H2+O2 9 2C2H2+5O2+7Ar 13 CJn DD

    CJn DD ir 2 p ir 1 CJn DD 3.15 CJn DD ir CJn DD ir nD 62,63)

    nD p CJn DD

    0.00 0.02 0.04 0.06 0.08 0.10 0.120.6

    0.7

    0.8

    0.9

    1.0

    [-]

    Dn/D

    CJ [

    -]

    ri = 20 mm, = 0.70 mm: Fitting (1)

    (Dn,i = 0.87235DCJ, Dn,asy = 0.980DCJ, m = 8.10, = 1.0231105 rad/s)

    : Fitting (2)(Dn,i = 0.87235DCJ, Dn,asy = 0.995DCJ, m = 7.50, = 1.0231105 rad/s)

    )00.200.1( i rr

    )20.100.1( i rr

    0.00 0.02 0.04 0.06 0.08 0.10 0.120.6

    0.7

    0.8

    0.9

    1.0

    [-]

    Dn/D

    CJ [

    -]

    ri = 20 mm, = 0.70 mm: Fitting (1)

    (Dn,i = 0.87235DCJ, Dn,asy = 0.980DCJ, m = 8.10, = 1.0231105 rad/s)

    : Fitting (2)(Dn,i = 0.87235DCJ, Dn,asy = 0.995DCJ, m = 7.50, = 1.0231105 rad/s)

    )00.200.1( i rr

    )20.100.1( i rr

    3.16 1 00.200.1 i rr 2 20.100.1 i rr CJn DD 20i r mm

    70.0 mmC2H4+3O2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    56

    0 1CJn DD CJn DD 0 1CJn DD 3.43.5 asyn,D CJD

    3.17 ~ 3.19 CJn DD 0 1CJn DD 3.43.5 0

    CJn DD 3.5 0 CJn DD

    0 1CJn DD CJn DD 3.5

    0.00 0.02 0.04 0.06 0.08 0.10 0.120.6

    0.7

    0.8

    0.9

    1.0

    [-]

    Dn/D

    CJ [

    -]

    : ri = 10 mm, = 0.40 mm: ri = 20 mm, = 0.40 mm: ri = 20 mm, = 0.59 mm: ri = 20 mm, = 0.87 mm: ri = 40 mm, = 0.40 mm: ri = 40 mm, = 0.86 mm: ri = 40 mm, = 1.51 mm: ri = 60 mm, = 0.40 mm: ri = 60 mm, = 1.11 mm: ri = 60 mm, = 2.07 mm

    3.17 2

    CJn DD C2H4+3O2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    57

    0.00 0.02 0.04 0.06 0.08 0.10 0.120.6

    0.7

    0.8

    0.9

    1.0

    [-]

    Dn/D

    CJ [

    -] : ri = 5 mm, = 0.23 mm: ri = 10 mm, = 0.23 mm: ri = 10 mm, = 0.36 mm: ri = 10 mm, = 0.46 mm: ri = 20 mm, = 0.23 mm: ri = 20 mm, = 0.53 mm: ri = 20 mm, = 0.90 mm: ri = 40 mm, = 0.23 mm: ri = 40 mm, = 0.78 mm: ri = 40 mm, = 1.55 mm: ri = 60 mm, = 0.23 mm: ri = 60 mm, = 1.38 mm: ri = 60 mm, = 2.16 mm

    3.19 2

    CJn DD 2C2H2+5O2+7Ar

    0.00 0.02 0.04 0.06 0.08 0.10 0.120.6

    0.7

    0.8

    0.9

    1.0

    [-]

    Dn/D

    CJ [

    -]

    : ri = 20 mm, = 0.73 mm: ri = 20 mm, = 0.82 mm: ri = 20 mm, = 0.93 mm: ri = 40 mm, = 0.73 mm: ri = 40 mm, = 1.27 mm: ri = 40 mm, = 1.76 mm: ri = 60 mm, = 0.74 mm: ri = 60 mm, = 1.56 mm: ri = 60 mm, = 2.37 mm

    3.18 2

    CJn DD 2H2+O2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    58

    3.20 CJn DD 3.17 ~ 3.19 CJn DD CJn DD CJn DD CJn DD CJn DD

    332210CJn aaaa DD 0000.1a0 3017.1a1 089.16a 2 67.169a3 3.20 CJn DD 0 1CJn DD

    0 1CJn DD 8.0CJin, DD CJn DD 11614.000000.0 0.18.0 CJn DD

    0.00 0.02 0.04 0.06 0.08 0.10 0.120.6

    0.7

    0.8

    0.9

    1.0

    [-]

    Dn/D

    CJ [

    -]

    : C2H4+3O2: 2H2+O2: 2C2H2+5O2+7Ar: Fitting (overall)

    Dn/DCJ = aj()j (j = 0~3)a0 = 1.0000, a1 = -1.3017a2 = 16.089, a3 = -169.67

    3.20 CJn DD

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    59

    3.5.7. Dn/DCJ 3.21 ~ 3.23 2 CJn DD 3.21 ir 20 mm 0.70 mm C2H4+3O2 3.22 ir 40 mm 1.56 mm 2H2+O2 3.23 ir 10 mm 0.27 mm 2C2H2+5O2+7Ar marker particle method98)

    Marker particle method 3.24

    1 2

    2

    B

    2 s 4 s 3.21 ~ 3.23 CJn DD

    CJn DD 2 ir p CJn DD CJn DD

    CJn DD

    CJn DD 1 1.2.2

    3.21 ~ 3.23 2 CJn DD

    p 11614.000000.0 0.18.0 CJn DD

    CJn DD

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    60

    Photograph: schlieren photography (t = 2 s): Front shock reconstructed with overall Dn/DCJ- relation (t = 4 s)

    Photograph: schlieren photography (t = 2 s): Front shock reconstructed with overall Dn/DCJ- relation (t = 4 s)

    Photograph: schlieren photography (t = 2 s): Front shock reconstructed with overall Dn/DCJ- relation (t = 4 s)

