3d visualizations of paradoxes in special...

43
3D Visualizations of Paradoxes in Special Relativity Matthew R. Cook Institute of Mathematics and Physics Aberystwyth University Astrophysics (MPhys.) 3 rd Year Project Report 6 th May 2014 The purpose of this report is to show the way in which the author investigated the use and design of visualizations to explain the resolutions of paradoxes in Special Relativity. The focus of the report is on relativistic buoyancy and the paradox known as Supplee‘s paradox; in which a neutrally buoyant bullet in a body of water traveling at relativistic speeds either floats or sinks depending on the reference frame. The paradox is resolved by the notion of the lake floor curving upwards in the bullet’s reference frame to meet the already rising bullet. With the outreach of Modern Physics to the wider public becoming evermore popular, the understandability of visualizations is of the utmost importance. In this report the resolution is first derived mathematically and then visualized in a number of manners. In the case of relativistic buoyancy, it was found that the best way to truly represent the resolution to Supplee’s paradox is by using a tri axial Minkowski diagram, which is very much like the 2D Minkowski diagram but with a third axis of position in the ydirection.

Upload: others

Post on 27-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

 

3D  Visualizations  of  Paradoxes  in  Special  Relativity  

 

 

   

 

Matthew  R.  Cook  

Institute  of  Mathematics  and  Physics  

Aberystwyth  University  

Astrophysics  (MPhys.)  

 

3rd  Year  Project  Report  

6th  May  2014  

 

The  purpose  of  this  report   is  to  show  the  way  in  which  the  author  investigated  the   use   and   design   of   visualizations   to   explain   the   resolutions   of   paradoxes   in  Special   Relativity.   The   focus   of   the   report   is   on   relativistic   buoyancy   and   the  paradox   known   as   Supplee‘s   paradox;   in  which   a   neutrally   buoyant   bullet   in   a  body  of  water  traveling  at  relativistic  speeds  either  floats  or  sinks  depending  on  the   reference   frame.   The   paradox   is   resolved   by   the   notion   of   the   lake   floor  curving  upwards  in  the  bullet’s  reference  frame  to  meet  the  already  rising  bullet.  With   the   outreach   of  Modern   Physics   to   the  wider   public   becoming   evermore  popular,   the  understandability  of  visualizations   is  of   the  utmost   importance.   In  this  report  the  resolution  is  first  derived  mathematically  and  then  visualized  in  a  number   of  manners.   In   the   case   of   relativistic   buoyancy,   it  was   found   that   the  best  way  to  truly  represent  the  resolution  to  Supplee’s  paradox  is  by  using  a  tri-­‐axial  Minkowski  diagram,  which  is  very  much  like  the  2D  Minkowski  diagram  but  with  a  third  axis  of  position  in  the  y-­‐direction.    

Page 2: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   2  

Table  of  Contents  INTRODUCTION  &  THEORY  .................................................................................................  3  

VISUALIZATIONS  ........................................................................................................................  3  Scientific  Visualizations  .....................................................................................................  3  

SPECIAL  RELATIVITY  ...................................................................................................................  4  The  History  of  Special  Relativity  ........................................................................................  4  

Maxwell’s  Equations  ...................................................................................................................................  4  The  Aether  &  Early  Relativistic  Theories  .....................................................................................................  4  

Einstein’s  Postulates  .........................................................................................................  5  Consequential  Effects  of  Special  Relativity  .......................................................................  6  

Time  Dilation  ...............................................................................................................................................  6  Length  Contraction  .....................................................................................................................................  7  

Paradoxes  in  Special  Relativity  .........................................................................................  8  VISUALIZATIONS  OF  SPECIAL  RELATIVITY  ........................................................................................  8  

PROJECT  OVERVIEW  ...........................................................................................................  9  PROJECT  OUTLINE  .....................................................................................................................  9  

Supplee’s  Paradox  .............................................................................................................  9  LITERATURE  REVIEW  ..........................................................................................................  9  

THE  BASICS  OF  SPECIAL  RELATIVITY  ............................................................................................  10  PARADOXES  IN  SPECIAL  RELATIVITY  .............................................................................................  10  SUPPLEE’S  PARADOX  ................................................................................................................  11  VISUALIZATION  OF  PARADOXES  ..................................................................................................  12  CONCLUSION  TO  THE  LITERATURE  REVIEW  ...................................................................................  13  

MATHEMATICAL  DERIVATION  OF  THE  SOLUTION  .............................................................  13  USE  OF  THE  EQUIVALENCE  PRINCIPLE  ..........................................................................................  13  UNPRIMED  REFERENCE  FRAME  ..................................................................................................  14  PRIMED  REFERENCE  FRAME  ......................................................................................................  14  ALTERNATIVE  METHOD  ............................................................................................................  15  USING  GRAVITATIONAL  FORCE  ...................................................................................................  16  

DESIGN  &  PRODUCTION  OF  VISUALIZATIONS  ...................................................................  16  GRAPHICAL  VISUALIZATIONS  ......................................................................................................  16  

Avizo  ...............................................................................................................................  17  Grapher  ...........................................................................................................................  18  Choosing  Grapher  over  Avizo  ..........................................................................................  19  

ANIMATED  VISUALIZATIONS  ......................................................................................................  19  Serif  Draw  .......................................................................................................................  20  

Export  Issue  Fix  .........................................................................................................................................  20  Animated  Tri-­‐axial  Minkowski  Diagram  .........................................................................  21  

RESULTS  ...........................................................................................................................  21  DISCUSSION  .....................................................................................................................  24  

GRAPHICAL  VISUALIZATIONS  ......................................................................................................  25  ANIMATED  VISUALIZATIONS  ......................................................................................................  27  

CONCLUSION  ...................................................................................................................  27  ACKNOWLEDGEMENTS  ....................................................................................................  28  REFERENCES  .....................................................................................................................  28  APPENDIX  ........................................................................................................................  30  

Page 3: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   3  

Introduction  &  Theory  

Visualizations  Visualizing   concepts   is   a   fundamental   part   of   the   way   in   which   a   human   brain  

accepts   and   understands   new  information.  It  has  a  key  role  in  society  as  the  method  of  sharing  an  idea  from  the   inventor’s  mind   to   the   rest  of   the  world.   History   is   strewn   with   early  examples   of   ideas   that   have   been  conveyed  through  visualizations.  From  cave  paintings  and  Greek  geometry  to  Leonardo   Da   Vinci’s   revolutionary  approach   to   technical   drawings   for  engineering   and   scientific   purposes  (see  Figure  11).  

 

In  the  modern  world  visualizations  are  used  in  all  walks  of  life,  even  the  simplest  of  maps  are  an  attempt   to  help   the   viewer  understand  where   they  are   in   relation   to  everything   else.   Vision   is   one   of   the   most   important   and   evolutionarily   advanced  senses  of   the  body  and  therefore   it   is   logical   to  come  to  the  conclusion  that  visual  imagery   is   one   of   the   most   affective   ways   to   help   the   viewer   understand   a  complicated  premise.    

Scientific  Visualizations  Scientific   visualization   techniques   are   predominantly   pertained   to   visualizations   of  three-­‐dimensional   phenomena   in   all   branches   of   science.   One   of   the   most   well  known   early   attempts   at   a   three-­‐dimensional   scientific   visualization   is   that   of  Maxwell’s  thermodynamic  surface2.  Maxwell’s  thermodynamic  surface  is  a  sculpture  made  from  clay  that  describes  the  various  states  of  a  fictitious  substance  with  similar  properties  to  that  of  water.  The  shape  of  the  sculpture  is  governed  by  coordinates  of  volume   (x),   entropy   (y)   and   energy   (z),   which   are   based   on   the   graphical  thermodynamics  papers  of  Josiah  Willard  Gibbs  from  18733.  

With   the   age   of   modern   technology   in   full   swing,  scientific   visualizations   no   longer   require   vast  amounts   of   time   to   construct   using   clayed  sculptures.   They   can   be   created   using   numerous  different   types   of   software.   Modern   three-­‐dimensional   scientific   visualizations   have   copious  amounts   of   usefulness   within   the   research,  education   and  medical   communities.   They   are   used  to   show   information   about   anything   from   the  internal   workings   of   the   body   in   PET   scans   to   the  results  of  a  simulation  of  a  Rayleigh–Taylor  instability  caused  by  two  mixing  fluids  (see  Figure  24).    

Figure  1  –  An  example  of  Da  Vinci's  visualizations  of  his  warfare  designs  

Figure  2  -­‐  A  scientific  visualization  of  a  simulation  of  a  Rayleigh–Taylor  

instability  caused  by  two  mixing  fluids  

Page 4: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   4  

Special  Relativity  

The  History  of  Special  Relativity  By  the  end  of  the  19th  century,  physicists  around  the  world  were  rejoicing  in  the  joint  accomplishment  of  nearly  solving  everything  there  was  to  solve  about  the  Universe.  Only  a  few  small  problems  were  left  to  fix  and  add  to  the  current  theories  governed  by   Newtonian   mechanics   and   the   science   of   the   Universe   would   be   complete.  However,  one  seemingly  small  spanner  that  was  thrown  into  the  works  turned  out  to  be   the   catalytic   inspiration   for   one   of   the   greatest   upheavals   of   our   collective  physical  paradigm  in  the  history  of  science.  

Maxwell’s  Equations  This  apparently   insignificant  spanner  came  in  the  form  of  Maxwell’s  equations  that  were   published   in   "A   dynamical   theory   of   the   electromagnetic   field."5.   There   was  one  constant  in  Maxwell’s  equations  that  would  very  soon  become  a  tremendously  important  factor  in  the  birth  of  modern  physics.    

Maxwell’s   equations   were   devised   to   describe   the   nature   of   the   then   newly  discovered   electromagnetic   wave,   and   the   constant   c   was   the   speed   at   which  electromagnetic   waves  would   propagate   through   free   space.   The   scientists   of   the  late  19th  century  were  perplexed  by  the  notion  that  the  constant  c  was  the  same  no  matter   what   reference   frame   it   was   measured   in.   It   was   thought   that   light  propagated   as   an   electromagnetic  wave   due   to   the   similarities   in   the   propagating  speed6,  and  from  the  equations  it  seemed  as  though  c  was  given  without  reference  to   any   inertial   observer,   this   lead   to   some   conflicting   ideas   with   Newtonian  mechanics  and  Galilean  transformations  between  different  reference  frames.    

For  example,   if  there   is  a  person  on  a  train  passing  a  station  throwing  a  tennis  ball  down   the   carriage,   and   someone   on   the   platform   is   throwing   another   tennis   ball  parallel  to  the  train,  assuming  they  both  throw  their  respective  tennis  balls  with  the  same  amount   of   force,   the   tennis   ball   being   thrown  on   the   train  will   be   travelling  faster   than   the  one  on   the  platform,   because   its   speed   is   the   speed   at  which   it   is  thrown  plus  the  speed  of  the  train.  According  to  Maxwell’s  equations,  this  is  not  the  case  when  it  comes  to  light.   If,   instead  of  the  speed  of  the  tennis  balls,   it  were  the  speed   of   a   beam   from   a   torch   that   was   being  measured,   the   speed   of   the   beam  would   be   exactly   the   same   for   both   the   train   passenger   and   the   person   on   the  platform.    This  even  applies  if  the  train  was  travelling  at  99.9%  the  speed  of  light,  the  light  on  the  train  would  be  no  faster  than  the  light  on  the  platform  in  each  observer’s  reference  frame.    

This   rather   baffling   and   counter-­‐intuitive   thought   experiment   was   to   lay   the  foundations  for  Einstein  to  construct  the  two  fundamental  postulates  of  his  theory  of  Special  Relativity.  

