416yo 7x7 - dtic

161
AFFDL-TR-79-3032 : ui.-" Volume T1 ADA0864 5 58 THE USAF STABILITY AND CONTROL DIGITAL DATCOM Volume HI. Implementation of Datcom Methods 416yo 7X7 .1350 MCDONNELL DOUGLAS ASTRONA UTICS COMPANY - ST. LOUIS DIVISION ST. LOUIS, MISSOURI 63166 Reproduced From APRIL 1979 Best Available Copy TECHNICAL REPORT AFFDL-TR- 79-3032. VOLUME II 1E C: 'E Final Report for Period 'August 1977 - November 1978 JUL 10 1980 A Approved for public release;distribution unlimited. 0. AIR FORCE FLIGHT DYNAMICS LABORATORY 0 AIR FORCE WRIGHT AERONAUTICAL LABORATORIES C-) AIR FORCE SYSTEMS COMMAND It' WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433 SO 7 7 C38 X..=.

Upload: others

Post on 05-Oct-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 416yo 7X7 - DTIC

AFFDL-TR-79-3032 • : ui.-"Volume T1

ADA08645 58

THE USAF STABILITY AND CONTROL DIGITAL DATCOMVolume HI. Implementation of Datcom Methods

416yo 7X7 .1350MCDONNELL DOUGLAS ASTRONA UTICS COMPANY - ST. LOUIS DIVISIONST. LOUIS, MISSOURI 63166

Reproduced From

APRIL 1979 Best Available Copy

TECHNICAL REPORT AFFDL-TR- 79-3032. VOLUME II 1E C: 'EFinal Report for Period 'August 1977 - November 1978

JUL 10 1980

A

Approved for public release;distribution unlimited.

0. AIR FORCE FLIGHT DYNAMICS LABORATORY0 AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

C-) AIR FORCE SYSTEMS COMMANDIt' WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

SO 7 7 C38X..=.

Page 2: 416yo 7X7 - DTIC

NOTICE

When governint drawings, specificatiqons, or, other data are used fir anypurpose other than in connection with a defnitely related ,ovemrrawntprocurearent opextation, the United States Government thereby incur norespo•.sibility nor any obligation whdtsoever; and the fact that the govern-ment may have formulated, furnished, or in any way eipp lied the saiddrawings, specifications, or other data, is not to be regarded by inpli-cation or otherwise as in any manner licensing the holder or arW otherperson or corporation, or conveying any rights or permission to mannufaeti-re,use, or sell any patented invention that mny -in any way be related thereto.

This report has been reviewed by the Office of Public Affaizw (ASD•/PA) andis releasabZle to the National Technical Information Servioe (N2iS). AtNTIS, it will be available to the general public, includingoreign nations.

"This techn,.cazl report has been reviewed and is approved for pubZioation.

B., F. NIEHA USV.Acting Brwach ChiefControZ Dynamics BranchFlight Control Division

FOR TIHE COMfWDER

WORRIS A. OST9AAR•D

Acting ChiefFlight ControZ Division

If your e dddzws has changed, if you wish to be rzwnved from our mauiling list,or if the addessee is no longer enployed by your, orgwmxaation pZea.. notiAA•WAL/PIC,, W-2AFB, 08 45433 to help us maintain a ournent nviting list.

Copies of this report should not be returned unzless retur is required bysecurity considerations, contrictuaZ obligations, or notioe on a speoifodocumn t.

AIR PORCE/5H47/23 Juno 1IO0 - NO

elf-, • -.-- ,.m

Page 3: 416yo 7X7 - DTIC

_____ _ (r '7~L$//~00"UNCLASS IFIED)

sEcjUR7TY CLAS54FICAiTi..N Of T.f$r PAG jP'T-F.d

-Aý= TR-79-3032, VOTJNFIW T 1 I/ý T)~2C J

--I- T E(AdS 1,EPR PE4100 CAIOVERED

(/~ oh Wi~~as 'Sevn . V/ F,3615-77-C-3073jo ilasa&See VUkeliCh1 /

IPERFORM14G ORGANIZATION NAME AND0 ADDRESS 10 f'ROGR.AM EL.EMEr P

McDonnell Douglas Astronautc topn-t Loi 219&O~UINU~tics Boxa y-t 516i AFFDL Project No.

St. Louis, Missouri 63166 ~ ak8101

11. CONTROLLING OFFICE NAME AND .ODRESS KPWAir Force Flight Dynamics La') (FCC) Apr*t P7Wright-Patterson Air Force Base, WOhio 45433 155______________

14 MO0NITORING AGLM"V WANW-4 J%0OIFSS(II dileI'Ont I-o. Con'tlaling 0111-0) IS. SECURITY CLA;S lot this t.0ort)

/- ,~/jUnclassifiedMI ISM ECASS' FICAT O, DOWNGRADING

SC0NEOULE

10. DISTRIBUTION STATEMENT (of this R.D..H,

Approvrd for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the orwtorIe~.,di AIN Slo 20. Of diI,.,o.rit lt., Rooort)

141. $UPPLE-AENTARY NOTES

None.

19 KEY WORDS (Co.,,t~no e~o.,e. 0,00 I1.t noc.tooo aen Identify by, block ftmobor)

USAF DATCOMAerodynamic StabilityHigh Lift and ControlLomputer ProgramFortran

20 AOSTITACT (Coýtnv~o O o.erI tOdo I ............ SAO Identifyp by block n~oe.)

* 7--ý-.This report describes a digital computer program that calculates staticstability, high lift and control, and dynamic derivative characteristics using

the methods contained in the USAF Stability and Control Datcou m s~~~

-.. 1476y. Configuration geometry, attitude, and Mach range capabilities are con-sistent with those accom~modated by the Datcom. The program contains a trim

option that computes control deflections end aerodynamic increments for vehicletrim at subsonic Mach numbers.,'Vcilume I is the user's manual and presents

DD 'J1473, EDI TION 01? 1 NOV 66 11 O§SO$.CTK UNCLASSIFIED

$9CURITY CLASI ATION OF 10N1S PAGE (Wheon 004 Enitletd4

811

Page 4: 416yo 7X7 - DTIC

UNCLASSIFIEDSLkCUMITY CLASSIFICATION Or TAIIS PLQOS(W 1 D#* *,.E) ,

---- program capabilities, input and output characteristics, and example problems.SVolume II describes program implementation of Datcom methods.,, Volume III dis-cusses a separate plot module for Digital Datcom.

T__ The program ,is written in ANSI Fortran IV. The primary deviations fromstandard Fortran are Namelist input and certain statements required by the CDCcompilers. Core requirements have been minimized by data packing and the use ofoverlays.

'User oriented features of the program include minimized input requirements,input error analysis, and various options for application flexibility.,

"*_.'h:. ! I;-..'. ±; : 1/ .. .

UNCiASSIFEDs$CURgTY CLA•SIFICATION OF tNIWS PA&GrMIM DaMa RAfhadl

I -I

Page 5: 416yo 7X7 - DTIC

FORE'JORD

This report, "The USAF Stability and Control Digital Datcom," describes

the computer program that calculates static stability, high lift and control,

and dynamic derivative characteristics using the methods contained in Sec-

tions 4 through 7 of the USAF Stability and Control Datcom (revised April

1976). The report consists of the following three volumes:

o Volume I,' Users Manual

o Volume II, Implementation of Datcom Methods

o Volume III, Plot Module

A complete listing of the program is provided as a microfiche supplement.

This work was performed by the McDonnell Douglas Astronautics Company,

Box 516, St. Louis, MO 63166, under contract number F33615-77-C-3073 with the

United States Air Force Systems Command, Wright-Patterson Air Force Base, OH.