    3.22 2

    CJn DD 40i r mm 56.1 mm2H2+O2

    Photograph: shadowgraph photography (t = 2 s): Front shock reconstructed with overall Dn/DCJ- relation (t = 4 s)

    Photograph: shadowgraph photography (t = 2 s): Front shock reconstructed with overall Dn/DCJ- relation (t = 4 s)

    Photograph: shadowgraph photography (t = 2 s): Front shock reconstructed with overall Dn/DCJ- relation (t = 4 s)

    3.21 2

    CJn DD 20i r mm 70.0 mmC2H4+3O2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    61

    Wave front at t

    Wave front at t+t

    : node

    Wave front at t

    Wave front at t+t

    : node: node

    3.24 Marker particle method

    Photograph: shadowgraph photography (t = 2 s): Front shock reconstructed with overall Dn/DCJ- relation (t = 4 s)

    Photograph: shadowgraph photography (t = 2 s): Front shock reconstructed with overall Dn/DCJ- relation (t = 4 s)

    Photograph: shadowgraph photography (t = 2 s): Front shock reconstructed with overall Dn/DCJ- relation (t = 4 s)

    3.23 2

    CJn DD 10i r mm 27.0 mm 2C2H2+5O2+7Ar

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    62

    3.5.8. 3.21 ~ 3.23 CJn DD CJn DD x y t irx iry iCJ rtD

    3.25 2

    ir 2350 108 3 CJn DD 3.25a

    3.25b CJn DD

    1 2

    or

    CJn DD

    3.14 3.25 CJn DD

    2

    3.11 3.12 3.25 CJn DD irr CJn DD io rr 2 3.25 ir CJn DD 1 0

    ir

    3.25 CJn DD ir ir 2 ir ir ir CJn DD 2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    63

    ir 3.26 3.27 r r ir 3.26

    ir 36.3 C2H4+3O2 ir 20 mm40 mm 60 mm 3 3.27 ir 27.5 ir 20 mm

    CJn DD ir ir 2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    64

    : Constant Dn/DCJ line : Front shock reconstructed with

    overall Dn/DCJ- relation ( = 1)

    (b) Dn/DCJ

    (a)

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-]

    [-]

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-] [-

    ]

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-]

    [-]

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-]

    [-]

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-]

    [-]

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-]

    [-]

    0.0000

    0.0104

    0.0207

    0.0414

    0.0518

    0.0725

    0.0829

    0.0932

    0.1036

    0.0622

    0.0311

    0.8270

    0.8443

    0.8616

    0.8962

    0.9135

    0.9481

    0.9654

    0.9827

    1.0000

    0.9308

    0.8789

    0.0000

    0.0104

    0.0207

    0.0414

    0.0518

    0.0725

    0.0829

    0.0932

    0.1036

    0.0622

    0.0311

    0.8270

    0.8443

    0.8616

    0.8962

    0.9135

    0.9481

    0.9654

    0.9827

    1.0000

    0.9308

    0.8789

    0.0000

    0.0104

    0.0207

    0.0414

    0.0518

    0.0725

    0.0829

    0.0932

    0.1036

    0.0622

    0.0311

    0.8270

    0.8443

    0.8616

    0.8962

    0.9135

    0.9481

    0.9654

    0.9827

    1.0000

    0.9308

    0.8789

    : Constant line : Front shock reconstructed with

    overall Dn/DCJ- relation ( = 1)

    = 0

    = 2

    = 4 =

    6

    = 8

    = 10

    (i) ri/ = 23

    = 0.0104

    = 0.0104

    = 0

    = 2

    = 4 =

    6

    = 8

    = 10

    (i) ri/ = 23

    Dn/DCJ = 0.9827

    Dn/DCJ = 0.9654

    = 0

    = 2

    = 4 =

    6

    = 8

    = 0

    = 2

    = 4 =

    6

    = 8

    (iii) ri/ = 108 (iii) ri/ = 108

    = 0

    = 2

    = 4 =

    6

    = 8

    = 10

    = 0

    = 2

    = 4 =

    6

    = 8

    = 10

    = 0.0104

    = 0.0104(ii) ri/ = 50 (ii) ri/ = 50

    Dn/DCJ = 0.9827

    Dn/DCJ = 0.9654

    : Constant Dn/DCJ line : Front shock reconstructed with

    overall Dn/DCJ- relation ( = 1): Constant Dn/DCJ line : Front shock reconstructed with

    overall Dn/DCJ- relation ( = 1)

    (b) Dn/DCJ

    (a)

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-]

    [-]

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-]

    [-]

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-] [

    -]-5 -4 -3 -2 -1 0 1 2 3 4 5

    -5-4-3-2-1012345

    [-] [

    -]

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-]

    [-]

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-]

    [-]

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-]

    [-]

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-]

    [-]

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-]

    [-]

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-]

    [-]

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-]

    [-]

    -5 -4 -3 -2 -1 0 1 2 3 4 5-5-4-3-2-1012345

    [-]

    [-]

