3.23 electrical, optical, and magnetic properties of materials · chapter 1 in physics and...

17
MIT OpenCourseWare http://ocw.mit.edu 3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Upload: others

Post on 23-May-2020

17 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

MIT OpenCourseWare http://ocw.mit.edu

3.23 Electrical, Optical, and Magnetic Properties of MaterialsFall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Page 2: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

3.23 Fall 2007 – Lecture 14

INHOMOGENEOUS SEMICONDCUTORS

Images removed due to copyright restrictions.

Russell Ohl Shockley, Bardeen, and Brattain 3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

William Shockley

Electronic Bands in Sodium Chloride

(advisor John C. Slater, MIT, 1936)

http://dspace.mit.edu/handle/1721.1/10879

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

1

Page 3: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

3.23 Electronic, Optical and Magnetic Properties of Materials Nicola Marzari (MIT, Fall 2007)

3.23 Electronic, Optical and Magnetic Properties of Materials Nicola Marzari (MIT, Fall 2007)

-

-

2

Page 4: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

Last time

1. Band structure of direct- and indirect-gap semiconductors, in excruciating detailin excruciating detail

2. Carriers in thermal equilibrium, density of available states

3. Law of mass action

4. Consequences for intrinsic semiconductors, extrinsic semiconductors

5. Impurity levels, hydrogen model of donors, acceptor states

6. Temperature dependence of majority carriers: intrinsic range, extrinsic/saturation range, freeze out.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Study

• Early part of Chap 29 (InhomogeneousEarly part of Chap 29 (Inhomogeneous semiconductors) ,Ashcroft-Mermin (to be posted, together with Chap 28, really to be posted, s'il vous plaît)

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

3

Page 5: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

Density of available states

⎛2

m= c ⎞3/⎛ T ⎞

3/2

2.5⎜ ⎟ ⎜ ⎟ 10 19 / cm 3 ⎝ m ⎠ ⎝ 300 K ⎠

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Law of Mass Action

n pc v = NcPe−E k g / BT v

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

4

Page 6: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

Intrinsic case

g Bn n= =pp N P e −E k/ 2 T i ci c vv cc vv

n T T − − k T( ) ( )= N e ( )ε µc B/ Image removed due to copyright restrictions. c c Please see: Fig. 11 in Sze, S. M. "Physics of Semiconductor Devices."

p T( ) ( )= P T e ( )µ εv B Chapter 1 in Physics and Properties of Semiconductors - A Resume.− − / k T New York, NY: John Wiley & Sons, 1981.

v v

⎛ ⎞ vµ ε 1 3 m= + E k+ T lni v g B ⎜ ⎟2 4 mc⎝ ⎠

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Extrinsic case

− =(( ) p ((T n∆n T ) p ) c v )c v

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

5

Page 7: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

Extrinsic case

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Temperature dependence of majority carriers

6

Image removed due to copyright restrictions. Please see Fig. 13.3 in Kittel, Charles, and Herbert Kroemer. Thermal Physics. San Francisco, CA: W. H. Freeman, 1980.

Image removed due to copyright restrictions. Please see Fig. 2.22 in Pierret, Robert F. Semiconductor Device Fundamentals. Reading, MA: Addison-Wesley, 1996.

Page 8: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

Impurity types, levels

Image removed due to copyright restrictions.

Please see: Fig. 13 in Sze, S. M. "Physics of Semiconductor Devices." Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Population of impurity levels (donor)

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

7

Page 9: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

Population of impurity levels (acceptor)

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Conductivity in semiconductors eτ e eτ hσ = n e + n e e hme mh

eeττ µe = e

me

eτ hµh = me

Text removed due to copyright restrictions.