The subject contract was initiated undfer Air ForcE Flight Dynamics Laboratory

Project 8219', Task 82190115 on 15 August 1977 and was effectively concluded

in November 1978. This report supersedes AFFDL TR-73-23 produced under

contract F33615-72-C-1067, which automated Sections 4 and 5 of the USAF Sta-

bility and Control Datcom; AFFDL TR-74-68 produced under contract F33615-73-

C-3058 which extended the program to include Datcom Sections 6 and 7 and a

trim option; and AFFDL-TR-76-45 that incorporated Datcom revisions and user

oriented options under contract'F33615-75-C-3043. The recent activity gener-

ated a plot modale, updated methods to incorporate the 1976 Datcom revisions,

and provide additional user oriented features. These contracts, in total,

reflect a systematic approach to Datcom automation which commenced in Feb-

ruary 1972. Mr. J. E. Jenkins, AFFDL FGC, was the Air Force Project Engineer

for the previous three contracts and Mr. B. F. Niehaus acted in this capa-

city for the current contract. The authors wish to thank Mr. Niehaus for his

assistance, particularly in the areas of computer program formulation, imple-

mentation, and verification. A list of the Digital Datcom Principal Investi-

gators and individual.s who made Fignificant contributions to the development

of this program is provided on the following page.

Requests for copies of the computer program should be directed to the

Air Force Flight Dynamics Laboratory (FGC). Copies of this report can be

obtained from the National Technical Information Service (NTIS).

This report was submitted in April 1979.

Page 6: 416yo 7X7 - DTIC

PRINCIPLE INVESTIGATORS

J. E. Williams (1975 - Present)

S. C. Murray (1973 - 1975)

G. J. Mehlick (1972 - 1973)

T. B. Sellers (1972 - 1972)

CONTRIBUTORS

E. W. Ellison (Datcom Methods Interpretation)

R. D. Finck

G. S. Washburn (Program Strature and Coding)

- ~iv{I ,

I I ,

Page 7: 416yo 7X7 - DTIC

TABLE OF CONTENTS

Section Ti tie Page

1.* Introduction . . . . . . . . .* . . .* . . . . . . . . 1

2. Pro gram Organization . . . . . *. . . .* . # -. 35

3. Equations for Geometric Parameters .* .... . . . . . 37

4.- Incorporation ofMethods. .. .... . .. .. .. .. . .67

5. System Resource Requirements . . . ..... . . . . . . . . 107

b. Program Conversion Modifications . .... . . . * **109

7. Program Deck Description . . . . #...... . . . . .. . 111

Reference s .* **** . . . .* . . . . . . .155

V

=110- -*. A -- -

Page 8: 416yo 7X7 - DTIC

LIST OF ILLUSTRATIONS

Figure Title Page

1 Overlay Program Structure.......... . . . . . . . ..... . .. 36

2 Planform Nomenclature ........... ......... . 38

3 Sweep Angle Nomenclature . . . . . . .... . . . . . 40

4 Exposed Mean Aerodynamic Chord Nomenclature. w . . . . . . . . . 42

5 Theoretical or Reference Mean Aerodynamic Chord Nomenclature . • 42

6 Special Wing Pitching Moment Geometry . . . .. . . . . . . . 43

7 Supersonic Nonstraight Wing Planform. 44

(AL <A )AS0 1I".48 Supersonic Nonstraight Wing Planform 4 . .... . .46

(AL > AL )0 19 Equivalent Dihedral Angle Nomenclature . . . . 48

10 Vertical Tail Geometry . . . . . 4q.

11 Supersonic and Hypersonic Body Geometry . ..... .... . 51

12 General Synthesis Nomenclature . . .......... . 52

13 Downwash Nomenclature". • . 54

14 Definition Sketch for Propeller Power Effect Calculations . . 57

15 Geometry for Determining Immersed Wing Parameters . . . * * * . 58

16 Geometry for'Determining Immersed Wing Parameters (Continued) .59

17 Geometry for Determining Immersed Wing Parameters (Concluded) * 60

18 Definition Sketch for Jet Power Calculations ....... . 61

19 Ground Effect*Wing and Tail Heights . . . . . ....... . 64

20 Ground Effects Planform Parameter AX . . .... ... . .. 65

21 Airfoil Section Module - Executive Routing . . . . . . . . . .. 70

22 Airfoil Section Module - NACA Designation Routine'.,. ..... * 71

23 Airfoil Section Module - Section Aerodynamics Routine ... 72

24. Airfoil Section Module - Section Maximum Lift 'ioutine ...... 73

25 Asymmetric Body Geometry Inputs • • . • ......... . . . 94

26 Potential and Vortex Lift Components .9.4..... .. . , 4

27a Correlation of a 95• V

27b Body Thickness Parameters .9........ .......... 5

28 Potential Lift Center of Pressure .,. ...... ....... 96

vi

_..._ _. . - i ". . . - ".. . . : . ' . 1,

Page 9: 416yo 7X7 - DTIC

LIST OF TABLES

Table Title Page

I Summary of Digital Datcom Methods . . . . . . . . . ... 2

2 Subsonic Data By Overlay . * . . . . . . ........... 31

3 Transonic Data By Overlay. . .. ... ....... . .. 32

4 Supersonic-Hypersonic Data By Overlay ........ ..... 33

5 Airfoil Section Module Routine Description . . . . * . . . ... 68

6 Programmed Transonic Second Levul Methods Summary . .. . .. 84

7 Digital Datcom Overlay'Description .. .. . . . . . . . .. 112

8 Frogram Common Deckso ............... . ... . 134

9 Digital Datcom Routine Description .. . . . ... . . ... 135

10 Control Data Blocks . .......... ... •..... .. 151

- -

Page 10: 416yo 7X7 - DTIC

SECTION I

INTRODUCTION

Digital Datcom calculates static stability, high-lift and control

device, and dynamic-derivative characteristics using the methods contained in

Sections- 4 through 7 of Datcom. The computer program also offers a trim

option that computes control deflections and aerodynamic data for vehicle

trim.

Even though the development of Digital Datcom was pursued with the

sole objective of translating the Datcom methods into an efficient, user-

oriented computer program, differences between Datcom and Digital Datcom do

exist. Such is the primary subject of this volume, Implementation of Datcom

Methods, which contains the program formulation for those methods in variance

with Datcom -iethods. Program implementation information regardirg system

resources necessary to make the program operational are presented in Sections

5 and 6.

Section 6 also lists each of the routines and references tieir appear-

ance in the program listings provided as a microfiche suppleiment to this

volume.

Users shou?.d refer to Datcom for the validity and limitations of methods

involved. However, potential users are fore-warned that Datcom drag methods

are not recommended for performance. Where more than one Datcom method

exists, the summary in Table 1 indicates which method or methods are employed

in Digital Datcom. Tables 2, 3, and 4 define the basic output data in each

Mach regime and shows the overlay in which each is computed.

The computer program' is written in Fortran IV for the CDC Cyber 175.

Through the use of overlay-and data packing techniques, core requirement is67,000 octal words for execution with the NOS operating system using the FTN

compiler. Central processor time for a case executed on the NOS system

depends on the type of configuration, number of flight conditions, and

program option selected. Usual requirements are on the order of one to'two

seconds per Mach number.

Direct all program inquires to AFFDL FGC, Wright-Patterson Air Force

Base, Ohio 45433. Phone (513) 255-4315.

• , , . , .1

- . . -, . i - .

Page 11: 416yo 7X7 - DTIC

44-)

CA 0

-o 4-)-C

=A CA..

CL E (u

-o 0LU0 (. = o0

0.-4-) CLa -0 0 01C.D S-- 4-( e(A.-JJ -S-4

UL

4-*. U-. 0j C-0 <0D OC-0 -j -j

Laf Liii S.. C

wj0 Q - 0

C- LU

z i-

-~ 0.

CD Q. QA CD CD C C.

= tA Ln ,.n (nC= (DLV) Ln

(D CJ.4Z LnV "W (AL ) uiu ) w

0 V) -14o

z~: 3 '. c

004 CC.) (

C-( 4 -u S-

= S. 4 )- )-

ui ) CCS

Page 12: 416yo 7X7 - DTIC

to a..