    0.0000

    0.0104

    0.0207

    0.0414

    0.0518

    0.0725

    0.0829

    0.0932

    0.1036

    0.0622

    0.0311

    0.0000

    0.0104

    0.0207

    0.0414

    0.0518

    0.0725

    0.0829

    0.0932

    0.1036

    0.0622

    0.0311

    0.8270

    0.8443

    0.8616

    0.8962

    0.9135

    0.9481

    0.9654

    0.9827

    1.0000

    0.9308

    0.8789

    0.8270

    0.8443

    0.8616

    0.8962

    0.9135

    0.9481

    0.9654

    0.9827

    1.0000

    0.9308

    0.8789

    0.0000

    0.0104

    0.0207

    0.0414

    0.0518

    0.0725

    0.0829

    0.0932

    0.1036

    0.0622

    0.0311

    0.0000

    0.0104

    0.0207

    0.0414

    0.0518

    0.0725

    0.0829

    0.0932

    0.1036

    0.0622

    0.0311

    0.8270

    0.8443

    0.8616

    0.8962

    0.9135

    0.9481

    0.9654

    0.9827

    1.0000

    0.9308

    0.8789

    0.8270

    0.8443

    0.8616

    0.8962

    0.9135

    0.9481

    0.9654

    0.9827

    1.0000

    0.9308

    0.8789

    0.0000

    0.0104

    0.0207

    0.0414

    0.0518

    0.0725

    0.0829

    0.0932

    0.1036

    0.0622

    0.0311

    0.0000

    0.0104

    0.0207

    0.0414

    0.0518

    0.0725

    0.0829

    0.0932

    0.1036

    0.0622

    0.0311

    0.8270

    0.8443

    0.8616

    0.8962

    0.9135

    0.9481

    0.9654

    0.9827

    1.0000

    0.9308

    0.8789

    0.8270

    0.8443

    0.8616

    0.8962

    0.9135

    0.9481

    0.9654

    0.9827

    1.0000

    0.9308

    0.8789

    : Constant line : Front shock reconstructed with

    overall Dn/DCJ- relation ( = 1): Constant line : Front shock reconstructed with

    overall Dn/DCJ- relation ( = 1)

    = 0

    = 2

    = 4 =

    6

    = 8

    = 10

    (i) ri/ = 23

    = 0.0104

    = 0.0104

    = 0

    = 2

    = 4 =

    6

    = 8

    = 10

    (i) ri/ = 23

    Dn/DCJ = 0.9827

    Dn/DCJ = 0.9654

    = 0

    = 2

    = 4 =

    6

    = 8

    = 0

    = 2

    = 4 =

    6

    = 8

    (iii) ri/ = 108 (iii) ri/ = 108

    = 0

    = 2

    = 4 =

    6

    = 8

    = 10

    = 0

    = 2

    = 4 =

    6

    = 8

    = 10

    = 0.0104

    = 0.0104(ii) ri/ = 50 (ii) ri/ = 50

    Dn/DCJ = 0.9827

    Dn/DCJ = 0.9654

    3.25 2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    65

    -35-30-25-20-15-10-501.0

    1.2

    1.4

    1.6

    1.8

    2.0

    -i []

    r/ri [

    -]

    Outer wall

    Experimental: C2H4+3O2: 2H2+O2: 2C2H2+5O2+7Ar

    Reconstructed: Overall Dn/DCJ- relationInner wall

    3.27 2

    5.27i r 20i r mm

    -35-30-25-20-15-10-501.0

    1.2

    1.4

    1.6

    1.8

    2.0

    -i []

    r/ri [

    -]

    Outer wall

    Experimental: ri = 20 mm: ri = 40 mm: ri = 60 mm

    Reconstructed: Overall Dn/DCJ- relationInner wall

    3.26 2

    3.36i r C2H4+3O2 ir

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    66

    3.6.

    3.6.1. Dn/DCJ 2

    CJD 3.6

    3.28 2

    3.01 mm R1 ~ R3 17.5 mm 2

    CJn DD

    3.29 2 CJn DD CJn DD CJn DD CJn DD 3.19 CJn DD p 1 CJn DD 1CJn DD

    CJ

    R1

    R1 = 17.5 mmR2 = 17.4 mmR3 = 17.5 mm Transition region

    Fully-developed region

    R3R2R1

    R1 = 17.5 mmR2 = 17.4 mmR3 = 17.5 mm Transition region

    Fully-developed region

    R3R2

    3.28 2 01.3 mm

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    67

    CJ 3.29 CJn DD CJn DD

    CJn DD

    CJn DD CJn DD

    CJn DD 3.29

    CJn DD 332210CJn aaaa DD 00000.1a0 41858.0a1 25821.0a 2 13027.0a3 CJn DD 0 1CJn DD CJn DD 0.07.0 2042.10000.1 CJn DD

    -0.80 -0.60 -0.40 -0.20 0.00 0.200.80

    0.90

    1.00

    1.10

    1.20

    1.30

    [-]

    : FittingDn/DCJ = aj()j (j = 0~3)a0 = 1.00000, a1 = -0.41858a2 = -0.25821, a3 = -0.13027

    Dn/D

    CJ [

    -]

    Interpolation limit ofDn/DCJ- relation (negative)

    : = 4.02 mm: = 3.01 mm: = 2.00 mm: = 1.00 mm

    Positive

    Negative

    3.29 2

    CJn DD

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    68

    3.6.2. Dn/DCJ 3.30 2

    CJn DD 2 marker particle

    method98) 2

    B

    1 s 2 s 2

    2

    2

    3.30 2

    CJn DD

    CJn DD

    CJn DD

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    69

    CJn DD CJn DD 2 3.31 2 CJn DD

    3 cm CJn DD

    CJn DD CJn DD 0 0 CJn DD

    99) 2C2H2+5O2

    CJn DD

    (a) = 4.00 mm(), 4.03 mm()

    (b) = 3.01 mm(), 3.01 mm()

    (c) = 2.00 mm(), 2.00 mm()

    (d) = 1.00 mm(), 1.00 mm()

    Photograph: direct photography (t = 1 s): Front shock reconstructed with Dn/DCJ- relation (t = 2 s)

    (a) = 4.00 mm(), 4.03 mm()

    (b) = 3.01 mm(), 3.01 mm()

    (c) = 2.00 mm(), 2.00 mm()

    (d) = 1.00 mm(), 1.00 mm()

    Photograph: direct photography (t = 1 s): Front shock reconstructed with Dn/DCJ- relation (t = 2 s)

    Photograph: direct photography (t = 1 s): Front shock reconstructed with Dn/DCJ- relation (t = 2 s)