The  Aether  &  Early  Relativistic  Theories  The  notion  that  c  was  the  same  for  all  observers  was  overlooked  and  neglected  for  40  years  or  so,  in  the  hope  that  an  explanation  would  rise  out  of  the  new  Quantum  Theory   being   devised   by   Max   Planck   and   various   other   attempts   by   well-­‐known  scientists   to   explain   the   black-­‐body   radiation   problem 7 .   However,   no   such  

Page 5: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   5  

explanation   was   found   within   Quantum   Theory.   In   the   early   20th   century,   many  physicists  were  working  hard  at   trying  to   formulate  a  theory   incorporating  the  fact  that  c  was  the  same  for  all  observers  and  they  were  getting  very  close  to  finding  the  answer.  The  first  step  that  was  to  be  taken  was  the  understanding  of  the  ‘Principle  of  Relativity’.   This   profound   principle   was   conceived   in   order   to   explain   the  nonexistence   of   the  mysterious  ‘aether’,  which  at  the  time  

was   thought   to   be   the  medium   in   which  light   propagated   as   an   electromagnetic   wave.  

Unfortunately,  all  experiments  to  find  the  aether   had   turned   up   negative,   most  famous   of   these   being   the   Michelson-­‐Morley  experiment  (see  Figure  38)  of  18879.  Henri   Poincaré   was   one   of   the   first  physicists  to  make  the  leap  towards  a  theory  

of   relativity  in  his  paper  “The  Measure  of  Time”  (1898)10.  The  finite  nature  of  c  had  to  be  taken  

into   account   in  the  paper  in  order  to  develop  a  worldwide  clock  network   that   was   synchronized   using  electric   signals.   Poincaré   also   gave  suggestions   to   Hendrik   Lorentz   for  

creating   a   formulation   for   electrodynamics,   which   explains   the   failure   of   all   the  aether   drift  measurement   experiments.   In   Lorentz’s   1904   paper,   “Electromagnetic  phenomena   in   a   system  moving  with   any   velocity   smaller   than   that   of   light”11,   he  states   the   importance   of   the   equations   for   transforming   between   two   reference  frames.  This  set  of  equations  would  come  to  be  known  as  ‘Lorentz  transformations’.  Poincaré  was  the  first  to  recognize  that  these  equations  belonged  to  a  mathematical  set,   and   came   incredibly   close   to   producing   a   full   working   theory   of   relativity.  Unfortunately,  Poincaré  doesn’t  get  much  recognition  for  this  theory  even  though  he  anticipated  a  lot  of  Einstein’s  approaches  and  terminology,  because  he  still  believed  in  the  existence  of  the  aether.

Einstein’s  Postulates  Einstein  made  a  conscious  decision  to  denounce  the  aether  and  abolished  it  from  his  theory.  Instead,  he  postulated  two  fundamental  principles12:  

1. The  Principle  of  Relativity  –  “The  laws  by  which  the  states  of  physical  systems  undergo   change   are   not   affected,   whether   these   changes   of   state   are  referred   to   the   one   or   the   other   of   two   systems   in   uniform   translatory  motion  relative  to  each  other.”  

2. The   Principle   of   Invariant   Light   Speed   –   "...   light   is   always   propagated   in  empty   space  with   a   definite   velocity  c  which   is   independent   of   the   state   of  motion  of  the  emitting  body."    

These   two   postulates   are   the   axiomatic   basis   for   Einstein’s   theory;   other  assumptions   are   to   be   made   as   well,   such   as   the   homogeneity,   isotropy   and  memorylessness  of   space.  With   these   two  principles   in  mind,   Einstein  managed   to  derive   the   Lorentz   transformation   equations   by   using   the   axioms   of   relativity,  instead  of  deriving  them  from  a  subset  of  the  Poincaré  symmetry  group  of  isometrics  

Figure  3  -­‐  The  setup  of  the  Michelson-­‐Morley  Experiment  

Page 6: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   6  

in  Minkowski  space-­‐time,  proving  that  his  theory  matched  up  with  the  mathematical  frameworks  of  Lorentz  and  Poincaré.  

Consequential  Effects  of  Special  Relativity  The   repercussions  of   Einstein’s   theory  are   felt   through  all  walks  of   life,   one  of   the  most   important  examples   is  the   invention  of  the  GPS  or  Global  Positioning  System.  The  reasons  why  Einstein’s  theory  is  so  essential  for  the  accuracy  of  the  GPS  can  be  explained  with  a  simple   thought  experiment   to  describe   the   first  of  many  counter-­‐intuitive  effects  that  arise  due  to  Special  Relativity.    

Time  Dilation  Time   dilation   is   a   genuine   difference   in   elapsed   time   between   two   events   as  measured  by  observers  moving   relative   to  one   another.   Envisage   a   train   travelling  past  a  station  platform  at  a  speed  close  to  the  speed  of  light.  In  one  of  the  carriages  of  the  train,  is  a  light  clock.  A  light  clock  is  a  simple  construction  made  of  a  mirror,  a  light   source   and   a   light   detector;   the   premise   of   a   light   clock   is   simple,   the   light  source  produces  a  pulse  of  light  in  the  direction  of  the  mirror,  which  is  then  reflected  back  to  the  detector.  The  time  taken  for  the  light  pulse  to  get  from  the  source  to  the  detector   is   then   calculated  using   t=2L/c  with   L  being   the   known  distance  between  the  source  and  the  mirror  (this  can  be  seen  in  the  top  half  of  Figure  413).  The  effect   of   time   dilation   can   be   seen  when   observing   the   light   clock   from  difference  reference  frames.  From  the  point   of   view   of   a   passenger   on   the  train,  the  light  clock  is  not  moving  and  therefore   the   light   pulse   travels  directly   upwards   and   is   reflected  directly   downwards.   However,   from  the  point  of  view  of  a  person  waiting  on  the  platform,  the  light  clock  passes  the   station  with   a   relative   velocity   v,  and   therefore   the   light  pulse  appears  to  travel  a  further  distance  than  from  the  point  of  view  of  the  passenger  on  the   train   (a   diagram   of   this   can   be  seen  in  Figure  4).    

The  obvious  question  arises  that  if  the  light  has  travelled  further  in  the  person  on  the  platform’s  reference  frame  and  light  has  the  same  speed  for  all  observers,  how  has  the  light  travelled  a  greater  distance  when  travelling  at  the  same  speed?  The  answer  is  counter-­‐intuitive  and  rather  beautiful  in  its  intricacies.  The  consequential  effect  of  the  invariance  of  the  speed  of  light  is  that  time  on  the  train  is  going  slower  than  the  platform  in  the  platform’s  reference  frame.  If  time  travels  slower  on  the  moving  train  then  the  light  can  travel  a  further  distance  even  with  the  same  speed.  It  can  be  said  that  time  on  the  train  has  been  expanded,  stretched  or  dilated,  hence  the  name  of  the  phenomenon.  The  amount  by  which   time   is  dilated   is   solely  dependent  on   the  relative  velocity  v,  in  the  form  of  the  Lorentz  factor14:  

Figure  4  -­‐  (Above)  View  from  inside  the  carriage        (Bottom)  View  from  the  platform  

Page 7: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   7  

 

The  equation  for  time  dilation  is  as  follows  and  can  be  derived  from  the  light  clock  thought  experiment  using  simple  algebra  and  Pythagoras’  theorem:  

 

Where    and    are   the   time   intervals   for   the   light   to   reach   the   detector   in   the  respective  reference  frames.  

An   easy   way   to   remember   the   effects   of   time   dilation   is   ‘the   faster   you   travel  through  space,  the  slower  you  travel  through  time’.  

Mindful  of  time  dilation,  the  inventors  of  the  GPS  had  to  take  into  account  that  the  satellites  used  would  be  travelling  at  high  speeds  relative  to  the  user  on  the  ground,  and  therefore  would  travel  through  time  slower  than  the  user.  If  this  was  not  taken  into  account,  the  timings  of  the  GPS  would  be  incorrect  and  it  would  no  longer  give  an  accurate  position  for  the  user.    

Length  Contraction  Another   intriguing   consequence   of   Special   Relativity   is   that   of   length   contraction.  Length  contraction  can  actually  be  derived  from  time  dilation  since  the  two  effects  are  actually  the  same  effect  just  seen  from  different  reference  frames15.    

Picture  a  rod  with  proper  length    at  rest  in  reference  frame    and  a  clock  at  rest  in  reference  frame    moving  relative  to  one  another  along  the   length  of  the  rod.  The  respective   time   intervals   for   the   clock   to   travel   along   the   length   of   the   rod   are  

 in    and    in   ,  rearranging  these  equations  gives:  

 

By   using   the   equation   for   time   dilation   from   above   the   ratio   between   the   two  lengths  can  be  found:  

 

Therefore  the  length  measured  in    is  equal  to:  

 

This   simple   equation   shows   that   the   effect   of   time   dilation   on   the   clock   in    is  interpreted   as   a   length   contraction   of   the   rod   in    (  is   always   positive   due   to   its  definition,   so   a   division   by    always   equals   a   smaller   number,   hence   a   shorter   or  contracted  length,  which  lends  itself  to  the  name  of  the  phenomenon).  

 

Page 8: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   8  

Paradoxes  in  Special  Relativity  Time   dilation   and   length   contraction   lead   to   quite   a   few   paradoxical   thought  experiments.   This   is   usually   down   to   the   superficial   application   of   the   contraction  formula.  For  example,  the  ‘Ladder’  paradox  occurs  due  to  the  misinterpreted  use  of  simultaneity16.  The  ladder  paradox  is  the  most  commonly  known  paradox  is  Special  Relativity;  it  involves  a  relativistically  moving  ladder  and  a  garage  with  a  front  and  a  

back  door.  The  ladder  and  the  garage  both  have   the   same   length   when   they   are   at  rest,   but   the   paradox   arises   when   the  ladder  begins  to  move  relativistically.    

In   the   ladder’s   reference   frame,   the  garage   is   the  one   that   is  moving,  and   the  garage   is   therefore   length   contracted,   so  the   ladder   no   longer   fits   in   the   garage.  Conversely,   in   the   garage’s   reference  frame,  it   is  the  ladder  that  is  moving,  and  the   ladder   is   therefore   length  contracted,  so  the  ladder  easily  fits  in  the  garage.  The  resolution   of   the   paradox   is   that   the  

events  of  the  front  and  back  doors  seemingly  trapping  the  ladder  inside  the  garage  to  make  it  fit  don’t  actually  occur  at  the  same  time  in  the  ladder’s  reference  frame.  The   front   door   closes,   with   the   back   door   still   open   (as   the   ladder’s   rear   is   still  outside  due  to  the  garage’s   length  contraction),  then  the  front  door  opens  and  the  back   door   closes   (as   the   ladder’s   front   is   now   outside   due   to   the   garage’s   length  contraction,   see   Figure   517).   Similarly,   the   Ehrenfest   paradox   is   resolved   by   the  concept   of   rigid   bodies   being   incompatible   with   Special   Relativity.   The   Ehrenfest  paradox   arises   when   a   spinning   disk   of   radius   r   spins   relativistically;   the  circumference   should   length   contract   however   the   radius   should   not   because   it   is  perpendicular  to  the  motion18.  