0 u.

-j .4->

0. 0

4J

0 (1.44j

4j

41 0 O

4.J 0

Xo 0z0c M . oc

=Z~. MO in <Coz C. o-..Z 0c V) L C c Mo. o-

V)I(At V). VJ-fC) v. :1C/ V) tn >

0 g... CA

2Cg 4-

w CJlCNJC% *- *C -j 4 (~4 -4 -

ow 0

) LAJ

I- J M ~ LL

Lj U)

41 C.. 0- -DC D0 -0V)Z A n 0C n AZ QC1V0 V)= ce M ý 0 V a ( cI,

Cin AnV nV)Cd V) 4n, V

c) . 0. . .)0 )

C- 0CCE~* 4

3 ...............

Page 13: 416yo 7X7 - DTIC

InC CZMmC

ccC

0V C)j Vl C%)

L) 0. U L0.

CD I.- 00 0- C-- C) 000) Ln V% 0 L

= ccr=V cc.0 CD ul0 0j =~Q CD 6.0cc o C6 CA. (a Q0

=I) = =C-

C~C

o< 7o

0ue~ C)Li C6L). ~ J . .J. ~ I. 1 LJa

- ~0.a.

.0 WAM01I ýi.0

Page 14: 416yo 7X7 - DTIC

Iu 0X X

mI >-CO 1

-cr

TS~~~ ~ ~ CI ETSc e M -

Lj ~ - -a - ..

w~~.J~ W* = #.-=

oA W La.

C6 0 Q. 0. .-=> = = >- I- V

V) F.- toV $-V

0 o!

~~c C- 4.