    3.30 CJn DD 2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    70

    3.6.3. 2 CJn DD

    CJn DD 2

    2

    3.32 3.32 sM

    w

    w

    w w

    Dn/DCJ= 1.08

    Dn/DCJ= 1.07

    1.191.20

    1.181.171.161.151.141.131.121.111.101.091.081.071.061.051.041.031.021.011.00

    (a) = 4.00 mm (b) = 3.00 mm (c) = 2.00 mm (d) = 1.00 mm

    Dn/DCJ= 1.06

    Dn/DCJ= 1.05

    Dn/DCJ= 1.04

    Dn/DCJ= 1.07

    Dn/DCJ= 1.06

    Dn/DCJ= 1.05

    Dn/DCJ= 1.08

    Dn/DCJ= 1.07

    1.191.20

    1.181.171.161.151.141.131.121.111.101.091.081.071.061.051.041.031.021.011.00

    1.191.20

    1.181.171.161.151.141.131.121.111.101.091.081.071.061.051.041.031.021.011.00

    (a) = 4.00 mm (b) = 3.00 mm (c) = 2.00 mm (d) = 1.00 mm

    Dn/DCJ= 1.06

    Dn/DCJ= 1.05

    Dn/DCJ= 1.04

    Dn/DCJ= 1.07

    Dn/DCJ= 1.06

    Dn/DCJ= 1.05

    3.31 2 CJn DD

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    71

    3.33 w DW RS MS

    Vasilev et al. 100) 3.33 2 w von Neumann condition 101) 3.32 w von Neumann condition 3.32 w w 3.33 Skews and Kleine 102) CJn DD 1

    1 CJn DD

    CJn DD 3.33 2C2H2+5O2+7Ar 9.23w CJn DD

    9.23w CJn DD

    O

    Ms

    Planar detonation wave

    ww

    ro

    Outer wall (concave)

    Msw

    Simplified geometric relationship between the planar detonation wave and the outer wall with fixed wO

    Ms

    Planar detonation wave

    ww

    ro

    Outer wall (concave)

    Msw

    Simplified geometric relationship between the planar detonation wave and the outer wall with fixed w

    3.32

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    72

    3.34 2 CJn DD marker particle method98) 2

    B 2

    3.34c 3.34d CJn DD 3.34a 3.34b 1CJn DD

    1 s 0.07.0 2042.10000.1 CJn DD 3.34 CJn DD 2 or p

    2

    1 2 3 4 5 6 7 8 9 100

    10

    20

    30

    40

    50

    60

    70

    80

    90

    Ms [-]

    w [

    ]

    Sonic condition

    Detachment criterion(2-shock theory)

    von Neumann condition(3-shock theory)

    No reflection

    Machreflection

    Regularreflection

    MCJ = 6.3125

    w = 23.9

    1 2 3 4 5 6 7 8 9 100

    10

    20

    30

    40

    50

    60

    70

    80

    90

    Ms [-]

    w [

    ]

    Sonic condition

    Detachment criterion(2-shock theory)

    von Neumann condition(3-shock theory)

    No reflection

    Machreflection

    Regularreflection

    MCJ = 6.3125

    w = 23.9

    DW

    DW

    DW

    RS

    RSMS

    1 2 3 4 5 6 7 8 9 100

    10

    20

    30

    40

    50

    60

    70

    80

    90

    Ms [-]

    w [

    ]

    Sonic condition

    Detachment criterion(2-shock theory)

    von Neumann condition(3-shock theory)

    No reflection

    Machreflection

    Regularreflection

    MCJ = 6.3125

    w = 23.9

    1 2 3 4 5 6 7 8 9 100

    10

    20

    30

    40

    50

    60

    70

    80

    90

    Ms [-]

    w [

    ]

    Sonic condition

    Detachment criterion(2-shock theory)

    von Neumann condition(3-shock theory)

    No reflection

    Machreflection

    Regularreflection

    MCJ = 6.3125

    w = 23.9

    DW

    DW

    DW

    RS

    RSMS

    3.33 w

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    73

    0.07.0 2042.10000.1 CJn DD CJn DD

    CJn DD

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    74

    Head of expansion wave

    w = 23.9 w = 23.9

    Head of expansion wave

    w = 23.9

    w = 23.9

    (a) ro = 30 mm, = 4.01 mm

    Photograph: direct photography (t = 1 s): Front shock reconstructed with Dn/DCJ- relation (t = 1 s)

    (b) ro = 30 mm, = 1.00 mm

    (c) ro = 40 mm, = 1.00 mm (d) ro = 80 mm, = 1.00 mm

    Head of expansion wave

    w = 23.9

    Head of expansion wave

    w = 23.9 w = 23.9

    Head of expansion wave

    w = 23.9

    Head of expansion wave

    w = 23.9w = 23.9

    w = 23.9w = 23.9

    (a) ro = 30 mm, = 4.01 mm

    Photograph: direct photography (t = 1 s): Front shock reconstructed with Dn/DCJ- relation (t = 1 s)

    Photograph: direct photography (t = 1 s): Front shock reconstructed with Dn/DCJ- relation (t = 1 s)

    (b) ro = 30 mm, = 1.00 mm

    (c) ro = 40 mm, = 1.00 mm (d) ro = 80 mm, = 1.00 mm 3.34 CJn DD

    2

  • 3 Dn/DCJ

    __________________________________________________________________________________________________________

    75

    3.7.

    C2H4+3O22H2+O2 2C2H2+5O2+7Ar 3 2

    2 2313 i r

    23i r 2

    CJn DD CJn DD ir 2 p

    ir 1 CJn DD CJn DD

    CJn DD 1 ir CJn /DD 1 ir ir ir 2

    2C2H2+5O2+7Ar CJn DD CJn DD

    CJn DD

  • 4

    __________________________________________________________________________________________________________

    76

    4

    1

    4.1.

    3 CJn DD ir

    Yao and Stewart80)

    2 Sharpe81)

    1 1

    Yao and Stewart80) Sharpe81)

    2

    CJn DD 3 CJn DD

    4.2.