Please see: Table 3 in Kittel, Charles. "Introduction to Solid State Physics." Chapter 8 in Semiconductor Crystals. New York, NY: John Wiley & Sons, 2004.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

8

Page 10: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

Impurity band conduction

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Equilibrium carrier densities of impure semiconductors

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

9

Page 11: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

Equilibrium carrier densities of impure semiconductors

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Semiconductor carrier engineering

• Adding impurities to determine carrier type2 1020 3n 2 for Si: ~1020cm-3 ni for Si: cm

– Add 1016cm-3 (~1ppm) phosphorous (donors) to Si: nc~Nd

– nc~1016cm-3, pv~104 (ni2/Nd)

• Adding impurities to change carrier density – 1 part in 106 impurity in a crystal (~1022cm-3 atom density) – 1022/ 106 =1016 dopant atoms per cm-3

– conductivity is proportional to the # of carriers leading to 6 orders of magnitude change in conductivity! of magnitude change in conductivity!

Impurities at the ppm level drastically change the conductivity (5-6 orders of

magnitude)

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

10

Page 12: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

Simplified expressions

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Abrupt junction

Image removed due to copyright restrictions.Please see: Fig. 29.1 in Ashcroft, Neil W., and Mermin, N. David.Solid State Physics. Belmont, CA: Brooks/Cole, 1976.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

11

Page 13: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

The p-n junction (diode)

p-type material at equilibrium n-type material at equilibrium

p~NAn~ND

n~ni2/N p~ni

2/N

µ = µA − k T ln ⎛ NA

⎞ µ = µD+ k T ln ⎛ ND

⎞ p i b ⎜ ⎟ n i b ⎜ ⎟

⎝ ni ⎠ ⎝ ni ⎠

E Ec Ec

µ µ Ev Ev

What happens when you join these together?

Joining p and n p n

Ecc µ

Ev Carriers flow under driving force of diffusion until µ is horizontal

- -+

+

--++ +

Holes diffuse Electrons diffuse

12

Page 14: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

-

--

-++ +

+

Holes diffuse Electrons diffuse

++ +

+-

--

-

Electrons diffuse

-

--

-++ +

+ -

--

-++ +

+

E

An electric field forms due to the deviation from charge neutralityg y

Therefore, a steady-state balance is achieved where diffusive flux of the carriers is balanced by the drift flux

Chemical potential

Image removed due to copyright restrictions.Please see: Fig. 29.2 in Ashcroft, Neil W., and Mermin, N. David.Solid State Physics. Belmont, CA: Brooks/Cole, 1976.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

13

Page 15: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

Carrier concentration in a p-n junction

Images removed due to copyright restrictions. Please see

http://commons.wikimedia.org/wiki/Image:Pn-junction-equilibrium.svg

http://commons.wikimedia.org/wiki/Image:Pn-junction-equilibrium-graphs.png

14

Page 16: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

dbio

--

- - - - + + - - + + + +

+ +

xp xn Metallurgical

W dW: deplletion or space chharge width junctionti idth junction

r

Nd xn = Na xp

E = ∫ρ(x)dx

E ε x == 2ε rεoVbi Nd xp e Na (Nd + Na )

V x 2ε rεoVbi Na=

Vbi n e Nd (Nd + Na )

V E x d( ) x= −∫

What is the built-in voltage Vbi?

p nn

p nnqVbi Ecµ p qVb

p pi n Ev

qVbi=µn- µp Na

⎛ ⎞ND⎛ ⎞ µ µµ µ k Tbb ⎜ ⎟ µ µ k Tbb ln ⎜ ⎟⎜ ⎟ p i = += − ln ⎜ ⎟ µ µ n ip i n i

i ⎝ ⎠in n⎝ ⎠

⎛ ⎞k T N N V b a∴ = ln d⎜ ⎟bi 2q ni⎝ ⎠

15

Page 17: 3.23 Electrical, Optical, and Magnetic Properties of Materials · Chapter 1 in Physics and Properties of Semiconductors - A Resume. New York, NY: John Wiley & Sons, 1981. 3.23 Electronic,

Operation under bias

Image removed due to copyright restrictions.Please see: Fig. 29.4 in Ashcroft, Neil W., and Mermin, N. David.Solid State Physics. Belmont, CA: Brooks/Cole, 1976.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Rectification

Image removed due to copyright restrictions.Please see: Fig. 29.5 in Ashcroft, Neil W., and Mermin, N. David.Solid State Physics. Belmont, CA: Brooks/Cole, 1976.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

16