Visualizations  of  Special  Relativity  The   best   way   to   visually   express   the  solution   to   a   paradox   or   any   other  relativistic   situation   is   by   using   a  Minkowski   space-­‐time   diagram.  Illustrating   the   paradox   using   Minkowski  diagrams   often   allows   for   easier,   more  effective   studying   and   understanding   of  the   situation.   Figure   619  depicts   a   typical  Minkowski  diagram  showing  an  event  E  in  two   reference   frames,   S   and   S’,   S’   is  moving   relative   to   S   with   velocity   v.   S   is  represented  by   the  x  and  t  axes  and  S’   is  represented   by   the   x’   and   t’   axes.   The  blue   line   is   the   v=c   line   showing   the  theoretical  limit  for  the  speed  of  an  object  

Figure  5  -­‐  The  Ladder  Paradox  

Figure  6  -­‐  A  typical  Minkowski  diagram  

Page 9: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   9  

in  Special  Relativity.  As   the   speed  of  S’   increases,  as  does   the  angle   ,   reaching   its  maximum  at  45˚  matching  the  v=c  line  and  its  minimum  when  v=0,  making  S’  and  S  both   at   rest   relative   to   one   another   and   therefore   have   the   same   axes.   Reading  values  from  the  S’  axes  are  just  like  reading  values  from  the  S  axes,  for  example,  by  drawing   a   line   parallel   to   the   t’   axis   from   point   E   a   value   for   x’   can   be   obtained.  Likewise,  drawing  a   line  parallel  to  the  x’  axis  from  point  E  gives  a  value  for  t’.  This  method  of  showing  different  reference  frames  for  the  same  event  can  easily  portray  the  differences  in  measured  time  and  position  due  to  the  effects  of  time  dilation  and  length  contraction.    

Project  Overview  

Project  Outline  The   main   aim   of   the   project   was   to   find   a   way   of   utilizing   3D   imagery   so   as   to  describe  paradoxes  in  Special  Relativity  in  simple  terms,  so  that  the  public  could  look  at   the  visualization  and  understand  what  was  going  on.   In  order   to  allow  for  more  focus   on   the   3D   visualization   side   of   the   project,   it   was   decided   that   only   one  paradox  would   be   chosen   to   study.   The   key   goals   of   the   project  were   to   derive   a  solution  to  the  chosen  paradox  and  design  a  3D  visualization  of  that  derived  solution.  The  3D  visualization  would  be  constructed  using  relevant  computer  software  and  a  3D  monitor.  

Supplee’s  Paradox  The   paradox   that   was   chosen   to   be   studied   in   detail   in   this   report   is   known   as  Supplee’s   paradox   (or   the   ‘Submarine’   paradox).   Supplee’s   paradox   is   different   in  many  ways   to   a   lot  of   the  better-­‐known  paradoxes  of   Special   Relativity  because   it  takes   relativistic   buoyancy   into   account.   This   area   of   Special   Relativity   is   scarcely  covered   in  many   textbooks  and  has  some  rather   intriguing  outcomes.  The  paradox  consists  of  a  bullet  (or  a  submarine)  in  a  body  of  water,  with  the  assumption  that  the  bullet  and  the  water  are  both  neutrally  buoyant  (the  bullet  neither  sinks  nor  floats  upwards).  The  paradox  arises  when   the  bullet   starts   to  move   relativistically;   in   the  water’s  reference  frame  the  bullet  is  length  contracted,  and  therefore  the  density  of  the  bullet  increases,  making  it  heavier  than  the  water  so  it  sinks  and  hits  the  bottom  of  the  body  of  water.  However,  in  the  bullet’s  reference  frame  it  is  the  water  that  is  moving  and  the  water  is  therefore  length  contracted,  increasing  the  water’s  density,  making  it  heavier  than  the  bullet,  so  the  bullet  floats  upwards.  The  bullet  cannot  sink  and  float  at  the  same  time;  this  is  the  essence  of  Supplee’s  paradox.  A  more  in  depth  description  of  the  paradox  can  be  found  at  the  start  of  the  Appendix.  

Literature  Review  This   section   has   already   been  marked   previous   to   this   report   and   is   only  included  for  completeness.  

The  only  logical  place  to  start  the  literature  search  was  at  Einstein’s  paper  on  Special  Relativity  itself  from  190520.  It  proved  to  be  a  very  insightful  paper  showing  the  shear  brilliance   of   Einstein   at   his   very   best   in   the  middle   of   his  Annus  Mirabilis   (Miracle  

Page 10: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   10  

Year).   The   very   premise   of   Special   Relativity   is   laid   out   in   this   paper   along   with  various  equations  describing  the  transformations  in  detail.  However,  as  it  is  the  first  paper  on  the  subject  of  Special  Relativity,  there  is  only  a  small  number  of  references  in   it   that   lead   to  more   useful   papers.   For   further   reading   on   the   basics   of   Special  Relativity,  books  were  the  way  to  go.  Thus,  a  number  of  books  were  borrowed  from  the  Physical  Sciences  library  on  the  University  of  Aberystwyth’s  main  campus.  

The  Basics  of  Special  Relativity  A.P.   French’s   “Special   Relativity”   (CRC   Press  1968)  was   a   very   good   benchmark   to  start   reading.   It   was   filled   with   explanations   and   diagrams   helping   the   reader   to  understand  exactly  what  French  was  trying  to  convey.  It  also  had  concise  and  useful  definitions   of   the   consequences   of   Special   Relativity,   such   as   Time   Dilation   and  Length   Contraction.   J.H.   Smith’s   “Introduction   to   Special   Relativity”   (Dover  Publications   Inc.   1996)   was   also   crucial   to   understanding   the   basics   of   Special  Relativity   and   helping   the   reader   to   comprehend   the   notation   of   Lorentz  transformations.   Further   to   the   explanations   from   Smith,   W.   Rindler’s   “Special  Relativity”   (Interscience   Publishers   Inc.   1960)   had   a   very   thorough   mathematical  approach   to   the   workings   of   Special   Relativity.   It   also   had   exceptionally   in-­‐depth  explanations   for   all   the   phenomena   of   Special   Relativity,   albeit   without   many  diagrams   and   illustrations.   The   literature   search   also   lead   to   L.D.   Landau’s   “The  Classical   Theory   of   Fields”   (Pergamon  Press   1975);   however,   this   only   covered   the  same  material  if  not  less  than  the  aforementioned  books  as  it  covered  a  wider  range  of   physical   problems   than   just   Special   Relativity;   therefore,   the   authors   did   not  spend  much  time  with  this  text.    

Hinckfuss’s  “The  Existence  of  Space  and  Time”  (Oxford  University  Press  1975)  has  a  more  philosophical  approach  to  explaining  Special  Relativity,  starting  with  questions  like   ‘What   is   Space?’  and  explaining   the  different  essences  of   the  word’s  meaning.  This  is  a  very  good  read  for  the  general  public  if  they  are  interested  in  this  field,  ideas  could  be   taken   from   this   book   as   to  how   to   approach   the  explanation  of   resolved  paradoxes   in   the   future.   There  was   very   little  mathematics   in   the   book   itself,   but  rather  good  illustrations  along  with  thorough  explanations.  

Paradoxes  in  Special  Relativity  The   emphasis   of   the   literature   search   was   then   changed   to   paradoxes   in   Special  Relativity.   The   results   of   this   search   were   many;   there   were   dozens   of   different  paradoxes  to  be  studied,  so  the  right  place  to  start  was  with  YQ  Gu’s  paper  “Some  Paradoxes  in  Special  Relativity  and  the  Resolutions”  (2011)21.  In  Gu’s  paper  relativity  is   treated   as   nothing   but   geometry   and   a   number   of   different   paradoxes   are  resolved,  namely  the  Ladder  paradox,  Ehrenfest’s  rotational  disc  paradox,  the  Twins  paradox  and  Bell’s  spaceship  paradox.  The  general  conclusion  of  the  paper  is  that  all  the   paradoxes   are   caused   by   a   misinterpretation   of   the   relativistic   concepts  themselves;  in  other  words,  the  paradoxes  only  arise  because  of  our  unwillingness  to  let  go  of  our  wrongly  founded  ideal  of  global  simultaneity.    

While  on  a  trip  to  the  library,  one  book  stood  out  from  the  others  in  terms  of  its  title,  and  that  was  Terletskii’s  “Paradoxes  in  Special  Relativity”  (Springer  1968).  This  book  proved   to   be   very   useful   for   learning   about   the   paradoxes   themselves   but   didn’t  

Page 11: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   11  

really  shed  any  light  on  anything  that  wasn’t  already  known  from  reading  the  other  books   in   this   literature   review,   and   therefore   was   a   little   disappointing.   Had   this  book  been  found  first  then  it  might  have  seemed  to  be  a  little  more  useful.  However,  it   did   give   an   equation   for   the   hyperbolae   used   in   Rindler   charts,   by   calling   them  ‘Calibration  Hyperbolae’.    

At   first   it  was   decided   that   looking  into  a  paradox  that  we  had  already  come   across   would   prove  beneficial,   so   that   we   could  understand   the   processes   in  resolving   it   mathematically.   The  paradox   that   was   chosen   for   this  purpose   was   the   Ladder   paradox;  having   come   across   the   Ladder  paradox   in   the   form  of   the   train   in  the   tunnel,   it   was   very   easy   to  comprehend   this   paradox   and  visualize   it   mentally.   Focusing   on  this   paradox   lead   to   W   Rindler’s  “Length   Contraction   Paradox”  (1961).   Rindler   had   resolved   the  Length   Contraction   paradox   in  question   by   creating   what   is   now  

known   as   a   Rindler   chart   (see   Figure   722).   Rindler   charts   are   based   on  Minkowski  diagrams;   moreover   they   are   Minkowski   diagrams   for   objects   moving   with   a  hyperbolic   motion,   using   a   co-­‐ordinate   system   called   Rindler   co-­‐ordinates,   which  represents   a   part   of   flat   space-­‐time.   This   different   approach   to   visualizing   the  paradox  was  very  intriguing,  and  leads  the  literature  search  to  a  number  of  different  books  by  Rindler.    

The   first  book  of  Rindler’s   that  was   found  was  “Essential  Relativity”   (Van  Nostrand  Reinhold   company  1969).   This   book   is   a   very   detailed   account   of   everything   to   do  with  Relativity  (Special  and  General).  However,  there  was  very  little  mention  of  the  Rindler  charts  that  had  been  seen  in  Rindler’s  1961  paper.  It  became  very  apparent  that  Rindler  was  a  very  well  known  scientist  in  the  field  of  Relativity  and  that  most  of  his  books  would  be  incredibly  helpful.  Rindler’s  “Relativity”  (Oxford  University  Press  2006)   is   technically   the   2nd   edition   of   the   aforementioned   “Essential   Relativity”;  however   it   proved   to   be  much  more  useful.   Providing   numerous   pages   on  Rindler  charts,   with   equations   for   the   hyperbolae   and   various   diagrams   showing   Rindler  charts  and  their  characteristics.    

Supplee’s  Paradox  As  stated  in  the  Project  Outline,  one  paradox  had  to  be  chosen  in  order  to  allow  for  more   focus   on   the   3D   Visualization   of   the   paradox’s   solution.   J.M.   Supplee’s  “Relativistic  Buoyancy”  (1989)  paper  really  stood  out  from  the  rest  of  the  paradoxes  because  it  was  more  than  just  a  Length  Contraction  or  Time  Dilation  problem;  there  was  gravity  and  a  buoyant  force  to  take  into  account.  The  number  of  relevant  papers  

Figure  7  -­‐  A  Rindler  chart  

Page 12: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   12  

on  this  subject  is  incredibly  low  in  comparison  to  the  previous  success  that  had  been  seen  with  the  other  paradoxes.  Supplee  had  stated  the  paradox  and  resolved  in  one  short   paper,   and   therefore   it  must   have   been   assumed   that   no   further   work  was  needed   on   the   matter.   Supplee’s   1989   paper   was   very   self-­‐contained;   everything  that   was   needed   to   understand   the   paradox   was   in   the   paper,   along   with   all   the  mathematics   used   to   resolve   the   paradox.   There   was   however   a   section   for  discussion  in  which  Supplee  states  that  because  gravity  is  involved,  General  Relativity  should   be   used   instead   of   just   Special   Relativity   in   order   to   fully   show   that   the  paradox  is  resolved.    