L U. 78

0 --

La C -)z

~~~zz ~7~

Page 15: 416yo 7X7 - DTIC

C4~)

0 x00

0 0 00

0.cS- 000 .a) 0.t (A-0O0

4.) V C O .n V)

Q) LA CA

fr-. -LLI

- - i I- ~- - I- M:

_-s3 (n- )U 0.:a _

U.) CýC.J4 'NJ CJ'.,Cz

o 0

CD. Q... Q%~ C) 0DC. DCC-- V)V > nk Qv M(DV M A4

co C6 Q. C 3 Cu iui

V). V) I- ~ --- -) 4n 0- V)

CO 0

Ldi 00

I- ~ flb-.U)Z ~ flI -t/ fte I-V olI- )

Z ('m - C'..

Page 16: 416yo 7X7 - DTIC

00

0. =m0

'o 0.5 - S.5

.5--CL CL

'0 0A

(D as

aAJ 0. 0.

u) a-U, c L 0cc cc con =D c o In39 3: 3: ) V)-aV V 6

dCn

Ini CnCl -c

0 w u u 0

,- Z ~ LsJLJ,

Ljl =

a.~ -0-.0 0-C.0 DZ,- >. = = 0)

0ý I. V L t

4 41

Q? co . LA. -0

U. CC4~ %C

Li

-I

Page 17: 416yo 7X7 - DTIC

0

LA0 u if w0C=!SA 5.' a, Q a)

A x~t

. 0 L.) 0 Ou.

-4 ~ ~ V NCS~l. 4- 'a 4-'0

a ,-- S- 10 ()0m 0to' 0

4)r = (U C 0

-. 0,.., - jr

- 0. q n 1.- I

L Lai -j.

0

I--J - 4 I--0 CO - o -- I- = c

I. -cc .. F-, 3 M 0.3 0 . L

V) m .- V) "Ln :39 tn{. ' ' ,. ,I• '-- V)n CI"L

cc:c

- M "00

cc I.-=CD-" I• fZ .U As A C- 4"

L ZQ -(. . CJ -.

.4t

2-6

I4 .u .0L l Q nr1= QCiA=ex clea cl DCiAtoZ .L A. n LJL )3 LA j L ULJ

IA

Ia.C "a c c

I I

&A.~ 3 0.- - I,-.. - ~--**

Page 18: 416yo 7X7 - DTIC

.06

cc

o -u0 0 0-

W

Li io

x ui

0)u. L .

4c - :. F-:cVV 9wV ) 0

Li CL 41CD Ul -J I.- -ý Lc i

~ 0

- 0

0 C)u' 0 i 0

0.-wi T5 000 ~ - - - - ~~

'm WLai Fn LijLb v):4Li LJ W~ (.V) JL Cv, 0

0 0co -cc)-- .- ~

'LA. .Z -Z -Z J-Z C

9-.j -,,C'E Q

Page 19: 416yo 7X7 - DTIC

LJJ

u4-)

i)

00

CD Lh.J AZ L1J m 30c

;r 0. 0.J

Z I-- LuJ LA

LA-. L.L.CD U0

Cý La w~

OLAL

Lu L) tU to 10 tU u u.. u

p.) £f~ui ui tol~f wf#-f w'-f LnZ " V iw (

;I = o

0- :3-

oi Co CD X

0. 0 .

o40

10

Page 20: 416yo 7X7 - DTIC

LfLl

LiJJ9- CDLi

-t C

CD UAJ -2

L&JLI

-D CD - C C 0 DCQ)#6 i i V) ~ L" ) i in ui i L i

a. w r-VL. 0 .A in CL.cf 9= 60L.C Q

I- V) 4 )I-V )I-t

2 - ,CJ -4 %j,

AJ& r-C* 4 "

o. Co a c

4J r- +.j C 4X to

La

w a. 0LLJO. ~ 0z'

Page 21: 416yo 7X7 - DTIC

L.4J

co C. 0 c a- a- C

£12 C)

04m

0 LIj 0z u 4j

E I4-

0.0 0C C DC(A (I 0 cn Ln (In Ln a vi V) CD V) k I.- U

1.~~0. c a .to =i R =:I =J'~ =~'~~ 0I I =>

oA IA CAv

inJ 0

., & .-

tv -ý to . - c -- 1.).=~~~~~r :39Z L~ Z J-Z L Z . Z

- CZ0K4 0 a 0 - ~ 0ZO n AZujn Z ~ ~ Z~ n n Z U~O~fl OV~ X O1n

U.cmL J~ I i A £l LL LJ I ACD abal: ca-nLJJ C6 *Z dc .4(45

12SS

PM-(%

Page 22: 416yo 7X7 - DTIC

E 000 0n

4-) 0)

4-. LM 40

oc 0l .c c -0. 4 ) 0) 4)(A(.

0.. 0

LuL

0) 0

0) =n 0)4CA 0)tnL ) C) 4n( DuA4 )LoLn C) Ln -MC )04

=U La) 0,=L A n2 W i A=w.m co C . . l-d-CI~V I' Ii WV) V) V) 4 Ln ) (AV) 0

0%.1- %

w0QJ V7

-l nL

,.. 0

c~c~ sc~c~ 0-~ ~ ~ t tL)A. ~ -c).(M a$

0

La.

0a a

w - C

Li) L~~) .)13

C~) - .) - -C) ~ -~ .W 4

Page 23: 416yo 7X7 - DTIC

1. -GJ Eu

L*J 0 -

0

LiJ~t (A 03.(.)I=

4) 0 0_

W.LL1 4.

co u L Q00 o'na . ca C'J0co = = I0

..J L/M nuj m 0 .i

u 4J

= Lj CDv0

L L

CD~ 'A 'A

ImI.~ ~ - IV

w c:

- 0..4-CD ~ r ~ z 4

LU -c~)C1esJ-I.C\IC J - %14

Page 24: 416yo 7X7 - DTIC

(A

o 4-o '4

'44-

4)4.

EUi

*< <

V) V)c ) nQ

Cdmc

l -

= i im m ZJ=

L-1w

L3 -

4f ) Cd, InA Ln ACA

0. 0.C2 9 - c o 0 . C=- = >-> = = : W5 = 5

bD C14 cVC4

Lz. 0oo Mococcm~-

:E2 2 :2 2 2 Z : :2 2 : 2

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ LJ4J i 0.

C.) -~ C777- J-4 C) -

Page 25: 416yo 7X7 - DTIC

LU

b- - w ,

o CC -

~~ 0.

-m CJ I= M -4 LMMM -4 -m 1=

= QC 0 CDC D DC

.0 M=4 0.4 0.m a a o

=U :I~- =- ý- = = >-4 =. :-

I- ~ ~ ~ I Vf)-n 4f-f fI1lI~ n In I-.. t

LnLc, LA

4J- r- J - 4G 3:0 4)x 0 :m 0o 0. = I. = 0. co AM

co CA- 0 1 0 1 (A.w 0 1. 0 8I- (M<-- M--IM--C

4J C- $ 4 cJ 4.1

3c to-13 t tto 0 c oI moo

16

Page 26: 416yo 7X7 - DTIC

0)

44:

LLLLU 0

co.:cE

0Cco cc CL c CL

ts cc,

cm r*. M rý U.. i U -4 -4 0

L6 CD

L) UZ

=~~ 0.4CCD S ~ CD 0. CD QA CD

-' LU V) -ý L. -z CDt D( D cnV) u s )0JLJ ( i L A LJLJ V L &

~~L LUzn

-) LOu j Le Lc; 9; cc

*6 ~ ~ 0 06 3C0 -ZO 0~O 0.z Oo ~c coAC coAC co~C cO/L oVC4J 4J OCA flOC O l

Z~1 L-)% -

00

LUO. ' = )

Page 27: 416yo 7X7 - DTIC

LO LC)

cu

U- 00LAL

41L. LL.J

o W

LAU

LAA

I- LA

C::

0ý C) LC) 0 0.CD wlV L i0 nk-C )cto C60 0. to c . A

LA LA LA u

oo

0.J 0 ) 4cc ~ ~~~ ccc 90 u 3-

cl2:

C C.=viflUO

C S . U 18

Page 28: 416yo 7X7 - DTIC

~0 '0

LA

LA C06 CL

L6 LA-

LL4J

-A V) C

cc LA A-V

<. Ln LLiLM

I-.

cLJ mL

0 ul VI0L e Df^L- i (AA w um La w ).A

-m Lij L44 Ln Wo 4 Q. CL C LC c 6C 39 ...

40 V0

(A4 to-A nb ~ 4)~ 4j~ >oCi - o-1 - LI- -j to W C t - do

0 v190- v - 10 0-u -0 w X00 .. 0Ou3t

Z. 4A - -16 AýL t .* 40 .v~~ ~ ~ ~ ~ 0 0Q au uvvoz

4) L. 40 cN - L o= -W C -I

2- Lai -

4.,UQ e.OUi

L< U - u .

4J19

C4~- D C'-4J J..- ) C4'.~a

Page 29: 416yo 7X7 - DTIC

in U*n

Ln U-.

>1 >%

to

0. 0-

LjL.

I-I-1

CL CL

LiL.

tonJ

LA- W L

C.,

iA -n in

LA..

o~ oj

LLLa

C.JZ~~~ C)..Z Cp~ I-Z L

V)hJi LA.(Lo ( Ln 4n in LAJ* I fl Li.)4

V, 0- V, V) Il-f A.- V i vi u I.-Uwl V) I-- vi

Z ~ -

Fo0j(LII

0 0 1 0 4A 0 0

SW.0- W C 0 * A#0 0I~ X-C3 Ii V II.. 04 1-A - C..-c

M0 u .e 40 tGo G - I--

20

Page 30: 416yo 7X7 - DTIC

Ln Ln

~ 0. = 0.

LA LLJ ujLkJ 73 7) -3

6 CL CL

LA_ U 0 UL) 1W0 l CL >-c.C a .(

0 )-c< <c !

on LLJ Z

=>=

U)V ) IV L ^4 V)

CO C- 0:.CL0

-n VI If ) LnCD~L 4n -) ~1I 1 0 -

o ~ 100 ) 0 0

oo tot

-. Li. Z

uii

lot. I Z O - o ZO Z O -

ZOU U) OL)U) ZO flU ZO )U Z21L

Page 31: 416yo 7X7 - DTIC

L&.ji

LjJ -ic i-

C. U- . U. L.>

U)J 0l JqVr U'), U3q*

10

'ME CL 0.Q.U m~

0 D

caQ C6* C6 0.44,4 .4L.. c .4.-. a- 0o0C

LoaJ

Q) 0)L Q). oIL Q)0 4 4a,* 064- .. - Q64-) 0.4 a .4-

I--

C)'

LaJC- -Q C

*22

Page 32: 416yo 7X7 - DTIC

4-J

fa

045

CA

LA0

d:

%0%

0 -e

I- = i.-CDc

C.) L4 w. 0

-o 0.C n L LLW l l

VI In InI- nV7

r. 0r

oo IL

OUA 4- V 14CD 4) 4 64 0 ov ALW ,-ý 0 0 4) L 0 000 i--0 .J~

Li c (L) LWJ LW mWo

- U - -L) P23

Page 33: 416yo 7X7 - DTIC

La J

I.- coc .c o 0

:I-

Q 0.QL0 .*f)

CJ-=

Ln 4n ~ Lm ul A (A QA 1^ ( ) 0 zLC>J 4n = A== CV= D n=w C l=

U- 0 i u i ( "WU U A=u n3L02 C.0

= = >-J

F. )W ..)- vi, w V)4 iI- C,)-

co C',J m m

~ 24

Page 34: 416yo 7X7 - DTIC

0

cr.'>44

-i u

S-P 0

CC

uju

w-12. 4.)L LW 3 0- -rDDc o0- C1 oa =ca C

CC

LA. CDCd

LLjJ

o 0 >- b.0.(.cao C). 0 DC ( DC

0. 93. mzOCL 0 o c - c 69 . CV) I- LMV) I- V) V) .- V

o to

OLLJ

cr0

~ ~ 4-4-~ - ' -5

Page 35: 416yo 7X7 - DTIC

V .V0 ~00

4- EC C) c )U

o 0 0 .0 .0

.0 ~~.0 . )U

I) (A (AU)UCA CA

IA (AU)U)U

~ LUJ

cm ,-C.n c o oc cm 000 0000 000 a. C

cm In~ 9=z cm0 cmtmimQCD.mini 0.

cc 0.LU J

LUJ

- i =z - = Qa Z CJZZ CZ) CD.).-4ZZ

cm l~ V) i L V )ZIL ffl Z ) (nL LZLnL L' LOLU

= 0 .0. co 01C c 0C aV)~~ Ln 0nI-L.

Z Cj -Cl. %- . z

0A

0 00 0

La 0--r

26

w-

Page 36: 416yo 7X7 - DTIC

C4 ,-4 -l -l -l - -

LU 0 0 O00 04--) 4-1 .4 41 41 4.1

00

ai W 0) 4V4nfLUA

o o c . D . c .c 0.

CD Ln u n LO LA in Ln 0.

o o

LLS 2

wA 4 - w r .-0 (^ (.)4Z L)-Z

-U LV)L LaLU 4 V)ZWL& U')MWt

4C Lu '

,cu

-- (j

cz

0. 06 0.,>- .*1 . ,t :0 at

27

- ~~ -- - -------.-

Page 37: 416yo 7X7 - DTIC

tn 4- cA 4-

00 00

2 44J

0 a 0 D 0

EL C u E0.0 C.00 C'

U' 04 0)4(A 0) (U

(A fA 'a -

4)4J4

Ln (A(An

9z

oo co coco

- o - 0LC m ,C-0.a .a .C

.U >

LL.-

CD -C)CD0 0C)CDA~w 40 (n =-.-~ =.4 a = 0c.=i n= )(

vi(L Li )LaJ LaJ A LLA LaJ (AUJLJJ (ZLM LLA W 0=0 0.a 0- C. ca Q c . LC= = 1 - = > = >- > - 0I-- V)I4 V)-V V)I-) V)-A Ln(/

W'* cl. ~CV) (c (;~LAJ

o~n ~ -~. co

0j 06 0 0

(0 (0 0 (028

-was" W I

Page 38: 416yo 7X7 - DTIC

VV.

LLJ

cc coc

cc co CI oco

-j 06

to k

oM gmM0 cm oc nI

