3 graphical methods: 3. graphical methods: stereographic
Embed Size (px)
TRANSCRIPT

3 Graphical methods: 3. Graphical methods: Stereographic projectionStereographic projection

1) Types of projection1) Types of projection
•Projection: Mapping 3D images into 2D ones on a planar surface
•Parallel projection: parallel rays are projected to a planar surface from•Parallel projection: parallel rays are projected to a planar surface from an object. It is useful to convey measurements of distances or angles.distances or angles.
ex.) Orthographic projection (Fig.3.1, Fig 3.4), oblique projection (Fig.3.2)
• Perspective projection: nonparallel rays connecting one or more fociand a object are projected to a surfaceand a object are projected to a surface. It is useful to convey perspective views of objects.
ex.) Equal area projection, ) q p j ,equal angle (stereographic) projection

1) Equal-Area projection (등면적투영법)
Fig. 3.5
Advantage: Area of a small circle is preserved.g pDisadvantage: Shape of a small circle is distorted according to
its location on the sphere.

2) Stereographic (equal-angle, 등각) projection
Lower focal point (=upper hemisphere) projection
Advantage: Shape of a small circle (angle) is preserved g p ( g ) p(conformal).
Disadvantage: Area of a small circle changes according to its location on the sphere.


2) Stereographic projection of lines and planes
• Projection of a vector
2) Stereographic projection of lines and planes
Projection of a vector
0Define a line intersecting a focal point and a point ( , , ) on a sphere, and calculate x y z t0
when the line intersects a horizontal projection plane.
' , ' , '
' 0 at the projection plane
x xt y yt z R z R t
z
0 Rtz R
0 0,
z RRx Ryx y
z R z R

• Projection of a great circle1 Define a line intersecting a focal point and a point ( 0) in a horizontalx y0 01. Define a line intersecting a focal point and a point ( , ,0) in a horizontal projection plane.2. Obtain when the line meets the sphere.
x y
t
0 0
p3. Obtain the relation between and when the linx y e meets a joint plane.
2 2 2 2
Joint plane: sin sin sin cos cos 0Sphere: Li 0 0 R 0 1
x y zx y z R
t t R t
0 0 0 0
222 2 2 2 2 2
0 0 2 2 2
Line 0,0,-R , ,0 : , , 1
2Line - sphere: 1
x y x x t y y t z R t
Rx t y t R t R tx y R
0 0
2 20 0
2 2 2 20 0 0
2 2,
x y R
R x R yx yx y R x
2 2 20 0
2 2 2 2 20 0 0
,R R x y
zy R x y R
0 0 0x y x 0 0 0y x y

Li J i t l
2 2 2 2 20 0 0 0
2 2 2
Line - Joint plane:
2 sin sin 2 sin cos cos 0
2 i 2 0
R x R y R R x y
R R R
2 2 20 0 0 0
2 2 2 20 0
2 tan sin 2 tan cos 0
tan sin tan cos tan si
R x R y R x y
x R y R R
2 2 2n cos R
22 2 2 2
0 0 2 tan sin tan cos 1 tan Circlecos
Rx R y R R
R
Circle: , tan sin , tan cos , radiuscosx y
RC C R R

• Projection of a small circle• Projection of a small circle
Apply the same procedure for the great circle to deriving the small circle projected.
2 2 2 2
pp y p g g p j
Joint plane: sin sin sin cos cos cosSphere:
x y z Rx y z R
0 0
Sphere: Line: , , 1
Sphere li
x y z Rx x t y y t z R t
2 2 22 20 00 02 2ne:
R R x yR x R yx y z
Sphere - li
2 2 2 2 2 2 2 2 20 0 0 0 0 0
2 2 2 2 2 2 2 2
ne: , ,
Joint plane - line:
2R sin sin 2R sin cos cos cos
x y zx y R x y R x y R
x y R R x y R R x y
0 0 0 0 0 0
2 2 20 0 0 0
2R sin sin 2R sin cos cos cos
cos cos 2 sin sin cos cos 2 sin cos cos
x y R R x y R R x y
x R x y R y R
2 2 2
cos
R sin sin R sin cos sin CircleRx y
0 0 Circlecos cos cos cos cos cos
Circle:
R sin sin R sin cos sin
x y
R
R sin sin R sin cos sin, , , radiuscos cos cos cos cos cosx y
RC C

• H.W.2Draw an equatorial-net by equal-angleDraw an equatorial net by equal angle projection. Set the angle between two adjacent longitudinal/latitudinal lines 10°longitudinal/latitudinal lines 10 .