It  wasn’t   for   another   14   years  until  G.E.A.  Matsas  published  his   paper   “Relativistic  Archimedes  law  for  fast  moving  bodies  and  the  General-­‐relativistic  resolution  of  the  Submarine  paradox”  (2003)23.  The  mathematics  in  this  paper  was  very  hard  to  follow  given   that   the   authors   of   this   review   had   never   studied  General   Relativity   before.  However,   there   is   one   part   of   the   paper   that   is   incredibly   useful   and   that   was   a  Rindler  chart  of  the  paradox  that  had  been  used  to  model  the  solution.  Matsas  came  to  the  same  conclusion  as  Supplee  did  in  his  paper;  the  submarine  would  sink  and  hit  the  bottom  of  the  body  of  water  in  question  and  also  that  the  shape  of  the  body  of  water  would  change  so  that  the  bottom  of  the  body  of  water  comes  up  to  meet  the  submarine.   Therefore,   allowing   for   the   differences   in   density   due   to   different  reference  frames  while  keeping  the  actual  outcome  the  same.  

Visualization  of  Paradoxes  Having   found   all   the   papers   needed   in   order   to   solve   the   Submarine   paradox,   the  literature   search   turned   towards   researching   how   the   solution   was   going   to   be  portrayed.   This  was   primarily   going   to   be   done   by   using  Minkowski   diagrams   and  Rindler  charts.  Finding   literature  on  Minkowski  diagrams   is  exceedingly  easy,  being  an  essential  part  of  Special  Relativity  naturally  it  is  in  almost  every  piece  of  literature  on   Special   Relativity   and   therefore   the   books   and   papers  mentioned   previously   in  this   review  were  suffice   in  explaining   the  concepts.   Literature  on  Rindler  charts  on  the  other  hand,  is  remarkably  scarce.  Even  in  Rindler’s  books  themselves,  the  idea  of  Rindler   charts   wasn’t   given   the   pride   of   place   that   perhaps   would   have   been  expected.  Furthermore,  the  majority  of  references  to  Rindler  charts  were  in  context  to  2D  Rindler  charts.  3D  Rindler  charts  are  incredibly  rare.  The  only  reference  to  3D  Rindler   charts   that  was   found   throughout   the   entire   Literature   search  was   in  GEA  Matsas’s  2003  paper.  

Additionally,  there  will  be  an  illustration  of   the  paradox  created  in  order  to  help  the  

general   public   understand   what   is  actually  happening  in  the  paradox  itself.  The   programming   language   in   which  this   is   to   be   done   is   yet   to   be  determined,   but   there   are   numerous  tutorials   online   that   explain   everything  there   is   to   know   about   3D   rendering.  

Once   the   programming   language   has   been  determined,   then   a   few   coding   ‘bibles’  

Figure  8  -­‐  Length  Contraction  in  "The  New  World  of  Mr.  Tompkins"  

Page 13: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   13  

shall   be   selected   such   as   K.   Sierra’s   “Head   First   Java”   (O'Reilly   Media   2005)   or   J.  Zelle’s   “Python   Programming:   An   Introduction   to   Computer   Science”   (Franklin,  Beedle   &   Associates   Inc.   2010).   G.   Gamow’s   “The   New   World   of   Mr.   Tompkins”  (Cambridge  University  Press  1999)  provided  a  great  deal  of  ideas  on  how  to  illustrate  the  strange  world  of  Special  Relativity   (see  Figure  824),   the  protagonist  of   the  book  travels  to  a  world  where  the   ‘speed   limit  of  nature’   is   in  the  region  of  20  mph  and  therefore   there   are  many   different   visual   effects   that   the   protagonist   can   see;   for  instance  when  he  observes  someone  on  a  bike,  or  when  he  himself  rides  a  bike.    

Conclusion  to  the  Literature  Review  In   conclusion   to   this   literature   review,  many   valuable   sources  of   information  were  found   in   the   literature   search.   The   basics   of   Special   Relativity   are   very  widely   and  readily   available   in   countless   books,   papers,   and   articles   and   are   now   fully  understood  by  the  authors.  Papers  on  paradoxes  in  Special  Relativity  are  numerous  but  only  a  few  get  a  good  deal  of  coverage,  namely  the  Ladder  paradox,  Ehrenfest’s  paradox   and   the   Twins   paradox.   The   paradox   chosen   for   this   project   is   Supplee’s  paradox   (also  known  as   the  Submarine  paradox  or  Bullet   in  Water  paradox).  There  are   only   a   couple   of   papers   on   this   paradox,   but   they   are   incredibly   concise   and  extremely  useful.  Literature  on  Rindler  charts  is  scarce  but  Minkowski  diagrams  (that  Rindler  charts  are  based  on)  are  well  documented.  

Mathematical  Derivation  of  the  Solution  

Use  of  the  Equivalence  Principle  Although   the   Equivalence   Principle   is   founded   within   General   Relativity,   it   is   not  implausible  to  use  it   in  Special  Relativity;  the  reason  why  it  does  not  often  occur  in  Special  Relativity  is  due  to  the  fact  that  most  of  the  situations  and  paradoxes  do  not  need   to   take   into   account   the   effects   of   gravity.   However,   in   Supplee’s   paradox  

relativistic  buoyancy   is  one  of   the  key  factors,   and   therefore   gravity   plays   a  vital   role.   The   Equivalence   Principle  was  stated  as  thus  by  Einstein  in  1907:    

“Assume   the   complete   physical  equivalence  of  a  gravitational  field  and  a   corresponding   acceleration   of   the  reference  system.”25  

A  clear  example  of  this  can  be  seen  in  Figure   926.   There   is   no   actual   physical  difference  between  the  ball  appearing  to   fall   to   the  Earth  due   to  gravity  and  the  ball  appearing  to  hit  the  bottom  of  the  accelerating  rocket  ‘elevator’.  

 Figure  9  -­‐  An  example  of  the  Equivalence  Principle  

Page 14: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   14  

Unprimed  Reference  Frame  In  order  to  work  out  what  really  happens  in  Supplee’s  paradox,  the  mathematics  of  the   situation  was   to   be  worked  out   in   both   reference   frames.   Following   Supplee’s  notation,  in  this  report  the  unprimed  reference  frame  is  denoted  by    and  the  origin  is  defined  at  the  base  of  the  lake  under  the  bullet  when  the  bullet  is  fired.  The  bullet  is  said  to  be  moving  with  relative  velocity   ,  and  using  the  Equivalence  Principle  to  represent   gravity,   the   lake   floor   can   be   said   to   be   accelerating   upwards   with  acceleration   .  In  order  to  calculate  the  position  and  time  at  which  the  bullet  strikes  the   lake   floor   the  vertical   component  of   the  buoyancy   force  was   considered  along  with  Newton’s  2nd  Law  of  Motion27.  

The  vertical  acceleration  of  the  bullet  in  the  unprimed  reference  frame  was  found  to  be:  

 

Where    is  the  Lorentz  factor.    

This  acceleration  is  clearly  less  than  that  of  the  lake  floor,  thus  making  the  bullet  sink  with  relative  acceleration:  

 Where   .    

Using  the  relative  acceleration  that  the  bullet  sinks  at,   it  was  possible  to  determine  the  time  at  which  the  bullet  strikes  the  lake:  

 Where    is  the  starting  height  of  the  bullet.    

A  simple  rearrangement  and  use  of   t  yields  the  position  of  the  impact:  

 The  derivation  for  the  above  is  in  Appendix  A.  

Primed  Reference  Frame  The   primed   reference   frame   was   then   to   be   considered.   In   accordance   with  Supplee’s   notation,   the   primed   reference   frame   is   denoted   by   .   The   origin   is  defined   as   being   at   the   base   of   the   lake   floor   again,   however,    is   moving   with  relative   horizontal   speed    so   the   bullet   is   always   at   =   0   (viz.   the   origin  

 is   coincident   with   ).   The   upward  acceleration  of  any  fixed  point,  at  a  constant   ,  on  the  lake  floor  is   .  Just  as   before   by   using   the   Equivalence   Principle,   it   can   be   said   that   gravity   is   just   the  equivalent  to  the  acceleration.  

Page 15: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   15  

The  same  method  as   the  unprimed  frame  was  used  to   find  the  acceleration  of   the  bullet,   the   time   of   impact   and   the   horizontal   distance   travelled   before   the   bullet  strikes  the  lake  floor.  

The  vertical  acceleration  of   the  bullet   in   the  primed  reference   frame  was   found   to  be:  

   

The  upward  acceleration  of  the  bullet   is  more  than  the  upward  acceleration  of  the  lake,  causing  the  bullet  to  appear  to  float.  

In   this   reference   frame  the  bullet  does  actually  end  up  striking   the   lake   floor  even  though  it  appears  to  float,  because  the  shape  of  the  lake  floor  has  changed.   In  this  reference  frame  the  shape  of  the  lake  floor  was  found  to  be:  

 

The  reasoning  for  this  can  be  seen  in  Appendix  B.    

Due  to  this  reference  frame  moving  with  the  bullet,  the  impact  event  happens  at:  

 Therefore  making  the  impact  time:    

 If   the  equations   for   the   impact’s   time  and  position  are  Lorentz   transformed  to   the  unprimed   reference,   they   equal   the   equations   given   for   the   impact’s   time   and  position  in  the  unprimed  equations  worked  out  above  and  in  Appendix  A.    

This  shows  that  the  paradox  is  resolved;  the  bullet  strikes  the  bottom  of  the  lake  at  the  same  relative  time  and  distance  in  both  reference  frames.  

The  derivation  for  the  above  can  be  seen  in  Appendix  B.  

Alternative  Method  For   the   primed   reference   frame,   the   same   conclusion   can   be   reach   by   another  derivation.   In   the   primed   frame   the   lake   floor   is   no   longer   flat   and   therefore   the  second   derivative   of   the   equation   for   the   lake   floor   with   respect   to   time   is   the  upward  acceleration  of  the  lake  floor  and  it  is  greater  than  the  upward  acceleration  of   the   bullet.   Therefore,   the   bullet   sinks  with   a   relative   acceleration.   So   it   follows  from  the  calculations  being  done  at    that  the  time  of  the  impact  in  the  primed  frame  is:  

Page 16: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   16  

 

This  equation  matches  the  equation  derived  in  the  ‘Primed  Reference  Frame’  section  above.  Thus  proving  this  method  is  also  correct  and  the  paradox  is  resolved.  

The  derivation  for  the  above  is  in  Appendix  C.  

Using  Gravitational  Force  The  effects  of  gravity  dominate  Supplee’s  paradox  and  therefore  it  is  also  necessary  to  provide  a  result  that  has  used  gravitational  forces  to  reach  the  same  conclusions.  The   net   force   acting   on   the   bullet   is   the   force   due   to   buoyancy   minus   the  gravitational  force;  if  the  net  force  is  set  as  equal  to  the  rate  of  change  of  the  vertical  component   of   the   momentum   then   it   is   possible   to   determine   the   vertical  acceleration  of  the  bullet  and  was  found  to  be:    

   

From  this  equation  the  same  method  is  used  as  in  the  unprimed  reference  frame  to  discover  the  time  and  position  of  the  bullet’s  impact  with  the  lake  floor.  

The  mathematical  derivation  for  the  above  can  be  found  in  Appendix  D.  