    4.1

    Menikoff et al. 77)

    ZND

    Yao and Stewart80)

    induction zoneIZreaction zone

    RZ 2 Whitham ray tube theory69)

    1

  • 4

    __________________________________________________________________________________________________________

    77

    4.1 n igl

    mtl igl mtl indl

    A AnA dd indl 1ind l

    IZ RZ 2 ZND CJ CJind,l

    CJ CJind,l CJind,Cl C 28) CJn DD CJD CJ 0 NASA CEA96) CJ

    CJn DD 2 CJind,CJn lDD CJind,Cl

    CJind,CJn lDD CJn DD

    Induction zone (IZ)

    Reaction zone (RZ)

    n

    Ray tubeThermicity

    Reaction progress

    lig

    lmt

    Front shockPropagation

    direction

    CJ point

    0

    Analysis domain (IZ+RZ)

    Onset point of ignition

    Reaction progressor

    Thermicity

    Max. thermicity

    Reaction progress at CJ point

    Induction length: lind = lig+lmtCell width: = Clind,CJCurvature: = (dA/dn)/A

    C: ConstantA: Cross-section area of ray tube

    lind

    Induction zone (IZ)

    Reaction zone (RZ)

    n

    Ray tubeThermicity

    Reaction progress

    lig

    lmt

    Front shockPropagation

    direction

    CJ point

    0

    Analysis domain (IZ+RZ)

    Onset point of ignition

    Reaction progressor

    Thermicity

    Max. thermicity

    Reaction progress at CJ point

    Induction length: lind = lig+lmtCell width: = Clind,CJCurvature: = (dA/dn)/A

    C: ConstantA: Cross-section area of ray tube

    lind

    4.1

  • 4

    __________________________________________________________________________________________________________

    78

    4.3.

    1

    1

    64)

    0nnn

    uDnu

    t 4.1

    01nnnn

    np

    nuu

    tuD

    4.2

    0n2n

    n

    ut

    pneu

    te

    4.3

    wnYu

    tY

    n 4.4

    Yqpe 1 4.5 RTp 4.6

    t nu nD peY

    0Y 1Y w q RT

    80)

    80,81)

    N21N21 PPPRRR R : , P : 1

    1

  • 4

    __________________________________________________________________________________________________________

    79

    RTqKYY

    TTZw exp1exp a1 4.7

    Z aT K4.7 C

    4.74.7 aT

    aT

    4.7 1 4.7 2 K g 1)

    YYRTKRTqg

    1lnln 4.8

    0 CJCJ 1,81,103) CJ CJ 4.8 0g 1) K CJ CJ

    CJpeq,CJpeq,

    CJpeq, exp1

    RTq

    YY

    K 4.9

    eq CJp CJ

    eq,CJp CJ CJ

    CJpeq,Y

    CJ D CJ 2 CJpeq,

    2CJpn, au 1,81,103) CJpeq,a CJ CJ

    CJ CJ CJpfr,a

    1)

  • 4

    __________________________________________________________________________________________________________

    80

    CJpeq,CJpeq,2

    2CJpfr,

    2

    2

    2CJpfr,

    2CJpfr,

    2CJpfr,

    2CJpeq,

    1111

    1

    1

    YYaq

    aqa

    aa

    4.10

    fra T

    RTpa 2fr 4.11

    CJpfr,a 4.11 CJpeq,T CJpfr,a q

    q 4.5.2 CJpeq,Y CJpeq,T

    4.9 K

    4.4.

    IZ RZ

    4.1~ 4.4 1 t 4.1

    ~ 4.4

    0d

    dnn

    n uDnu 4.12

    0dd1

    dd n

    n np

    nuu 4.13

    0dd

    dd

    2 np

    ne

    4.14

    wnYu

    dd

    n 4.15

    4.5 Ypee ,,

    nY

    Ye

    np

    pe

    ne

    ne

    dd

    dd

    dd

    dd

    4.16

    4.164.14

    0dd

    dd

    dd

    2

    nY

    pe

    Ye

    np

    npeep

    4.17 fra

  • 4

    __________________________________________________________________________________________________________

    81

    peepa

    2

    2fr 4.18

    1)4.184.17

    0dd

    dd

    dd2

    fr

    nY

    pe

    Ye

    np

    na 4.19

    4.124.134.154.19

    2n

    2fr

    nn2fr

    n

    1

    dd

    ua

    uDawpe

    Ye

    nu

    4.20

    4.5

    qYe 4.21

    1

    11

    p

    e 4.22

    4.214.224.20

    2

    nn2fr

    2n

    2fr

    nn2frn

    1

    11

    dd

    M

    uDwaq

    uauDaqw

    nu

    4.23

    M 2fr2n

    2 auM 4.23 1

    IZ RZ 80,81)

    4.134.14

    02d

    d 2n

    upen 4.24

    4.244.5

    021dd 2n

    Yq

    upn

    4.25

    .212n constYqup

    4.26 4.26

    4.26

    2n2n

    21

    121DpYqup

    4.27 4.27 pa 2fr

  • 4

    __________________________________________________________________________________________________________

    82

    YquDpa

    21

    2n

    2n2

    fr 4.28

    4.28 1 IZ RZ

    4.5.