~~~. 6-4 c\P-ý-i ________U__ 2cU =

=, C0 C) =DC) =00 00 CD00

=- Z OZ. 0Z- 0co 9 0. .0 c L0 C CLn V (In I-ul o) V) u 4 I- &ovn

S -44

M 0i e'ý c ~ l

= 0=0

>.0- ol.-O~

w. 0. Q r_

29

Page 39: 416yo 7X7 - DTIC

ý4- 'n 4-

00 0044-J

0) c

.0 m0

01 01X0

0~4 -

Z LaLaJz C)c oco c oc

co coC L9ý L .C

P.--

%D -.D '%O %D koof- La "T mr- w wV

L6.

o0 Dw Jcm~ CM CMJ~ CD

L161zx

.. a cc 0- 6. c 0- CZ w- CL0

= >- = =

V) I.0

4w Lc-dc LaiQu &n . r%. g

C- I-lr 4

M mW .- u :I

=) SI-- I o.

* ~L. W

4.) 0uI.

30a

Page 40: 416yo 7X7 - DTIC

T W __ __0_

(a cc cc co c

olCd) >. CD cc cc cc CO ca D £0

40--

E w wD cc cc CO cc £0 C O cc

c O co m a to wO ca cc C cc CDo~9 V--- ---- --

C.3

-j 1 c r- I' ' I' ' i s i

>->

U - Cm r- C-1 a

C4 Ei L-, ca- - -

<O w.. '? C D r- C! CC)a

~E -

I.- E qp (A F- CD -m CO e -3 i S

't dC, -* c ., -o C,', - -

C4 I. C.>-

CD CO C ' "*S 0 0 - 0 - ~ J

N i Lo. w- 4' - -,. ' - -

ca- 0 + z

.4 >0 + u

4 0+ + LU 03

LA. 0* + +J.z' a, 0 >... 4. L

04 P i- +z +~ + ,.

£0 z > 3:J £ 0 0 CC a-, 0

31

Page 41: 416yo 7X7 - DTIC

to (a ca CA to -D (

"r 4

£o 4~C 0 40 40 w0 £0D co

Re V

C..5

14 4

Lu .>0 o~

I.-

Z ~ 0

I- v-

Page 42: 416yo 7X7 - DTIC

CD _ _f _ _ __

W I Iw __ _ __ _ I___ _ __I _ _

ev Ew CDe D CD C4 C-4 em I" em

I I

U.

e4 rD 4 ~ C4 CD D03 C

Z' t. _ _ _ e

U.I

>. . . . . . ( 4 . I .

IA

LU

0>2q

i&. 40 > >

1 1

0 L"% C 2J

oo x >a b4

4 13

Page 43: 416yo 7X7 - DTIC

SECTION 2

PROGRAM ORGANIZATION

The Digital Datcom program consists of a MAIN program, EXECUTIVE,

subroutines, METHOD subroutines and UTILITY subroutines. The organiza-

tion and interfaces between these program components are shown in Figure 1.

The MAIN program performs executive functions that control and direct all

computations; the EXECUTIVE subroutines perform noncomputational tasks, which

include input data maniipulation and selection of output formats; UTILITY

subroutines perform standard mathematical computations; and METHOD sub-

routines implement the ,Datcom stability methods.,,

35

- • - - i Il.l.4

Page 44: 416yo 7X7 - DTIC

START

EXECUTIVE SubroutinesMAINPULATE INPUT DATA,PERFORM ERROR ANALYSISINITIALIZE ARRAYS TO 10SET LOGIC SWITCHES.

MAIN ProgramPERFORMS THE

METHOD Subroutines EXECUTIVE FUNCTIONSCALCULATE AERODYNAMIC OF ORGANIZING ANDCHARACTERISTICS AT PFDWRECTDNG THE TASKSANGLE OF ATTACK AND PERFOT ED'BY THEIN SIDE SLIP. OTHER PROGRAM

EXECUTIVE SubroutinesDUMP ARRAYS OF STOREDVARIABLES IN READABLE

UTILITY Subroutines - FORMAT, PRINTS APPROPRIATEPERFORL STANDARD OUTPUT HEADINGS, CASEMATHEMATICAL TASKS IDENTIFICATION INFORMATION,

REPETITIVELY REQUIRED AND, RESULTS OF COMPUTATIONS.BY METHOD SUBROUTINES.

END

FIGURE 1 OVERLAY PROGRAM STRUCTURE

36

Si~~~2 -

Page 45: 416yo 7X7 - DTIC

SECTION 3

EQUATIONS FOR GEOMETRIC PARAMETERS

One of the main features of the Digital Datcom program is that a

minimum of input data are requited. Minimal inputs require the program

to calculate basic geometric parameters required by the Datcom methods.

Equations for pertinent geometric parameters are defined in this section.

3. 1 PLANFORM PARAMETERS

The nomenclature used in the equations for calculating 'theoreti-

cal and exposed planform areas, taper ratios and aspect ratios are shown in

Figure 2. Equations for these parameters are presented below for a double

delta or cranked planform. Straight-tapered planform parameters are obtained

by setting b* /2 - 0.0, Cb -Ct, A* - 1.0 in the following equations:

b/ 2 - b/2 - b0 /2

b* 12) (b b/2)

Cb/ -Cr[l+(-x)r*,

S-b

wI obCW 0i

lnC /C

s3 -(C + C) b /2

* +*

SW 0

• ~ ~37 .- t-*"W N ftm= W _7

SI- (C.. - C).,

•,• • Li_• • " • m 1 b b,* ••-I•••-

Page 46: 416yo 7X7 - DTIC

o REQUIRED INPUTSALL PLANFORMS

- REQUIRED INPUTS,b. OUBLE DELTA

ANDCRANKED PLANFORMS

"INDICATES EXPOSEDPARAMETER

X; £ . - TAPER RATIO

A - ASPECT RATIO

S -AREA

bI , SEMI-SPANN% SUBSCRIPTS

I -k INBOARD PANEL

.............................0 - OUTBOARD PANEL

2 TOTAL WING

2

FIGURE 2 PLANFORM NOMENCLATURE

38

__ _ -2 __

S. •• _..~ ~~ ~ • • -• -, -. .. • - ."2- .'- " "-- - --,,,-*-,•di . . .. .

- I,

Page 47: 416yo 7X7 - DTIC

Swo (Cr Cb) bb/2 +S

- 4(b%/2) IS/

A* 0 4

*- 4Cb/2) 2/sW

Datcom methods use correlations that are based on wing sweep angles

measured at various chordlines. The nomenclature used to calculate sweep

angles is presented in Figure 3. Sweep angle equations are presented below

for a double ,delta or cranked wing. To obtain straight taper wing siweep

angles set C and A = 0 in the following equations:0

C1 - 4(1- A*ý/[A* (1 + 1*1)]

Co - 4(l - A* )/(A* (U + A*O)]

AuL tan 'CC, (r-n) + tanhm],

A% -tan 1 CC (r_-n) + tanAm 0

-1 ***(Andef cos- ](S, coo An, + SO-cos Ano)/S I

The nomenclature used to calculate the exposed mean aerodynamic chord

(MAC) for a double delta or cranked wing is shown in Figure 4. The param-

eters necessary to define the lateral and longitudinal location of the

exposed MAC are included. Equations to calculate and locate the MAC are

presented below. To obtain values for a straight-tapered wing set C* - 0,0o

Y*- 0, S* - 0 in the equations below:0 0

\c1 - 2C:(1 + A* + 2),/3(1 + A*)