Design  &  Production  of  Visualizations  

Graphical  Visualizations  Once  the  derivation  of  the  solution  had  been  completed,  the  design  and  production  of   the   graphs   that  would   be   used   to   explain   the   resolution   could   commence.   The  strategy  for  creating  the  graphical  visualization  was  to  produce  a  tri-­‐axial  Minkowski  diagram  using  the  equations  derived  in  the  previous  section.  Much  like  the  standard  2D  Minkowski  diagram,  a  tri-­‐axial  Minkowski  diagram  has  two  pairs  of  time  axes  and  x-­‐axes  for  position  in  the  x-­‐direction,  but  with  the  addition  of  a  third  axis  for  position  in   the   y-­‐direction.   The   reason   why   there   isn’t   a   pair   of   y-­‐axes   is   because   the  bullet/water  (depending  on  the  reference  frame)  isn’t  moving  at  a  relativistic  speed  in   the  y-­‐direction   (its   just  accelerating  due   to  gravity  and   the  net  buoyancy   force).  Therefore,    and  there  is  no  need  for  a    axis.  Throughout  the  design  process,  many  different   people   (scientists   and  members  of   the  public   alike)  were   asked  on  their  preferences  for  the  colours  used  in  the  Minkowski  diagram  with  90%  of  them  saying  the  diagram  was  easier  to  read  with  a  black  background  and  brightly  coloured  lines.    

For  simplistic  reasons,  a  few  definitions  were  defined  in  order  to  create  the  graphs.  The  height  at  which  the  bullet  would  be  fired  from  was  defined  as   ,  the  speed  of  the  bullet  was  defined  as   ,  giving  a  Lorentz  factor  of   .  It  is  also  common  in  Minkowski  diagrams  and  Special  Relativity  calculations  to  take  the  speed  of   light  as   ,   this  makes   the  graphs  a   sensible   size   to  work  with  and   simplifies  

Page 17: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   17  

many  of  the  equations  for  ease  of  use  and  was  therefore  also  applied  here.  With  all  these  definitions,  the  impact  times  for  both  reference  frames  were  found  to  be:  

 

The  term  ‘tri-­‐axial’  is  being  used  to  describe  this  type  of  Minkowski  diagram  so  as  to  not  confuse  the  use  of  ‘3D’  (which  is  used  to  signify  that  the  image  appears  to  have  visual  depth).  The  reason  for  this  necessary  separation  in  expressions  is  to  allow  for  the  definition  of  a  3D  projection  onto  a  2D  plane.  For  example,  drawing  a  cube  on  a  piece  of  paper.  The  cube  is  a  3D  object,  but  the  drawing  or  projection  of  the  cube  is  in  2D,  therefore  it  would  be  incorrect  to  label  the  drawing  of  the  cube  as  a  3D  image  because  it  shows  no  visual  depth.  Similarly,  calling  the  tri-­‐axial  Minkowski  diagram  a  3D  Minkowski  diagram  could   cause   confusion  because   it   could  be   viewed  on  a  2D  screen  and  would  not  actually  be  in  3D  (in  the  same  way  the  cube  can  be  viewed  on  the  paper,  but  is  not  actually  in  3D).    

Given   the   3D   aspect   of   the   project   it   was   required   that   a   3D   monitor   and   some  specialized   3D   software   would   be   needed   to   construct   such   a   graph.   The   IMAPS  department   at   the   University   of   Aberystwyth   already   had   a   3D  monitor   capability  and  thus,  that  set  up  was  to  be  used  in  order  to  construct  the  graphs.    

Avizo  The   software   that   was   to   be   used   was   called   ‘Avizo’   and   was   developed   by   FEI’s  Visualization   Science  Group.  Avizo   is   a   very  powerful   piece  of   software  with  many  functionalities,  its  main  showpiece  being  that  it  can  take  a  number  of  flat  images  (for  example,   a   number   of   PET   Scan   images)   and   ‘volume   render’   them   together   to  create  a  3D  image.  Mostly  used  for  designing  engine  parts  and  other  complicated  3D  objects   for   Computer-­‐Aided   Design,   Avizo   also   had   a   graphical   section   to   its  functionality   that   would   plot   data   points   and   construct   wonderfully   coloured,  smooth  &  seamless  3D  graphs.  

Page 18: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   18  

 Figure  10  -­‐  A  screenshot  of  a  typical  Avizo  'Network'  

In  order  for  Avizo  to  manage  to  plot  the  lines  on  a  graph  a  dataset  of  each  line  would  first  have  to  be  made.  This  was  simply  done  by  creating  an  excel  spreadsheet  with  a  few  hundred  values  and  then  exporting  it  as  a  comma  separated  variable  (.csv)  file.  However,  the  method  of  getting  Avizo  to  accept  this  data  file  proved  to  be  a  little  bit  more  trouble.  It  appeared  that  Avizo  only  had  protocols  to  deal  with  and  accept  two-­‐dimensional  .csv  files  and  therefore  did  not  interpret  the  three-­‐dimensional  .csv  file  it  was  being  given  correctly.  The  only  remedy  was  to  create  a  text  (.txt)  file  with  the  data  in  it  separated  by  spaces.  This  way  the  data  could  be  given  to  Avizo  as  raw  data.  Once  raw  data  is  inside  the  ‘network’  of  a  project  file  it  is  much  easier  to  manipulate  the   data   format   in   order   for   Avizo   to   recognize   it   as   a   ‘line   set’.   Once   Avizo  recognizes   the   line   set   in   can   then   be   plotted   in   a   ‘bounding   box’,   which   has   the  dimensions   of   the  maximum   and  minimum   values   of   the   dataset   (see   Figure   10).  From   the   project’s   ‘network’,   local   axis   and   labels   can   be   added   afterwards   along  with  illuminated  effects  for  when  the  project  is  in  ‘3D  Mode’.    

However,  there  was  a  technical  setback  in  the  form  of  the  3D  monitor’s  drivers  not  working   and   the   distribution   of   Scientific   Linux   the   computer   had   as   an   operating  system  was  unstable.  This  pushed  the  project  back  3  weeks  passed  its  planned  date  to  start  working  with  Avizo  in  mid-­‐February  2014  while  the  problem  was  fixed.    

Grapher  During  the  3  weeks  without  Avizo,  another  program  was  used  to  create  a  quick  look  at   the  equations  derived   in  the  resolution  to  the  paradox.  This  program  was  called  ‘Grapher’.  Grapher  is  a  free  in-­‐built  piece  of  software  that  comes  with  every  version  of  Mac  OS  X.  It  is  a  rather  unknown  piece  of  software  due  to  its  tucked-­‐away  location  in   the   ‘Utilities’   folder   and   seemingly   nonexistent   advertising.   However,   it   is   an  incredibly  useful  program.    

Page 19: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   19  

 Figure  11  -­‐  A  screenshot  of  a  typical  Grapher  file  

It   was   chosen   due   to   its   function   plotter   capabilities;   instead   of   using   a   dataset  formed   of   numbers   from   the   equations   to   plot   the   graphs,   this   piece   of   software  could  simply  be  given  the  equations  themselves  and  it  would  plot  a  continuous  line  from   specified   start   and   end   values   saving   vast   amounts   of   time   (see   Figure   11).  However,   there   is   no   capability   that   allows   for   the   creation   of   3D   images   of   the  graphs  and  there  is  no  functionality  for  labeling  the  axes,  as  strange  as  it  may  sound  because  it  is  such  a  simple  functionality  but  the  phenomenon  is  well  documented  on  the  internet  forums  with  no  sign  of  an  implementation  coming  any  time  soon.  

Choosing  Grapher  over  Avizo  3   weeks   of   in-­‐depth   practice   with   Grapher   and   the   slow,   complicated   processes  needed  to  create  the  graphs   in  Avizo   lead  to  the  unfortunate  decision  of  having  to  phase  out  the  use  of  Avizo  to  create  the  final  tri-­‐axial  Minkowski  diagram.  Had  more  time  been   available,   all   efforts  would   have   been   in   creating   a  working   3D   tri-­‐axial  Minkowski  diagram  animation  on  Avizo;  however,  Grapher  was  chosen  to  construct  the   final   tri-­‐axial   Minkowski   diagram   as   a   3D   projection   on   a   2D   plane   (normal  computer  screen).    

Animated  Visualizations  Although   tri-­‐axial  Minkowski   diagrams   are   the   best   way   to   express   the   resolution  mathematically,  not  everyone   is  completely  versed   in  reading  Minkowski  diagrams.  Therefore,   another   form   of   visualization   is   needed   to   explain   the   paradox   to   the  wider  public.  A  common  form  of  visualization  used  by  scientists  to  explain  concepts  to  the  public  is  a  simple  animation  of  the  situation.  It  was  decided  that  two  separate  animations  showing  the  paradox   from  the   lake   floor’s   reference   frame  and  bullet’s  reference  frame  would  be  the  best  way  in  which  the  resolution  was  conveyed  to  the  public.   Bubbles   would   be   used   to   depict   if   the   water   was   moving   or   not,   with  bubbles  floating  upwards   in  the   lake  floor’s   frame  and  bubbles  moving  sideways   in  the  bullet’s  frame.  With  the  possibility  of  a  few  more  animations  showing  the  length  

Page 20: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   20  

contractions  and   changes   in  density   for   each   reference   frame   if   there  was   time  at  the  end  of  the  project.  

Serif  Draw  The  program  that  was  going  to  be  used  to  create  these  animations  was  called  ‘Serif  DrawPlus  X6’   and  was  developed  by  Serif   Europe.  The  animations  are   created   in  a  similar  way  to  how  a  PowerPoint  presentation  works.  There  are  a  number  of  ‘frames’  (a  lot  like  slides)  that  contain  the  objects  that  are  to  be  animated  (see  Figure  12).  The  objects   can   be   placed   into   different   position   on   different   frames   and   then   all   the  frames   are   run   together   (like   a   really   quick   slideshow   or   a   flipbook)  making   them  look  as  though  they  are  moving.    

 Figure  12  -­‐  A  screenshot  of  a  typical  Serif  DrawPlus  X6  project  

Export  Issue  Fix  Unfortunately,  the  exporter  was  not  functioning  correctly  within  the  program  when  it  was  asked  to  export   the  animation  as  a  video.   Instead  of  converting   the  running  animation  into  a   .mov  file   it  would  generate  a  black  and  white  pixelated  version  of  the  animation  with  no  background  (see  Figure  13).  

 

This  was  unacceptable  as  the  animation  that  would  be  shown  to  the  public.  The  fix  for  this  problem  was  to  take  a  screen  capture  video  of  the  running  animation  while  it  was   open   in   Serif   DrawPlus   itself.   The   program   that   was   used   to   take   the   screen  

Figure  14  -­‐  The  result  of  the  Export  issue   Figure  13  -­‐  A  screenshot  of  the  GifCam  fix  

Page 21: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   21  

recording   was   called   ‘GifCam’;   GifCam   records   an   area   of   the   screen   and   then  converts   it   into  a   .gif   file   (see  Figure  14).  Given   the  popularity  of  using   .gif   files   to  view  videos  quickly  and  easily  over  the  internet,  the  decision  was  made  that  the  final  animations  would   stay   as   .gif   files   so   that   if   needs   be   they   could   be  posted  on   all  forms  of  webpage  instead  of  needing  a  flash  player  like  the  .mov  file  did.  

Animated  Tri-­‐axial  Minkowski  Diagram  Another   fantastically   useful   feature   about   Grapher   was   its   ability   to   allow   for   a  variable  to  be  defined  as  a  ‘parameter’  and  then  allowing  that  parameter’s  value  to  be  changed  with  a  slider  (see  Figure  15).    

 Figure  15  -­‐  A  screenshot  showing  the  parameter  slider  in  Grapher  

This  feature  was  used  to  allow  for  easy  manipulation  of  the  value  for    in  the  tri-­‐axial  Minkowski  diagram.  The  value  for    could  be  set  at  0  and  then  the  slider  would  then  be   able   to   change   the   value   of    to   anything   up   to   the   time  of   impact;   this  would  then   change   the  plots   of   the   graphs   to   the   appropriate   time  of   ,   allowing   for   the  creating   of   an   animation   of   the   graph   itself   showing   how   it   changes   as   time  progresses.   However,   this   animation   could   not   be   exported   from   the   Grapher  window  and  was  recorded  using  a  piece  of  software  called  ‘QuickTime’  to  record  the  screen.  