    4.5.1. ZND IZ RZ 2 igl

    0w CJ 0w CJ

    104) 1ind l 1 t 1 CJ

    T igt

    TT

    TT

    qZRt a

    a

    21

    ig exp1 4.29

    4.29 E

    ltnu

    l

    ig

    0n

    d1 4.30

    ln ln 4.29 igt 4.30 l igl

    4.30 0n igln nu T 0w 0Y p nD 4.234.28 0n nu 4.12 0n

  • 4

    __________________________________________________________________________________________________________

    83

    1

    21 2n

    nn,

    D

    pDu 4.31

    n,

    n

    uD 4.32

    105)+T4.11

    4.28

    4.5.2. CJ 0 CJn DD 4.124.13 CJn Du 4.33 2CJ

    2n Dpup 4.34

    4.334.34 p CJD fra CJn2CJ

    CJ

    n2fr DuDpD

    upa

    4.35

    nu w

    aq

    2fr

    1 4.36

    58) CJ CJmt,l 4.23 0

    mtn,

    ig,n

    mtn,

    ig,n

    n

    a1

    2n

    2fr

    n

    2n

    2fr

    CJmt,

    d

    exp1exp1

    d1

    u

    u

    u

    u

    u

    RTqKYY

    TTZq

    ua

    uqwual

    4.37

    CJ ZND

    CJ CJig,l

    4.30

    TT

    TT

    qZRu

    utl aa

    21n,

    n,,igCJig, exp1 4.38

    CJ CJind,l CJig,l CJmt,l

  • 4

    __________________________________________________________________________________________________________

    84

    mtn,

    i,n

    n

    a1

    2n

    2fr

    a

    a

    21n,

    CJind,

    d

    exp1exp1

    exp1

    u

    u g

    u

    RTqKYY

    TTZq

    ua

    TT

    TT

    qZRu

    l

    4.39

    p CJD 4.394.35 ign,u mtn,u ind,CJl CJ

    0n CJig,ln 1 0w 0Y n,n uu TT

    n,ign, uu n,u 4.31 4.324.33 T 4.114.354.39 CJig,ln nu T4.234.35 0 CJig,ln nu n,ign,n uuu nu 4.114.334.35 T CJ D CJ

    2CJpeq,

    2CJpn, au 1,81,103) p CJpeq,Y

    0 CJn DD 4.104.284.35 q NewtonRaphson 106)q4.104.284.35 2 CJpeq,a

    CJpfr,a CJpfr,a 4.3 K

    4.5.3. l tu pT e

    CJ

    1

    CJind,

    ~DZl

    lll

    1~ Ztt

    CJ

    ~Duu

    ~ 2CJ

    ~Dpp

    2CJ

    ~DRTT 2

    CJ

    ~Dee 4.40

    ~4.40 ~ 1 p~

    2CJ

    2CJ

    1~MD

    pp

    4.41

  • 4

    __________________________________________________________________________________________________________

    85

    CJM CJ CJ 1

    4.39

    mtn,

    ig,n

    ~

    ~

    n

    a1

    2n

    2fr

    a

    a

    21n,

    ~d

    ~~

    exp1~~

    exp~~1

    ~~

    ~~

    exp~~

    ~~1

    ~

    u

    u

    u

    TqKYY

    TTq

    ua

    TT

    TT

    qu

    4.42

    4.6.

    p CJD CJM R nD 0n p T 4.12~ 4.15 aT q CJpeq,Y Z K 4.12~ 4.15 0n CJ pT4.12~ 4.15 0n igln 0w igln CJ 0w

    4.54.64.114.28

    1 CJ

    nD nD

    0 CJ D CJ 81,103)4.12~ 4.15 2 CJpfr,

    2CJpn, au 4.23 0

    4.23 0 81,103)

    CJ

    4.23 CJ CJ nD

    shooting method107) nD nD

  • 4

    __________________________________________________________________________________________________________

    86

    nD 4.12~ 4.154 108)

    CJ 0 CJ 4.3 2 CJpeq,

    2CJpn, au eqfr aa CJ

    1,81,103) 0 CJ CJ 2 CJpeq,

    2CJpn, au 0 CJ

    CJ CJ CJ

    0CJ D 0 0n D 81,103)Sharpe

    0 0n D CJ 81) 0n D Sharpe 0 0 0CJ D CJ 81) Sharpe

    0CJ D CJ 0 CJ CJ 2 CJpfr,2 CJpn, au 0 CJ 0CJ D 0 CJ 2 CJpfr,

    2CJpn, au CJ

    0CJ D 0n D 0CJ D

    0CJ D 0.3% 1) 0n D 0CJ D CJ

    nD 3 C2H4+3O22H2+O2 2C2H2+5O2+7Ar 4.1

    T 298.15 K 4.40

    C p 0.1 MPa

    CJM CEA96) CJD CJM CEA96) CJpeq,Y overallCJ qq CJq CJ CJ

    0.1 MPa298.15 K CJ

    2 Thompson109) CJq CJ CJ

  • 4

    __________________________________________________________________________________________________________

    87

    CEA96) overallq

    22242 2COO2H3OHC 4.43 O2HO2H 222 4.44 7Ar4COO2H7Ar5OH2C 22222 4.45 0.1 MPa298.15 K 110)C CJind,l A A.1~ A.3 p CJind,l T 298.15

    K CJ ZND CJind,Cl 28)C p C2H4+3O2

    Konnov mechanism111)2H2+O2 2C2H2+5O2+7Ar GRI-Mech 3.0112) 4.2

    CJ p C 4.2 p

    3.1 C p

    C a~T

    Schultz and Shepherd 104) a~T

    F p 1 A A.1~ A.3 p 4.1 K 4.3 q~ 4.5.2 4.5.3

    4.1

    Gas mixture CJM a~T q~ CJpeq,Y K C C2H4+3O2 7.2528 1.3402 0.74480 1.3113 0.45481 1.1893 199.12 2.1270 12.860

    2H2+O2 5.2743 1.4016 0.95076 0.91776 0.51881 3.7329 31.134 2.0242 26.986

    2C2H2+5O2+7Ar 6.3125 1.4409 0.74701 0.98095 0.44256 0.89014 57.110 2.1173 10.225

    4.1 ~~n D 4.40 nD CJD CJind,l

    ~~n D CJind,CJn lDD nD CJn DD CJind,CJn lDD 4.2 CJind,Cl CJind,CJn lDD CJn DD

  • 4

    __________________________________________________________________________________________________________

    88

    4.7. Dn/DCJ 4.3 ~ 4.5 CJn DD

    4.3 ~ 4.5 3.17 ~ 3.19

    4.1 1 1

    Yao and Stewart80) Sharpe81)

    1 1 p 1 CJn DD 1 1 p CJn DD 1 CJn DD

    CJn DD crCJn DD cr cr CJn DD 4.3 ~ 4.5 CJn DD p 1

    0 50 100 150 2000

    5

    10

    15

    20

    25

    30

    35

    40

    p- [kPa]

    C [

    -]2H2+O2 (average: 26.986)

    2C2H2+5O2+7Ar (average: 10.225)

    C2H4+3O2 (average: 12.860)

    4.2 CJ C

  • 4

    __________________________________________________________________________________________________________

    89

    CJn DD CJn DD 1

    CJn DD CJn DD 1 crCJn DD 0.83 ~ 0.86

    crCJn DD Radulescu and Lee

    113,114)