3) Stereographic projection of a joint pyramid
P j ti f h lf
3) Stereographic projection of a joint pyramid
• Projection of half spaces
Fig. 3.16

• Joint pyramid: an intersect of joint half spaces shifted to the center of a projection sphere
3Fig. 3.17

• Intersection of two joints
Arc of joint p ramid (Fi 3 17)
Fig. 3.12
• Arc of joint pyramid (Fig. 3.17)
- An arc represents a joint plane.- A concave arc to the center of a joint pyramid indicates upper
space of the joint arc when lower-focal-point projection adopted.

4) Additions• Normal to a given plane
4) Additionsg p
0 0, , ,x y z x yR R
0 0,
sin sin sin cosi i i
Rx Ryx yR z R z
R RR R R
2 20 0 0 0
sin sin , sin cos , cos ,1 cos 1 cos
sinDistance from an origin to , tan
n R R R
Rx y x y R
0 0 0 0g ,1 cos 2
y y

• Plane normal to a given vector (line)
, , sin sin ,sin cos ,cos ,
, tan sin , tan cos , radius from the great circle equationcos
x y z
x x
n n n
RC C R R
(X Y ) (X Y Z)
cos
• (X0, Y0) (X,Y,Z)From the procedure to obtain the great circle equation
2 2 2 2
0 0
Sphere: Line: , , 1
x y z Rx x t y y t z R t
2 2 22 220 00 0
2 2 2 2 2 2 2 2 2 2 2 20 0 0 0 0 0 0 0
2 22 , , ,R R x yR x R yRt x y z
x y R x y R x y R x y R

• Center of a great circle passing two points
-Vector analysis
1 1 1 1 1 2 2 2 2 2
1 2
, in a projection plane , , on a sphere, , , ,ˆ ˆˆ
X Y x y z X Y x y zx xn n n n
1 2
1 2
, ,ˆ ˆ
C t f t i l
x y zn n n nx x
Center of a great circle:
, , sin sin ,sin cos ,cos tan sin , tan cos , yxx y z
z z
RnRnn n n R Rn n
,
z z
yx
z z
RnRnn n
1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2
,R y z z y R z x x z
x y y x x y y x

- Graphical procedure: refer to Fig.3.19 and Fig.3.9 with Eqn.(3.7)1) Plot an opposite vector point to one of the predefined points.2) Draw a circle passing through the 3 points.
• Orthographic projection of a vector on a plane1) Draw a great circle of a plane1) Draw a great circle of a plane.2) Plot plane normal (n) and a vector (v).3) Plot the opposite vector, -v.4) Draw a circle passing through the 3 points (n, V, and-V)5) Find out the intersection points of the two great circles.
Refer to Fig. 3.20

5) Projection of sliding direction
• Lifting
5) Projection of sliding direction
Lifting - The lifting direction is identical with the direction of resultant
fforce:
• Single-face slidingrs ˆˆ
1) Draw a great circle of a block sliding plane.2) Draw a great circle passing through a normal to the sliding plane and a
direction vector of resultant forcedirection vector of resultant force.3) Find out two intersection points (vectors) of the above two planes4) Draw a great circle whose normal vector is identical with the direction ) g
vector of resultant force.5) The sliding vector is one of the two intersection vectors which is located in
the great circle abovethe great circle above.

• Sliding in two planes simultaneouslySliding in two planes simultaneously1) Draw great circles of two block sliding planes.2) Find out two intersection points (vectors) of the above two circles) p ( )3) Draw a great circle whose normal vector is identical with the direction
vector of resultant force.5) Th lidi i f h i i hi h i l d i5) The sliding vector is one of the two intersection vectors which is located in
the great circle above.