Results  The  mathematical   derivation   of   the   solution   to   Supplee’s   paradox   shows   that   the  paradox   is   indeed  resolved  by  the  notion  of   the  bullet  always  hitting  the   lake  floor  with  the   lake  floor  curving  upwards  to  meet  the  already  rising  bullet   in  the  bullet’s  reference   frame   and   the   bullet   sinking   to   hit   the   lake   floor   in   the   lake   floor’s  reference  frame.  Mathematical  proof  of  this  can  be  seen  in  Appendix  E.  

Page 22: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   22  

The   tri-­‐axial   Minkowski   diagram   (see   Figure   16)   proved   to   be   a   fantastic   way   to  visualize  the  paradox  and  was  edited  in  many  ways  to  produce  different  views  of  the  resolution   to   the   paradox   regarding   different   values   of    and    and   an   excellent  explanation  of  why  the  lake  floor  curves  upwards  in  the  bullet’s  reference  frame.  

Figure  16  is  an  angled  view  of  the  tri-­‐axial  Minkowski  diagram  created  using  Grapher  and   the   equations   derived   in   the   above   section  of   this   report.   The  orange   surface  represented  the  shape  of  the  lake  floor  in  ANY  reference  frame  and  the  red  surface  going  across   it   is  constructed  of  all   the  different  values  of    that   intersect   the   lake  floor  (orange  surface).  The  blue  line  that  starts  at    is  the  path  of  the  bullet  itself  with  a  blue  sphere  to  denoted  the  position  of  impact  with  the  lake  floor.  The  purple  line  that  runs  across  both  the  orange  and  the  red  surfaces  is  the  shadow  of  the  bullet  on   the   lake   floor   (if   a   light   source  was   directly   above   the   bullet   so   the   shadow   is  directly   below   it).   The   other   variations   of   the   tri-­‐axial   Minkowski   diagram   can   be  seen  in  the  Discussion  section.    

A   very   primitive   version   of   a   3D   tri-­‐axial  Minkowski   diagram  was   also   created   on  Avizo,  but  was  not  so  clear  in  showing  the  resolution  of  the  paradox  (see  Figure  17).  

Figure  16  -­‐  The  tri-­‐axial  Minkowski  diagram  

x  

t  

y  

x’  t’  v=c  

Figure  17  -­‐  A  3D  image  of  the  primitive  tri-­‐axial  Minkowski  diagram  

Page 23: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   23  

The   animations   of   the   paradox   clearly   show   the   two   reference   frames   that   are   in  question  and  depict  the  resolution  of  the  curved  lake  floor  very  distinctly.  The  links  to  where  the  full  animations  can  be  found  are:  

http://tiny.cc/lakefloorRF  

http://tiny.cc/bulletRF  

In  Figures  18  and  19,  screenshots  of  the  animations  can  be  seen.  Figure  18  shows  the  start   and   finish  points  of   the   lake   floor’s   reference   frame  animation  and  Figure  19  shows  the  start  and  finish  points  of  the  Bullet’s  reference  frame  animation.  

The  animation  of  the  tri-­‐axial  Minkowski  diagram  also  clearly  shows  the  movement  of  the  lake  floor  and  the  bullet,  and  portrays  the  paradox  quite  eloquently.  The  link  to  where  the  animated  tri-­‐axial  Minkowski  diagram  can  be  found  is:  

http://tiny.cc/MinkDiag  

A  screenshot  of  the  animated  tri-­‐axial  Minkowski  diagram  can  be  seen  in  Figure  20.  

Figure  19  -­‐  Screenshots  from  the  Lake  floor's  reference  frame  animation  

Figure  18  -­‐  Screenshots  from  the  Bullet's  reference  frame  animation  

Page 24: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   24  

 

 

 

 

 

 

   

 

The   lines   in   Figure  20   are   just   single   values  of    and    unlike   the   surfaces  of   every  value  of    and    from  Figure  16.  However,  they  still  represent  the  same  things:  

• The   path   of   the   bullet   in   blue   (with   the   blue   sphere   denoting   the   bullet’s  location)  

• The  path  of   the  bullet’s   shadow   in  purple   (with   the  purple  sphere  denoting  the  shadow’s  location)  

• The   shape   of   the   lake   floor   in   the   unprimed   reference   frame   in   orange  (intersection  of  the  orange  surface  from  Figure  16  with  a  horizontal  plane  for  a  given  value  of   )  

• The  shape  of  the  lake  floor  in  the  primed  reference  frame  in  red  (intersection  of  the  orange  surface  from  Figure  16  with  an  angled  plane  parallel  to  the    axis  for  a  given  value  of   )    

The  animation  of  the  tri-­‐axial  Minkowski  diagram  shows  the  upwards  of  acceleration  due   to   gravity   (using   the   Equivalence   Principle)   of   the   lake   floor   and   the   point   of  impact  very  evidently.  

 

Discussion  The  mathematical   derivation   of   the   resolution   to   the   paradox   successfully   proved  that  the  paradox  could  be  resolved  by  showing  that  the  bullet  does  hit  the  lake  floor  in  both  reference  frames,  there  are  not  many  improvements  that  could  be  made  to  this   process   although   it   would   be   interesting   to   see   the   paradox   resolved   using  

Figure  20  -­‐  A  screenshot  from  the  animation  of  the  tri-­‐axial  Minkowski  diagram  

x  

t  

y  

v=c  

Page 25: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   25  

General  Relativity   instead  of  Special  Relativity   in  order   to   take  gravity   into  account  using  the  best   theory  of  gravity  at  present  and  then  construct  a  visualization  using  that  resolution.    

Graphical  Visualizations  The   tri-­‐axial   Minkowski   diagram   was   a   complete   success   in   clearly   showing   the  resolution   to   the   paradox.   Many   different   variations   were   produced   from   the  diagram  allowing  for  multiple  ways  to  explain  the  paradox.    

The   most   useful   accomplishment   that   was   achieved   by   the   tri-­‐axial   Minkowski  diagram  was  the  clear  explanation  as  to  why  the   lake  floor   is  curved   in  the  primed  reference  frame.  This  incredibly  useful  image  can  be  seen  in  Figure  21.  

The  reason  why  the  lake  floor  is  curved  in  the  primed  reference  frame  is  evident  in  Figure  21,  the  white  plane  shows  all  the  points  on  the  graph  where    (time  of   the   impact   in   ).   This   means   that   anywhere   were   the   shape   of   the   lake   floor  (orange)  intersects  this  plane  is  at   .  So  at  this  specific  time  in  the  primed  reference   frame   the   shape   of   the   lake   floor   is   curved.   This  method   also  works   in  explaining   the   rather   obvious   notion   of  why   the   lake   floor   is   flat   in   the   unprimed  reference  frame.  If  a  plane  of    (time  of  impact  in   )  were  to  be  plotted,  the  points  at  which  that  intersects  the  orange  surface  would  be  the  shape  of  the  floor  at  

.   Seeing   as   though    is   the   z-­‐axis,   the  plane  would  be  horizontally   across  the  orange  surface  and  therefore  the  intersection  (and  the  shape  of  the  floor)  would  be  a  straight  line  (orange  lines  in  other  figures  of  the  diagram).  

Figure  21  -­‐  Two  different  views  of  the  tri-­‐axial  Minkowski  diagram  showing  the  curved  nature  of  the  lake  floor  in  the  primed  reference  frame  

(Left)  –  A  bird’s  eye  view  of  the  diagram  showing  the  XY  plane  and  the  time  axis  pointing  out  of  the  page  (Right)  –  An  angled  view  of  the  same  diagram  showing  the  intersection  of  the  t’  =  0.218  plane  more  clearly  

 

x  

y  

t  

v=c  y  

x  

t  v=c  

Page 26: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   26  

The  Minkowski  diagram  also  revealed  why  the   paradox   seemingly   exists   in   the   first  place,   ‘does   it   sink  or  does   it   float?’  being  the   question   on   every   person’s   lips   when  they  first  hear  the  paradox.  Figure  22  uses  information   from   the   tri-­‐axial   Minkowski  diagram   in   order   to   demonstrate   the  reason   why   the   bullet   appears   to   sink   in  the  lake  floor’s  reference  frame.    

The   key   to   understanding   the   paradox   is  getting   the   reference   frames   right.  Reference   frame    is   the   frame   in   which  everything  else  moves  relative  to,  NOT  the  lake  floor’s  reference  frame.  It  is  important  to   stress   this   because   the   lake   floor   is  accelerating   upwards   with   acceleration    to  simulate  gravity.    

The  tri-­‐axial  Minkowski  diagram  shows  this  by   using   the   path   of   the   bullet   (blue)   and  the  shadow  of   the  bullet  on  the   lake   floor  (purple).   If   the  y  component  of   the  purple  

line  were  to  be  taken  away  from  the  y  component  of  the  blue  line,  the  result  would  be   the   white   line   in   Figure   22.   This   is   taking   away   the   simulation   of   gravity,   and  therefore  the  lake  floor  is  shown  as  being  flat  at    in  Figure  22.  The  white  line  is  the   path   the   bullet   would   take   in   the   lake   floor’s   reference   frame  NOT   in   ,   thus  showing  that  the  bullet  does  sink  in  the  lake  floor’s  reference  frame,  but  not  in  the  bullet’s  reference  frame.    

Figure   23   shows   a   different   angle   of   the  diagram   looking   down   the    axis   ( ).  This   figure   shows   that   the   bullet   (blue)  doesn’t   move   horizontally   in   the   primed  reference  frame,  further  verifying  the  validity  of  the  tri-­‐axial  Minkowski  diagram.  This  same  motion   can  be   seen   in   the  primed   reference  frame   animations   produced   using   Serif  DrawPlus  X6.    

The  only  obvious  improvements  that  could  be  made  to  this  diagram  would  be  to  create  a  3D  image  of   it  using  Avizo,  had  more   time  been  available  this  would  have  been  a  good  way  to  get   the   public   involved   in   understanding  Special   Relativity   and   its   paradoxes   by  enticing   them   with   3D   images,   which   have  always  seemed  to  fascinate  the  human  mind.    

Figure  22  -­‐  'Does  it  sink  or  does  it  float?'  

y  

t  

x  

Figure  23  -­‐  Looking  down  the  t'  axis,  showing  the  bullet  is  always  at  x'  =  0  

y  

x  t  

t’  v=c  

Page 27: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   27  

Animated  Visualizations  When  the  animations  of  the  paradox  were  shown  to  the  public  they  were  very  well  received.  A  short  talk  on  the  essence  of  the  paradox  and  the  animations  themselves  proved  to  be  a  great  combination  in  explaining  the  paradox  to  a  wider  audience.  The  simple  yet  aesthetically  pleasing  look  of  the  animations  is  very  easy  on  the  eye  and  doesn’t   scare   the   average   person   away   from   a   complicated   concept,   which   they  otherwise  might  not  have  shown  any  interest  in.    

The   animations   themselves   couldn’t   be   improved  much  more,   perhaps  only   in   the  addition  of   other   graphics   such   as   shadows  and   reeds   floating   in   the  water   at   the  bottom  of  the  lake.  However,  more  animations  of  the  situation  could  be  created  to  improve   the   ability   of   explaining   the   paradox   to   the   public;   most   probably  animations  of   length  contraction  and  what  is  meant  by  ‘density’  and  ‘net  buoyancy  force’   would   be   useful   additions.   For   example,   an   animation   of   the   length  contraction   of   the   bullet   showing   the   molecules   getting   closer   together   and  therefore  making   the   bullet  more   dense,  which   decreases   the   net   buoyancy   force  making  the  bullet  sink.  