    113,114)Radulescu and Lee

    CJD

    CJn DD 0.80 ~ 0.86 crCJn DD CJn DD 1 Radulescu and Lee 2 3 8.0CJin, DD crCJn DD

    CJn DD 1

    4.9.3

    C2H4+3O2 2H2+O2 CJn DD 1 1 2C2H2+5O2+7Ar 1 CJn DD 1 1 CJn DD CJn DD 1 2

    CJn DD

    1

    CJn DD

  • 4

    __________________________________________________________________________________________________________

    90

    0.00 0.05 0.10 0.15 0.20 0.25 0.300.6

    0.7

    0.8

    0.9

    1.0

    (= C ) [-]

    Dn/D

    CJ (

    = D

    n) [-

    ]

    : Experimental (9 cases of ri/): Model ( = 2.0242): Model ( = 1.0000)

    (Dn/DCJ)cr= 0.86344

    ()cr= 0.16429

    ~

    ~

    0.29333

    0.85857

    4.4 CJn DD

    2H2+O2

    0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.140.6

    0.7

    0.8

    0.9

    1.0

    (= C ) [-]

    Dn/D

    CJ (

    = D

    n) [-

    ]

    : Experimental (10 cases of ri/): Model ( = 2.1270): Model ( = 1.0000)

    0.85682

    ()cr= 0.080327

    ~

    ~

    0.14237

    (Dn/DCJ)cr= 0.86548

    4.3 CJn DD C2H4+3O2

  • 4

    __________________________________________________________________________________________________________

    91

    4.8. Dn/DCJ CJn DD 1

    4.1 CJn DD 1 4.1 a~T C 4.1

    CJn DD a~T C

    C2H4+3O2 4.1 C2H4+3O2 a~T C10% CJn DD 4.2 a~T C 1 CJM a~T q~ K CJM

    a

    ~T

    0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.140.6

    0.7

    0.8

    0.9

    1.0

    (= C ) [-]

    Dn/D

    CJ (

    = D

    n) [-

    ]

    : Experimental (13 cases of ri/): Model ( = 2.1173): Model ( = 1.0000)

    ()cr= 0.049173

    ~

    ~

    0.13109

    (Dn/DCJ)cr = 0.83290 ( = 2.1173)

    0.83268( = 1.0000)

    4.5 CJn DD

    2C2H2+5O2+7Ar

  • 4

    __________________________________________________________________________________________________________

    92

    CCC CJind,l C

    C

    4.2 C2H4+3O2

    CJM a~T q~ CJpeq,Y K C Baseline 7.2528 1.3402 0.74480 1.3113 0.45481 1.1893 199.12 2.1270 12.860

    1.1 7.2528 1.4742 0.67709 0.88619 0.45481 0.22649 39.015 2.1270 12.8609.0 7.2528 1.2062 0.82755 2.3094 0.45481 3.9447 9302.2 2.1270 12.860

    a~1.1 T 7.2528 1.3402 0.81928 1.3113 0.45481 1.4601 199.12 2.1270 12.860

    a~9.0 T 7.2528 1.3402 0.67032 1.3113 0.45481 0.44295 199.12 2.1270 12.860

    C1.1 7.2528 1.3402 0.74480 1.3113 0.45481 1.1893 199.12 2.1270 14.147

    C9.0 7.2528 1.3402 0.74480 1.3113 0.45481 1.1893 199.12 2.1270 11.574

    4.6 ~ 4.8 CJn DD a~T C CJ 1.2 4.6 0.9 CJn DD 1 CJn DD 1 1 4.7 4.8 CJn DD a

    ~T C

    1 a~T

    CJn DD 1 1 0.5 ~ 2.0 115,116)

    C CJn DD 1 1

    CJn DD

  • 4

    __________________________________________________________________________________________________________

    93

    CJn DD

    0.00 0.02 0.04 0.06 0.08 0.10 0.120.6

    0.7

    0.8

    0.9

    1.0

    (= C ) [-]

    Dn/D

    CJ (

    = D

    n) [-

    ]

    0.91025

    ()cr= 0.043275

    : (baseline): 1.1: 0.9

    (Dn/DCJ)cr= 0.81767

    0.85682

    0.080327

    0.068855

    ~

    ~

    4.6 CJn DD C2H4+3O2

  • 4

    __________________________________________________________________________________________________________

    94

    0.00 0.02 0.04 0.06 0.08 0.10 0.120.6

    0.7

    0.8

    0.9

    1.0

    (= C ) [-]

    Dn/D

    CJ (

    = D

    n) [-

    ]

    ()cr= 0.088359

    : C (baseline): 1.1C: 0.9C

    (Dn/DCJ)cr= 0.85682

    0.080327

    0.072294

    ~

    ~

    4.8 CJn DD C C2H4+3O2

    0.00 0.02 0.04 0.06 0.08 0.10 0.120.6

    0.7

    0.8

    0.9

    1.0

    (= C ) [-]

    Dn/D

    CJ (

    = D

    n) [-

    ](Dn/DCJ)cr= 0.87122

    ()cr= 0.084519

    : Ta (baseline): 1.1Ta: 0.9Ta

    0.856820.83972

    0.0803270.073568

    ~~~

    ~

    ~

    4.7 CJn DD a

    ~T C2H4+3O2

  • 4

    __________________________________________________________________________________________________________

    95

    4.9.