C 2C Ub( +o + A*/MUl+ X

39

......I

Page 48: 416yo 7X7 - DTIC

(~\REQIUIRED INPUTS

ALL PLANFORMS

f REQUIRED INPUTS\-) DOUBLE DELTA

ANDCRANKED PLAN FORMS

m =PERCENTAGE CHORDAT WHICH SWEEP

AloolANGLE IS DEFINED

n =ANY CHORD LOCATIONAoo EXPRESSED IN

PERCENTAGE CHORD

FIGURE 3 SWEEP ANGLE NOMENCLATURE

40

24

Page 49: 416yo 7X7 - DTIC

=(s C + S C *)ISC 00

Y ( - b /2)(1 + 2X )/3(1 + X P-* * * * ,,

Y- (b /2)(1 + 2 X )/ 3 (l + X ) + b '2*O-, O-

Y s Y+S Y )/Sx , ^o * * .-* **

"Xo [SIY1 IanAoI +S(bb/2 tanAoI + (Yo -bb/ 2 ) tanAoo)]/S*

X -C /2 + X;V

Xr C /4 + X;

The theoretical or reference mean aerodynamic chord is calculated

with nomenclature of Figure 5 as follows:

C "2C ( + x + xI)/3(l + XI)

Cr (SI CI + S C)/S

xr Cr /4+Xr

Special geometric parameters are required to calculate wing pitching

moments. The nomenclature used to define these parameters is presented in

Figure 6. Equations' for these parameters are presented below:

*• "'~ / t* ~ b+ 1 * a o)I*r

(b b. , bb/2 tanAooI + 0)/C

AI 4(bbI 2 ) 2S,

A¥Y = bbl 4

(bo/2)' = bb/ 4 +'bo/2

41

• ' • - - ,---- • " . . . '---Y-,,-- 4

Page 50: 416yo 7X7 - DTIC

I IT

Xr

ClC

~Cg

FIGURE 4 TEXORETIADRREEEC MEAN AERODYNAMIC CHORD NMNLTR

NOMENCLATrE

74

0-c;-C-l-

Page 51: 416yo 7X7 - DTIC

I..

I \\I \I

I'I

C'bb

I I!II

--- _b_2--r b

FIGURE 6 SPECIAL WING PITCHING MOMENT GEOMETRY

43

"- I. • G,,•--r-• ....

-

.. . . .. . , ,- -

--. -•

Page 52: 416yo 7X7 - DTIC

GLOVE COMPONENT

BASIC WING COMPONENT

________ * TRAILING EDGE EXTENSION COMPONENT

A LEI

(S~g SS, GLOVE

Cr Cb

lrbw

Ct

b/2'

FIGURE 7 SUPERSONIC NON-STRAIGHT WING PLANFORM (ALE'o< ALEI)

44

im 4,

Page 53: 416yo 7X7 - DTIC

C cb t

Cb' = C + (b /2)'b t obb/2

0

(So) =.(Cb" + Ct.) (b */2)

* 2 *(A = 4[(b 0 /2) ](S0)

(Xo)' = Ct/C

Supersonic nonstraight wing analyses require the wing to be synthesized

from basic wing, glove, and trailing edge extension components as shown on

Figure 7. When the leading edge outboard sweep angle is greater than the

leaaing edge inboard sweep angle, an additional geometric parameter, S2' is

required and is shown in Figure 8.. Equations. for calculating geometric

parameters for the various wing components as required by the stability

methods are presented below.

All PlanformsbC-)-bTan

(C*)bw Cb + b - [ ][Tan ALE TanATE.0 0

* [(C) + C ] b*basic Sbw rbw t

* wing 2component 2

bw -bw

(C*)r bw

(Crg (Tan A ) (T- b°0

glove S* (C*) (.-bo*

g"component A' 4 "b°*1i

A* 2 2g S*•

A -0g

45

w, -,

Page 54: 416yo 7X7 - DTIC

~Sbw

LEI

J JA E I

LE0

FIGURES8 SUPERSONIC NON-STRAIGHT WING PLANFORM (ALEO,>ALEI)

46

.........

Page 55: 416yo 7X7 - DTIC

trailing

edge b* 2 (b-- -

extension e 2 7span

If > S*2 s- (tanLL 0 2 ( LE)

S1 S bw

Geometric parameters required for horizontal and vertical tail analyses

are identical to those for wings. Tail parameters can be calculated by

substituting tail geometry for wing geometry in the wing equations. Vertical

tail lateral stability calculations require additional geometry parameters as

shown in Figures 9 a and 9b. Equations are listed below:

Straight Tapered Vertical Tall

Cv a Cr - (Cr - Ct) (Z1 )l(b.,'2)

X -zH (TanK.I)

\on-Straight Vertical Tailb b*

ifZ v o2 2

b b* b* bX - +" +(R- Xv -(- - ') (TAN ,LEI) - (ZH + -1 ) TAN A

b b*

-V c t + (C% - ct)( )b b*

If Zl < v 02 2

X - i + - v. -H (TAN ALEo)

V 0C,, r C- r -Cb)(zF:)/ (bv b )....

2 2

For a horizontal lift'ing surface, an equivalent dihedral is defined as

follows:r b* )rl ) + 0o(

eqb*,

47

C - ~ - * .- ----~--- S

Page 56: 416yo 7X7 - DTIC

Ivbv

4 + ZN

_ C_________

FIGURE 9(a) STRAIGHT TAPERED VERTICAL TAIL GEOMETRY

----

A LEI

FIGURE. 9(b) NON-STRAIGHT TAPERED VERTICAL TAIL GEOMETRY

48

__ -+

Page 57: 416yo 7X7 - DTIC

(b/21ro-

FIGURE 10 EQUIVALENT DIHEDRAL ANGLE NOMENCLATURE

49

Page 58: 416yo 7X7 - DTIC

3.2 BODY PARANETERS

Longitudinal stability analyses for bod!es in the supersonic and hyper-

sonic speed regimes require the body to be synthesized in nose, afterbody,

and tail segment components as defined in Figure II. Geometry parameters for

the various body segments analyses are defined below:

RB iN + •A

tBT = B• B

d d! + d,cyl 2

Sp fJB r. (dx) Body planform area

02Sb ' 'd2 Body base area

4

a2fB r x (dx)0 Distance from nose of body to centroid of

Sp planform area

VB - fZb S (dx) Volume of body

0

If d2 > di, calculate flare angle f M TAN-11 "5(d 2 -d 1

L IBT

If d 2 < di, calculate boattail angle OB - .A_ 5(d1-d 2)

3.3 GENERAL SYNTHESIS PARAMETERS

Synthesizing and interference nomenclature for longitudinal and lateral

stability calculations are defined in Figure 12. The geometric' parameters are

presented In equation format below:

Xw,- (b/2 b'/2) TA. Ao1 cos (aQ,

Ax c- Xc s- + * w)

(Xac)v * (Xac*) C*; where (X /C*) i. calculated in wing pitching

moment subroutitne

*50 - -- "f

so-.

itif~ na [1=mop>

Page 59: 416yo 7X7 - DTIC

I'd,. d

POSSIBLE SUPERSONIC AND HYPERSONIC BODY CNFIGURATIONS

IN

NOE IA-IST- 0 NOTES:d~x d1 u dl NOSE AND TAIL SEGMENTS MAY BE CONICAL

< (AS SHOWN) OR OGIVAL

DIAMETERS dN d1 AND d7 ARE COMPUTEDFROM LINEAR N EROLaTION OF

IN INPUTS zi VS R

NOSE-AFTER BODY 1BTU 0

IINN

IA

NOSE-AFTER BCODY-IlL

dl.

I'0NOSE TA IL 'ST

djud

FIGURE 11 SUPERSONIC AND HYPERSONIC B3ODY GEOMETRY

51.