Conclusion  In  conclusion  to  this  report,  a  mathematical  derivation  of  the  resolution  to  Supplee’s  paradox   has   been   found   using   numerous   methods   including   the   Equivalence  Principle   and  gravitational   forces,   a  3D  projection  of   a   tri-­‐axial  Minkowski  diagram  has   been   created   using   the  mathematically   derived   equations   of   the   resolution   of  Supplee’s  paradox  (a  feat  never  achieved  before),  and  a  number  of  animations  of  the  situation   have   been   created   in   order   to   aid   in   explaining   the   resolution   of   the  paradox  to  a  wider  audience.    

The  mathematical  derivation  of   the  resolution  using  Lorentz  equations  reaches   the  same  conclusion  found  by  Supplee  himself  and  states  that  the  lake  floor  curves  up  to  meet  the  already  rising  bullet  in  the  primed  reference  frame  in  order  for  the  impact  to  take  place  at  the  same  relative  time  and  location  in  both  reference  frames.  

The   tri-­‐axial   Minkowski   diagram   proved   to   be   an   invaluable   way   of   visually  expressing  the  mathematical  reasoning  behind  the  lake  floor  being  curved  and  aiding  the   viewer   in   grasping   the   concept   of   the   paradox.   Multiple   variations   of   the  Minkowski   diagram   were   created   in   order   to   show   different   values   of    and    allowing   for   an   animation   of   the   Minkowski   diagram   and   various   other   forms   of  features  that  verified  the  validity  of  the  diagram.    

The   animations   of   the   paradox   proved   to   be   a   priceless   asset   in   facilitating   the  explanation   of   the   resolution   of   the   paradox   to   the   public   and   the   only  improvements  to  the  animations  that  could  be  made  are  aesthetic.  The  use  of  these  simplistic  animations  in  explanations  of  the  paradox  was  well  received  by  a  number  of   members   of   the   public   with   no   prior   knowledge   of   Special   Relativity.   Thus  confirming  the  idea  that  simple  visualizations  are  one  of  the  best  ways  to  convey  a  complicated  concept  to  another  person.    

 

Page 28: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   28  

Acknowledgements  The  Author  would  like  to  thank:  

• Project  partner  Mr.  Timothy  E.  A.  Powell  for  his  collaboration  throughout  the  project,   his   input   in   the   visualization   of   the   animations   and   his   enthusiasm  towards  the  outreach  of  science  to  the  public.  

• Dr.  Balázs  Pintér  for  priceless  advice  throughout  the  project,  the  use  of  three  of  his  books  during  the  literature  review  and  his  passion  for  the  visualizations  of  paradoxes  in  Special  Relativity  that  made  this  project  conceivable.  

• Mr.  Dave  Price  for  his  incredible  work  ethic  in  fixing  and  setting  up  the  Avizo  software  needed  for  this  project.  

• Dr.   James   M.   Supplee   for   general   guidance   and   feedback   during   the  visualization  stage  of  the  project.      

References                                                                                                                1  Engineering.com  http://www.engineering.com/content/community/library/biography/leonardodavinci/images/war_fig3.jpg  24/4/2014  2  Harman,  Peter  M.  "The  scientific  letters  and  papers  of  James  Clerk  Maxwell."  (2002):  148.  3  West,  Thomas  G.  "Images  and  reversals:   James  Clerk  Maxwell,  working   in  wet  clay."  ACM  SIGGRAPH  Computer  Graphics  33.1  (1999):  15-­‐17.  4  Lawrence  Livermore  National  Laboratory,  USA  https://wci.llnl.gov/codes/visit/gallery_02.html  24/4/2014  5  Maxwell,   James   C.   "A   dynamical   theory   of   the   electromagnetic   field."   Philosophical  Transactions  of  the  Royal  Society  of  London  (1865):  459-­‐512.  6  Maxwell,   James   C.   "On   physical   lines   of   force."   The   London,   Edinburgh,   and   Dublin  Philosophical  Magazine  and  Journal  of  Science  23.152  (1862):  85-­‐95.  7  Planck,  Max.   "On  the   law  of  distribution  of  energy   in   the  normal   spectrum."  Annalen  der  Physik  4.553  (1901):  10.  8  Sinequanon  –  Andrew  Iraci  http://www.sinequanonthebook.com/images/michelson-­‐morley_1_.gif  26/4/2014  9  Michelson,  Albert  A.  &  Morley,  Edward  W.  "On  the  Relative  Motion  of   the  Earth  and   the  Luminiferous  Ether".  American  Journal  of  Science  34  (1887):  333–345.  10  Poincaré,   Henri.   "The   Measure   of   Time".   The   Foundations   of   Science   (The   Value   of  Science),  New  York:  Science  Press  (1898):  222–234  11  Lorentz,   Hendrik   A.   “Electromagnetic   phenomena   in   a   system  moving  with   any   velocity  smaller   than   that   of   light”.   Proceedings   of   the   Royal   Netherlands   Academy   of   Arts   and  Sciences  6  (1904):  809–831  12  Einstein,  Albert.   "On   the   electrodynamics   of  moving  bodies."  Annalen  der   Physik   17.891  (1905).  13  Department  of  Astronomy,  Cornell  University,  USA  http://www.astro.cornell.edu/academics/courses/astro201/images/time_dilation.gif  26/4/2014  14  Forshaw,   Jeffrey  &   Smith,   Gavin.   “Dynamics   and   relativity.   Vol.   46”.   John  Wiley  &   Sons,  (2009).  

Page 29: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   29  

                                                                                                                                                                                                                                                                                                                             15  Halliday,   David,   et   al.   “Fundamentals   of   Physics,   Chapters   33-­‐37”.   John   Wiley   &   Sons,  (2010).  16  Rindler,  Wolfgang.  “Length  Contraction  Paradox”.  American  Journal  of  Physics  29   (1961):  365f  17  Wikimedia  –  Ladder  Paradox  diagram  http://upload.wikimedia.org/wikipedia/commons/thumb/2/25/Ladder_Paradox_LadderScenario.svg/500px-­‐Ladder_Paradox_LadderScenario.svg.png  27/4/2014  18  Grøn,  Øyvind.  “Einstein's  General  Theory  of  Relativity”.  Springer  (2007):  91  19  Relativity  –  David  Eckstein  http://www.relativity.li/uploads/images/K/K11_1.jpg  27/4/2014  20  Einstein,  Albert.  Op.  cit.  21  Gu,   Ying-­‐Qiu.   "Some   Paradoxes   in   Special   Relativity   and   the   Resolutions."   Advances   in  Applied  Clifford  Algebras  21.1  (2011):  103-­‐119.  22  Rindler,  Wolfgang.  “Essential  Relativity”.  Van  Nostrand  Reinhold  Company  (1969)  23  Matsas,  George  EA.  "Relativistic  Archimedes   law  for   fast  moving  bodies  and  the  general-­‐relativistic  resolution  of  the  “submarine  paradox”."  Physical  Review  D  68.2  (2003):  027701.  24  Gamow,  G.  “The  New  World  of  Mr.  Tompkins”.  Cambridge  University  Press  (1999)  25  Einstein,   Albert.   "How   I   Constructed   the   Theory   of   Relativity".   Translated   by   Masahiro  Morikawa   from   the   text   recorded   in   Japanese   by   Jun   Ishiwara,   Association   of   Asia   Pacific  Physical  Societies  (AAPPS)  Bulletin  15.2  (2005):  17-­‐19.  26  Wordpress  http://thinkingscifi.files.wordpress.com/2012/07/loadbinary.gif  27/4/2014  27  Newton,  Sir  Isaac.  “Philosophiae  naturalis  principia  mathematica”  (1687)    

Bibliography  French,  A.  P.  “Special  Relativity”  (CRC  Press  1968)  

Smith,  J.  H.    “Introduction  to  Special  Relativity”  (Dover  Publications  Inc.  1996)  

Rindler,  W.  “Special  Relativity”  (Interscience  Publishers  Inc.  1960)  

Rindler,  W.  “Essential  Relativity”  (Van  Nostrand  Reinhold  company  1969)  

Rindler,  W.  “Relativity”  (Oxford  University  Press  2006)  

Landau,  L.  D.    “The  Classical  Theory  of  Fields”  (Pergamon  Press  1975)  

Hinckfuss,  I.  “The  Existence  of  Space  and  Time”  (Oxford  University  Press  1975)  

Terletskii,  Y.  “Paradoxes  in  Special  Relativity”  (Springer  1968)  

Sierra,  K.  “Head  First  Java”  (O'Reilly  Media  2005)    

Zelle,  J.  “Python  Programming:  An  Introduction  to  Computer  Science”  (Franklin,  Beedle  &  Associates  Inc.  2010)  

Gamow,  G.  “The  New  World  of  Mr.  Tompkins”  (Cambridge  University  Press  1999)  

Page 30: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

 

Appendix  Consider   a   bullet   and   a   body   of  water  with   equal   density   .   The   bullet  would   be  neutrally  buoyant  when  it  is  fully  submersed  and  at  rest  in  the  water.  Now  consider  the  same  bullet  being  fired  horizontally  through  the  water  at  a  relativistic  speed.  Due  to   the   speed   at   which   the   bullet   is   travelling   its   relativistic   mass   ( )   is  increased   by   the   Lorentz   factor   ,   and   it   is   length   contracted   in   the   direction   of  motion  by   .  Therefore,   the  density  of   the  bullet   traveling  at   relativistic   speed   is  

,  whilst  the  density  of  the  water  stays  the  same,  as  it  is  at  rest.  Owing  to    the   relativistic  density  of   the  bullet   is   greater   than   that  of   the  water   it   is   traveling  through  and  thus  the  bullet  sinks.    

If  the  inertial  frame  at  which  this  situation  described  above  is  changed  to  that  of  the  bullet  having  an   initial   speed  of   zero,   the   resulting  density  of   the  bullet   is   the   rest  density,   ,   and   of   the  moving  water   is   .   It   follows   that   the   bullet   now   has   a  density  less  than  that  of  the  moving  water,  causing  it  to  float.  This  is  the  Relativistic  Buoyancy  paradox.   The   solution   to   this  paradox   is   that   the   calculations   in   the   two  inertial  frames  are  in  agreement.  

This  paradox  addresses  a  theoretical  exercise  in  relativity  and  simplifies  the  problem  by  ignoring  viscosity  and  wake.    

A.  As   stated   above   the   unprimed   reference   frame   considers   the   paradox   when   the  bullet  is  moving  with  relativistic  speed  horizontally  and  the  body  of  water  is  at  rest.  The  upward  acceleration  of  the  lake  is   .  The  bullet  is  fired  at   .    

The  buoyant  force  on  the  bullet  is:  

   

(A.1)  

 

Where    is  the  buoyant  force  and    is  the  rest  volume.  The  rest  density  is:  

   

(A.2)  

 

Substituting  (A.2)  into  (A.1)  gives:    

   

   

   

(A.3)  

This  buoyant  force   is  the  force  acting  upward  on  the  bullet   in  the  water.  The  force  acting  downward  on  the  bullet  is  due  to  Newton’s  second  law  of  motion:  

Page 31: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   31  

     

(A.4)  

    (A.5)  When  the  bullet  is  at  rest   ,  therefore  (A.3)  becomes:  

 

 

 Therefore,   when   the   bullet   fully   submersed   and   at   rest   in   the   body   of  water   it   is  neutrally  buoyant.  

Now  the    component  of  Newton’s  second  law  needs  to  be  found.  It  can  be  written  as:  

   

(A.6)  

Where    is  the  speed  in  the    direction.  As  both    and    depend  on    the  product  rule  has  to  be  applied.    