    4.9.1. C2H4+3O2 1 T~ ~ fr~a n~u p~ ~ YM 4.9 ~ 4.16 0 cr 026776.0 4 n~ 0~ n 0~ n 1~ n CJind,l CJn DD 4.9 T~ cr 4.10 ~ ~ T~ 4.11 fr

    ~a 4.12 ~ 4.14 p~ ~ 4.15 CJ Y CJpY T~

    4.9 T~ CJ 4.16 CJ CJ

    CJ CJ

    CJ

    CJ CJ 10 Vasilev et al. 117,118) CJ CJ

    CJ

    4.10 CJ 0~ CJ

  • 4

    __________________________________________________________________________________________________________

    96

    0.1 0.5 1.0 5.0 10.0 50.00.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    -n [-]

    T [-

    ]

    ~

    : = 0.000000, Dn/DCJ = 1.00000: = 0.026776, Dn/DCJ = 0.97202: = 0.053551, Dn/DCJ = 0.93907: = 0.080327, Dn/DCJ = 0.85682

    ~

    4.9 T~ C2H4+3O2

    0.1 0.5 1.0 5.0 10.0 50.0

    0.00

    0.05

    0.10

    0.15

    -n [-]

    [-]

    ~

    : = 0.000000, Dn/DCJ = 1.00000: = 0.026776, Dn/DCJ = 0.97202: = 0.053551, Dn/DCJ = 0.93907: = 0.080327, Dn/DCJ = 0.85682

    ~

    4.10 ~ C2H4+3O2

  • 4

    __________________________________________________________________________________________________________

    97

    0.1 0.5 1.0 5.0 10.0 50.00.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    -n [-]

    a fr [

    -]

    ~

    : = 0.000000, Dn/DCJ = 1.00000: = 0.026776, Dn/DCJ = 0.97202: = 0.053551, Dn/DCJ = 0.93907: = 0.080327, Dn/DCJ = 0.85682

    ~

    4.11 fr~a C2H4+3O2

    0.1 0.5 1.0 5.0 10.0 50.00.0

    0.2

    0.4

    0.6

    0.8

    -n [-]

    -un [

    -]

    ~

    : = 0.000000, Dn/DCJ = 1.00000: = 0.026776, Dn/DCJ = 0.97202: = 0.053551, Dn/DCJ = 0.93907: = 0.080327, Dn/DCJ = 0.85682

    ~

    4.12 n~u C2H4+3O2

  • 4

    __________________________________________________________________________________________________________

    98

    0.1 0.5 1.0 5.0 10.0 50.00.0

    0.2

    0.4

    0.6

    0.8

    1.0

    -n [-]

    p [-

    ]

    ~

    : = 0.000000, Dn/DCJ = 1.00000: = 0.026776, Dn/DCJ = 0.97202: = 0.053551, Dn/DCJ = 0.93907: = 0.080327, Dn/DCJ = 0.85682

    ~

    4.13 p~ C2H4+3O2

    0.1 0.5 1.0 5.0 10.0 50.00.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    7.0

    8.0

    -n [-]

    [-]

    ~

    : = 0.000000, Dn/DCJ = 1.00000: = 0.026776, Dn/DCJ = 0.97202: = 0.053551, Dn/DCJ = 0.93907: = 0.080327, Dn/DCJ = 0.85682

    ~

    4.14 ~ C2H4+3O2

  • 4

    __________________________________________________________________________________________________________

    99

    0.1 0.5 1.0 5.0 10.0 50.00.0

    0.2

    0.4

    0.6

    0.8

    1.0

    -n [-]

    Y [-

    ]

    ~

    : = 0.000000, Dn/DCJ = 1.00000: = 0.026776, Dn/DCJ = 0.97202: = 0.053551, Dn/DCJ = 0.93907: = 0.080327, Dn/DCJ = 0.85682

    4.15 YC2H4+3O2

    0.1 0.5 1.0 5.0 10.0 50.00.0

    0.2

    0.4

    0.6

    0.8

    1.0

    -n [-]

    M [-

    ]

    ~

    : = 0.000000, Dn/DCJ = 1.00000: = 0.026776, Dn/DCJ = 0.97202: = 0.053551, Dn/DCJ = 0.93907: = 0.080327, Dn/DCJ = 0.85682

    4.16 M C2H4+3O2

  • 4

    __________________________________________________________________________________________________________

    100

    4.9.2. CJn DD 1 CJn DD

    p 1 CJn DD

    4.284.23

    2

    fr

    nn2

    2fr

    2

    12

    1211

    dd

    Ma

    uDMwaqM

    nM

    4.46

    2fr

    2fr

    2

    12

    11

    Ma

    waqM

    4.47

    2fr nn2

    1212

    MauDM

    4.48

    nM4.46 nM dd

    C2H4+3O2 CJn DD 1 ~ ~ ~~ 4.17 0~ M

    CJ

    0w 0~ 0~~ M CJ

    0~ 0~~ M

    M

    M 4.16

  • 4

    __________________________________________________________________________________________________________

    101

    *q

    RTqq* 4.49

    *q q~

    qMq ~2CJ* 4.50

    *q CJM *q

    *Q

    ** YqQ 4.51 CJ

    *CJp

    *CJp qYQ C2H4+3O2 CJn DD 1

    C2H4+3O2 CJn DD 85682.0crCJn DD 6.2144 C2H4+3O2

    CJ CJ CJ 440.30* imCJp, Q 48.345*CJp Q im

    0.1 0.5 1.0 5.0 10.0 50.0-0.10

    -0.05

    0.00

    0.05

    0.10

    0.15

    -n [-]

    , ,

    +

    [-]

    ~

    ~~

    ~~

    : : : +

    ~~~ ~

    CJ pointOnset of ignition

    4.17 CJn DD ~ ~ ~~ C2H4+3O2

  • 4

    __________________________________________________________________________________________________________

    102

    CJ

    4.18 C2H4+3O2 CJn DD *Q M

    440.30* imCJp, Q M 0.6 M 1M

    905.17* Q *q

    *q CJ

    4.9.3. Dn/DCJ 4.3 ~ 4.5 CJn DD C2H4+3O2 CJn DD 1

    CJn DD 4.19a cr 0.1% crCJn DD 0.1% 4 4.19bM

    0.1 0.5 1.0 5.0 10.0 50.00

    10

    20

    30

    40

    50

    60

    70

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    -n [-]~

    Q* [

    -] Q*

    MQ*CJp

    Q*CJp,im

    : Q*: M

    M [-

    ]CJ point

    4.18 CJn DD *Q M C2H4+3O2

  • 4

    ______________________________________