Page 60: 416yo 7X7 - DTIC

XWX

XCG-

-if2

I -(cr)H

7 318-

FIGURE -12 GENERAL SYNTHESIS NOMENCLATURE

52

Page 61: 416yo 7X7 - DTIC

(AXa)w =AXcg -(X A)w COS (az)w

AXN - (b/2 - b*/2)iH TAN AoIH COS (aci)H

(AXcg) H xcg - (XH + AX1 )

z*- z - TANH H H H A

(Xa)P n (Xa/C*)H C*

(Za) - - (Xa) SIN (ai) -zac H H ac H i H cg

A(Xac)H- (AXcg)H- (Xac)H COS (a i)H

¢XZ/4I- XH - (Xr)H COS (ai)H

Z' -Z + (C /4) SINciv w r i

Lf x +4AX +( o) TA A, + (b*)A -2 o 2 I 2

0 .

p 1X - Xcg + (Xr)w + C(r)'v4

ZP Zcg + (YR)v

3.4 DOWNWASH PARAMETERS

Downwash geometric nomenclature is defined in Figure 13. The equations.

presented below are used primarily in the subsonic speed regime:

z- ZH - xr SIN (¢i)1 - Zw + C SIN (ai)H -

ZH' TAN (cii)w

LTu L H -4L 1,1

AhH - Z'/Cos (Ci)w

53 1 P

" " " • • • i n |

Page 62: 416yo 7X7 - DTIC

___________...............................i)~

REFERENCE - -i

FIGURE 13 DOWNWASH NOMENCLATURE

54

Page 63: 416yo 7X7 - DTIC

E eff

C NOTE: t etf IS MEASURED INtef CHORD PLANE OF WING

4 Ctelf

A01

VORTEX SPAN - beff

(Cr)H

4

REFERENCE

I> xci

FIGURE 13 DOWNWASH NOMENCLATURE (CONCLUDED)

55

*oil

Page 64: 416yo 7X7 - DTIC

Ah2 - LT SIN (ai)w

h H 0Ah H+AhHh H .AH 1 +•H 2

9.2 = LT COS (01i)

Y - ARCTAN (hH/I 2 )

9.3 W (Cr) %- (Xr)

If bef f/ 2 < (b/2 - b*/2)%wteff0

C -C C-r Cb 71 (b ef/2)teff b2 - b*/2 eff

w

Eeff (beff/ 2 ) TAN AoI + C t /4eff

keff 1 2 (Eeff C )

If,b /2 > (b/2 - b*/2)eff 0

Cb - CtCt bo/2 [bff/2 - (b/2 - b*/2)]C *2eff 0w

Eeff ' (b/2 - b*/]) TAN Ao1 + [bff/ 2 - (b/2 b*/2) TAN Ao + C /40 w I ef0 V 0 t eff

I eff 1 2 .(E -Cr )ef r

3.5 POWER EFFECTS P.11.A METERS

Geometric parameters required to calculate propell'er-and jet power

effects are defined in Figures 14 through 18. Power'effects are only cal-

culated for longitudinal stability results in the subsonic speed regime.

56

i .______ _.__________

Page 65: 416yo 7X7 - DTIC

+Z

--- Xr a! p --- ' O ERo T I• _._

)( RPFPOWER ON S A

PRPROPELLER , C "' -I

+a- PLANE +z+it A / ZHF

MACý!MC IHORIZONTAL

4 " I TAILMACa rNRJSTA

+ a " " "- "XCG - -- ) 1-• "GCG

( -. ~ WING MAC +

+aiw4

= Xw +Xw COS %i-X t"• = Zw -Xrw SIN aiw

=P = aSCH+uit+uPii = ZT +Xp TAN a

. t = z, -ZT + [Xh h COSa, c -,X)TAN•'TI

= k COS jhahI. - X k-CSa,

4EFF = Z -Zh + IIh TAN (a'p_..EPOWER)

FIGURE 14, DEFINITION SKETCH FOR PROPELLER POW -R EFFECT CALCULATIONS

57

atom~ ~t

Page 66: 416yo 7X7 - DTIC

. ./,. o'\CASE! I /

SINGLE ENGINE

I Cti

2 2b2

C, -,b b f. ,ic =i Cr - .2 b * - b o/2J [ = [ .It I T ]; )

h,* ~bi j b!b 3(l +A)

,tL*X. =Y~TAN A

"I ' =

cA1 121 +I

Ai4

pti

3 (1 +N)

FIGURE 15 GEOMETRY FOR DETERMINING IMMERSED WING PARAMETERS

58

_ _ _ _ _ _, . .~..-- . . / 1-.;•.-o . ., , , . .4-

Page 67: 416yo 7X7 - DTIC

CASE?2ý," Ž( !2 - 2'Z

SINGLE ENGINE

bi 22

b

IE2

_ bo C oCt212 2 21=

C, -Cf bo,1

'I~~~b* 10 1 +C4C1jsI 2

'•" + •,~I TAN 0''o+s(.• TANAo,+(V,-•'.)TA i o) :

-, ,,( +,o; +• . , 2 ---------- + +[

" +,31) S.

-;.. x*

rI*

FIGURE 16 GEOMETRY FOR DETERMINING IMMERSED WING PARAMETERS (CONT'D) .

59

C~l s,~~~~~~

~ , ,..:+;.++~~~~~~~~~

= -•: I .+ ,+,••.,.••++.

Page 68: 416yo 7X7 - DTIC

CrCr

b/2

(cr -ct) YpIF b*'20.0 Crp Cr - /

IF yp b/2 -b*0i2 C - (Cr Cb/) -vt

* ~(Cb - Ct) (yp- b/2 +1 b'~oMIF yp>b/2- b0/2 Crp =Cb 02

S-'i2 [(bi29 r pIMMERSED AREA FOR TWO ENGIIIES

A*~ 0.um S~.

C1 Crp

FIGURE. 17 GEOMETRY FOR DETERMINING IMMERSED WING PARAMETERS (CONCLUDED)

60

J ~ 4~*

Page 69: 416yo 7X7 - DTIC

-X -

CTAI

T INLET MAh

TAI

Z'J(X+(~cS@~X)SIUZaT CGcS@

Zh z X

FIGUE 1 DEINIIONSKECH O E OERCLUAIN

61x

__ _ _ ___ _ __ _ *

~ ~ MA C

- - ~ ~ , - ~ . ~r-'-- -4

Page 70: 416yo 7X7 - DTIC

3.b GROUND EFFECTS PARAMETERS

Ground effects are only calculated for longitudinal stability results in

the subsonic speed regime. Lifting surface heights that are required by the

Datcom ground effect analyses are defined in Figure 19 and are presented in

equation format as follows:

Equations for Calculating hO;5b,"i

IF r, = 0 ANO (b 2))r 0.25 (b/2) hO.75b,7 h4.75C, , 5X TAN (aj)y

IF F,: 0 AND (b 2)r, > 0.25 (b!2) 0.75b,2 1 ht.75Cr z TAN r. (bi2w- 0.25 (b/7)I +AX TAN (ai w

IF r, 0 ANO (b 7)r,= 0.25 (b'2) ho.75b 2 2 ho.75C, + 0.7,5 " TAN ri+ AX TAN (a N

IF r, #0 AND (b 2)r,~ 0.25 (b,". NO.7$s, *: lt.M + [b/ - (b!7IQ TAN ri +

"b/2)r -OMb/2)l TAN F.,+ AX TAN (ai)e

Equations foc Calculating h

h a l'Z.5Ct + 40.75b/'2) ho.k75C HG + ZV 0.715 t TAN (aiW)