 

    (A.7)  The   dot   in   (A.7)   denotes   differentiation   with   respect   to   time.   Equation   (A.6)   is   in  immediate  agreement  with  equation  (2)  from  Supplee’s  Relativistic  Buoyancy  paper.  

In  (A.7)    has  both    and    components,  but  when    is  constant  (which   it   is   in  this  scenario)  the    component  drops  out  as  the  time  derivative  of    in  the    direction  is  0  when    is  constant.  The  derivation  for    in  the    direction  is  as  follows:  

 

 

(A.8)    

       

 

(A.9)  

 

 

 

The  method  used  to  differentiate  (A.8)  was  the  chain  rule  and  can  be  seen  in  (A.10):  

   

(A.10)  

Where:  

Page 32: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   32  

   

 

(A.11)  

   

(A.12)    

To  differentiate    with  respect  to    you  need  to  use  the  product  rule:  

 

   

(A.13)    

The  differentiation  of    with  respect  to   :  

 

 

 

   

(A.14)    

Combining  (A.13)  and  (A.14):  

 

 

 

 

   

   

(A.15)    

Equation  (A.15)  is  in  immediate  agreement  with  equation  (3)  from  Supplee’s  Relativistic  Buoyancy  paper.  Substituting  (A.15)  into  (A.7):  

Page 33: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   33  

 

 

 

 (A.16)  

Following  that    then:  

 Which  means:    

    (A.17)    

Equation  (A.17)  is  in  immediate  agreement  with  equation  (4)  from  Supplee’s  Relativistic  Buoyancy  paper.  

Combine  (A.3)  and  (A.17)  to  find  the  upward  acceleration  of  the  bullet:  

 

 

   

(A.18)    

Equation  (A.18)  is  in  immediate  agreement  with  equation  (5)  from  Supplee’s  Relativistic  Buoyancy  paper.  As  the  lake  is  accelerating  upwards  at    and  the  bullet  at    the  bullet  sinks  and  impacts  the  bottom  of  the  lake.  The  bullet  sinks  at  a  rate  of:  

   

 

 

 

 

    (A.19)  .  Where    is  rate  at  which  the  bullet  sinks  and   .  From  the  rate  at  which  the  

Page 34: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   34  

bullet  sinks  it  is  possible  to  work  out  the  time  and  position  the  bullet  strikes  the  lake  floor.  This  is  done  by  using  the  constant  acceleration  equations:  

   

(A.20)    

Where    is  the  height  at  which  the  bullet  is  fired  from,    is  the  vertical  acceleration  of  the  bullet  and    is  the  time  the  bullet  strikes  to  floor  of  the  lake.  Equation  (A.20)  can  only  be  used  when  starting  from  rest  at  position  zero.  (A.20)  can  be  rearranged  to  equal   :  

 

 (A.21)  

In  this  situation    and   .  Substitute  (A.19)  into  (A.21):  

 

 

 

 

 (A.22)  

Equation  (A.22)  is  in  immediate  agreement  with  equation  (7)  from  Supplee’s  Relativistic  Buoyancy  paper.  The  total  horizontal  distance,   ,  (the  velocity  of  bullet  multiplied  by  time)  can  be  calculated  using  (A.23)  and  (A.22):  

    (A.23)  

 

 

 (A.24)  

Equation  (A.24)  is  in  immediate  agreement  with  equation  (8)  from  Supplee’s  Relativistic  Buoyancy  paper.  

This  is  the  end  of  the  derivations  for  the  unprimed  reference  frame.  

Page 35: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   35  

B.  As  stated  above  the  primed  reference  frame  considers  the  paradox  when  the  bullet  is   at   rest   and   the  body  of  water   is  moving  with   relativistic   speed  horizontally.   The  upward  acceleration  of  any  fixed  point  on  the  lake  floor  is:  

   

(B.1)    

In  the  primed  frame  the  water’s  density  is  

    (B.2)  and  the  buoyant  force  on  the  bullet  is  

    (B.3)    

The  bullet  has  it’s  rest  volume,   ,   in  the  primed  frame  (B.3)  can  be  combined  with  (B.2),  (B.1)  and  (A.2):  

 

    (B.4)    

Equation  (B.4)  is  in  immediate  agreement  with  equation  (12)  from  Supplee’s  Relativistic  Buoyancy  paper.  From  (B.4)  it  can  be  determined  that  the  upward  acceleration  of  the  bullet  is   .  This  means  that  the  upward  acceleration  of  the  bullet  is  larger  than  the  upward  acceleration  of  the  lake  floor  resulting  in  the  bullet  to  float  in  the  primed  frame.  

This  paradox  can  be  resolved  by  considering  the  shape  of  the  lake  floor.  In  order  to  discover  the  distance  the  lake  floor  travels  upwards,  the  double  integral  of  the  vertical  acceleration  with  respect  to  time  is  calculated:  

   

 

 

 

 (B.5)  

Where    are  all  constants.    

When   ,   :  

 

Page 36: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   36  

 Leaving  (B.5)  being:  

 

 (B.6)  

As  the  speed  in  the  vertical  direction  is    then   ,  making  the  equation  of  the  floor  of  the  lake,  (B.6):  

   

(B.7)  

(B.7)  can  be  Lorentz  transformed.  The  Lorentz  transformation  equations  for    and    are:  

 

 (B.8)  

    (B.9)  

Using  (B.8)  and  (B.9)  with  (B.7)  yields:  

 

 (B.10)  

 

Standard   kinematics   can   now   be   used   (as    to   determine   if,   and  when   and  where   the  bullet   strikes   the   floor  of   the   lake.   The   constant   acceleration  equations  can  be  used  to  find  the  bullet’s  location:  

   

(B.11)  

Where    is  the  location  of  the  bullet,    is  the  height,   ,  at  which  the  bullet   is  from  the   lake   bottom,    is   the   vertical   acceleration   of   the   bullet   and    is   the   time   the  bullet  strikes  the  lake  floor.  Taking  all  of  this  into  account,  (B.11)  can  be  rewritten:  

   

(B.12)    

The  impact  happens  at  

    (B.13)    

(As   the   coordinates   of   the   primed   frame   ‘stay   with   the   bullet’)   and   when   the    coordinates  of  the  bullet  (B.12)  and  the  lake  floor  (B.10)  are  equal  to  each  other.  

    (B.14)    

 As   ,  (B.14)  becomes:  

Page 37: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   37  

   

(B.15)    

Rearrange  (B.15)  to  find  the  time  the  bullet  impacts  the  lake  floor.  

 

 

 

 

 

 

   

 

 

 

 

Page 38: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   38  

 

 

 (B.16)  

Equation   (B.16)   is   in   immediate   agreement   with   equation   (19)   from   Supplee’s  Relativistic   Buoyancy   paper   and   is   the   time   the   bullet   strikes   the   lake   floor   in   the  primed  floor.  

C.  There   is   a   second  method   to   reach   the   same   result   when   working   in   the   primed  frame.  This  method  considers  the  shape  of  the  lake  floor,  as  it  is  no  longer  flat.  The  second   derivative,   at   constant   ,   of   the   equation   of   the   lake   floor   (B.10)   is   the  upward  acceleration  of  the  lake  floor.  Lorentz  transformation  needs  to  be  used  at    is  constant  but  the  calculations  are  in  the  primed  frame.  The  Lorentz  transformation  equation  for    into    is:  

   

(C.1)  

Substitute  (C.1)  into  (B.10):    

 

 

 

 

 

 (C.2)  

The  easiest  way  to  differentiate  (C.2)  is  to  use  the  chain  rule:  

 

 (C.3)  

Where:  

   

(C.4)  

Page 39: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   39  

 

   

(C.5)  

Combine  (C.2)  and  (C.4):  

 

   

(C.6)  

Substitute  (C.6)  and  (C.5)  into  (C.3):  

 

   

 

 (C.7)  

Differentiate  (C.7)  with  respect  to  time:    

 

 (C.8)  

Equation  (C.8)  is  the  same  as  equation  (B.1)  and  equation  (20)  from  Supplee’s  Relativistic  Buoyancy  paper.    

If  you  ‘stay  with  the  bullet’  and  find  the  second  derivative,  at  constant   ,  of  the  equation  of  the  lake  floor  (B.10),  the  upward  acceleration  of  the  lake  floor  in  the  primed  frame  is  found.  As    equation  (B.10)  can  be  rewritten:  

 

 

 

 (C.9)  

Differentiate  (C.9)  with  respect  to  time:  

 

 (C.10)  

The  upward  acceleration  of  the  lake  floor  (C.10)  is  greater  than  the  upward  acceleration  of  the  bullet  ( ).  Therefore,  the  bullet  sinks  with  relative  acceleration:  

 

    (C.11)  

Page 40: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   40  

Using  (C.11),  the  height  the  bullet  is  fired  from,   ,  and  simple  kinematics  in  the  form  of  the  constant  acceleration  equation  (A.20):  

 

 

 

   ,  

 

 

 

 

 

Page 41: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   41  

 

   

(C.12)  

Equation   (C.12)   is   in   immediate   agreement   with   equations   (B.16),   and   (23)   from  Supplee’s  Relativistic  Buoyancy  paper.  

 

D.  The  solution  can  be  derived  another  way,  not  using  the  equivalence  principle,  but  by  using   gravitational   forces.   Here   the   force   acting   on   a   particle   in   a   constant  gravitational  field  is:  

   

(D.1)    

The  gravitational  field  is  a  weak  uniform  field;  this  leads  to  the  following  conclusions:  

     

(D.2)  

     

(D.3)  

    (D.4)    

Where    is   the   gravitational   potential.   The   gradient   operator,   ,   is   the   usual  Cartesian  operator.  

Substitute  (D.2),  (D.3)  and  (D.4)  into  (D.1):  

 

 

 

 

(D.5)  

 

Since    (D.5)  becomes:  

    (D.6)    

Page 42: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   42  

The   net   force   on   the   bullet   is   the   buoyant   force   (upward)   (A.3)   minus   the  gravitational  force  (downward)  (D.6):  

 

 

   

(D.7)  

Setting  the  net  force  equal  to  the  time  rate  of  change  of  the  vertical  component  of  the  momentum  is:  

 

 

 

 

 

 

 

   

(D.8)    

Equation  (D.8)  agrees  with  (A.19).  The  minus  sign  is  due  to  the  direction  the  positive  direction   is   taken.   Therefore,   the   bullet   strikes   the   bottom  with   coordinates   given  above  ((A.22)  and  (A.24)).  

E.  The  Lorentz  transforming  equations  for    and    are:  

     

(E.1)    

   

(E.2)    

Using  (E.1)  to  Lorentz  transform  (B.13)  into  the  unprimed  frame  gives:  

Page 43: 3D Visualizations of Paradoxes in Special RelativityLOWQUALITYprojects.imaps.aber.ac.uk/library/proj_158_375rp_19033.pdf · 3DVisualizationsofParadoxesinSpecial#Relativity # # # #!!

Matthew  R.  Cook   110010603   mac41  

3D  Visualizations  of  Paradoxes  in  Special  Relativity   43  

   therefore:  

   

    (E.3)    

(E.3)  is  equal  to  (A.23)  therefore,  the  bullet  impacts  the  floor  of  the  lake  at  the  same  position  in  the  Unprimed  reference  frame  and  the  Primed  reference  frame.  

Using  (E.2)  to  Lorentz  transform  (B.16)  into  the  unprimed  frame  gives:  

 

 

 (E.4)  

Substitute  in  (A.23)  into  (E.4)  

 

 

 

 

 (E.5)  

(E.5)  is  equal  to  (A.22)  therefore,  the  bullet  impacts  the  floor  of  the  lake  at  the  same  time  in  the  Unprimed  reference  frame  and  the  Primed  reference  frame.  

The   calculations   between   the   two   inertial   frames   agree.   Therefore,   the   paradox   is  solved.