IF r. - AND (b/- • 0.25 (b'2) h * N. 75CC + 0.50 TAN to1~

IFr a 0 AND (bt- 0.25ci (11/7) h 1 +j*0,50 jTAN F@{(b/Pr~ -0.25Mj24. X TANi

IF r1 , IAND (bZir a U.S (bill h a hO7C -01.5 A A m

IF r, 0 AND (b,?ir 0.25 (b/) ha %0.75C, +0.50l1 W2) -k/2IQ .TAN r ,+

0.50 jký - 0.25 (01TAN r. + 0.50 aX TAN ,ij~

Equations for Calculating H

(h". G u 'ZR (7(,)W TAN I. 1V

IF r vi0.AND (r)W,U jh/7 - (b/')r,J 111 (lzI )

IF r, a AND (;,j - b/7 -2r~ WuTý) b(IW~2 ,71TAN r@

I F r $0ANO'(7y~w a t -H- (111~ Nuj,)..W TAN r,

IF r, J @ANI) (jý 10 - (b/2r41 H a Ib,2 - #bY A2I,4 rA + F i-, - (b/24, .b/21 TANr,

62

u ft .& wo w. ... . - " - • . . . . . . ' • " • • e • • - - - e•

Page 71: 416yo 7X7 - DTIC

Equations'for Calculating HH

(er )H= +-• TAN (oi!H

+++~ ~ ~ ~~H +0 2++ 14 (•)i++YH++++IF r1 = 0 AND

oyH - (b

1IF r. = 0 AND 7d b7H- (b?ýOhj)H = V;,4 +CyH + (b, 7* 1011 (b;27HiJ TAN r.

IF r. f 0 AND CdHlb? - (b.ý HH = (h-;- 4+ CriH TAN 1-HI 'H

'F r. i 0 AND -Y()" (,11 - (b.2),I- JH = (hC.4N+ J(b 2)H~ - (b,?Yc. HJTAN r 'H

+lrI~w.+ b2ý O - (b.7)1,1TAN r.H

Ground effect methods require calculation of a planform parameter,4X, in addition to the previously defined ground heights. This param-

eter is shown in Figure 20.

,63

--Lr

O'W

Page 72: 416yo 7X7 - DTIC

AC0.75-0.75C-

"C4 HPPLANEA SA lA

rr

0.75 ( 11/71 .%,

-~ -- - - - - - 0e

, ~ ~~~~~~1/4 CHORD ••.!07b2__.,

Z W

hcr 14 H G ( )WRFho.25Cr

VIEW A-A

GROUND

hO.75 Cl = HEIGHT OF 314 CHORD OF WING ROOT CHORD ABOVE GROUND

= HG + Zw-4.75 Ct TAN (a i) W

hcr 4 = HEIGHT OF l,'4 CHORD OF WING ROOT CHORD ABOVE GROUND

= hO.75Cr + G50 CITAN (a i) W

h0.75 VZ2. " EIGHT OF WING ABOVE GROUND AT 1,14 CHORD OF WING 75%, SEMI-SPAN CHORD

h AVERAGE ý EIGHT ABOVE GROUND OF THE 1/4 CHORD POINT OF WING CHORD AT 75% SEMI-SPAN

AND THE V4 CHORD POINT OF THE W/ING ROOT CHORD.

='C,50 Nh.75 IV2 + hO.75 Cr)

H z HEIGHT OF 1/4 CHORD POINT OF WING MEAN AERODYNAMIC CHORD ABOVE THE GROUND

Hm z HEIGHT OF 1/4 CHORD POINT OF HORIZONTAL TAIL MEAN AERODYNAMIC CHORD ABOVE THE GROUND

FIGURE 19 GROUND EFFECT WING AND TAIL HEIGHTS

. 64

Page 73: 416yo 7X7 - DTIC

Straight Tapered Wing

&X = 0.75Cj -0.75 (b,,?) TAN A'25

Cranked or Double Delta Wing

IF bo/.2 0.25 (b'2) aX= 0.75 Cr - 0.75(b/,2) TAN A2ý

IF b*0,j >025 kbi2) Ax 0.75Cr - TAN A25 b;/2 - 0.25(b/7)1 - TAN A251(b0) -lboI

Straight Tapered Wing. Cranked or Double Delta Wing

~Cr 07 C

I \

.--,..,,--.,-• -- 3/4 ^ 51/4• CHORD- CHORD 1A• CHORD A25 V/2

FIGURE 20 GROUND EFFECTS PLANFORM PARAMETER %X

65

S• - ,- ,. - , -•

Page 74: 416yo 7X7 - DTIC

SECTION 4

INCORPORATION OF METHODS

This section summarizes those methods which were incorporated into

Digital Datcom but were not defined in the Datcom Handbook or involve method

interpretation. Though some of the nythods included are not, in, general,

standard Datcom methods, they permit greater flexibility in using the pro-

gram, and provide output for some parameters which can be closely approxima-

ted or are difficult to obtain experimentally. All of the methods presented

in this section are referenced to Table I of Section I and the Datcom.

Methods, or procedures, not outlined in this section follow the Datcom method

and users should consult the Catcom for method limitations and formulation.

4.1 AIRFOIL SECTION AERODYNAMICS

This section describes a procedure that can be used to obtain the

geometric and aerodynamic section characteristics of virtually any user

defined airfoil section. Its incorporation into Digital. Datcom frees the

user from the labor of calculating those section parameters that were re-

quired inputs, yet allow him the flexibility to alter those parameters for

which he has data.

The Airfoil Section Module, will accept the following user inputs:

o The airfoil section designation

o Section upper and lower cartesian coorainates

o Section mean line'and thickness distribution

By these three methods,, many airfoil sections can be described' and the sec-

tion characteristics calculated.

-Since the Airfoil Section Module (ASN) use's the Mach and Reynolds number

inputs, they must ba defined' in namelist FLTC0N using MACH and RNNUB. How-,

ever, the ASH' uses the unit Reynolds number and 'by implication treats a

section one foot (or meter) in length.

This module. brings together the outstanding features of two separate

studies. -Kinsey ind Bowers (AFFDL-TR-71-87) have'. written a program that

calculates the airfoil coordinates of select NACA designations, then uses the

Weber technique to calculate the section aerodynamic characteristics.

Nieldling of McDonnell Aircraft has written a similar program using the Weber

method, then incorporates additional methods to refine the theoretical

67

_ _. '\

Page 75: 416yo 7X7 - DTIC

TABLE 5 AIRFOIL SECTION MODULE ROUTINE DESCRIPTION

PROGRAM/SUBROUTINE PURPOSE

M5002 (OVERLAY 50,0) MODULE EXECUTIVE PROGRAMINIZ INITIALIZE IOMSECI READ USER INPUTSSECO TRANSFER MODULE OUTPUTSCSLOPE CALCULATE VARIABLE SLOPE FOR SUPERSONIC AIRFOILSXYCORD CALCULATE AIRFOIL SECTION FROM USER INPUTSDELY CALCULATE DATCOM PARAMETER.AY

AIRFOL (OVERLAY (50,1)) MAIN PROGRAM FOR NACA DESIGNATION INPUTSDECODE READ USER INPUT NACA DESIGNATION, DECODECOORO4 CALCULATE 4-DIGIT NACA AIRFOILCOORD4M CALCULATE 4-DIGIT (MODIFIED) NACA AIRFOILCOORO5 CALCULATE 5-DIGIT NACA AIRFOILCOOR05M CALCULATE 5-DIGIT (MODIFIED) NACA AIRFOILCOOROl CALCULATE 1-SERIES NACA AIRFOILCOOROB CALCULATE 5-SERIES NACA AIRFOILCORDSP CALCULATE SUPERSONIC AIRFOIL COORDINATESSLED SIMULTANEOUS LINEAR EQUATION SOLVER

THEORY (OVERLAY (50,2)) MAIN PROGRAM FOR AIRFOIL AERODYNAMICSIDEAL CALCULATE SECTION IDEAL AERODYNAMICSSLOPE CALCULATE LIFT AND MOMENT SLOPESASMINT NON-LINEAR INTERPOLATION ROUTING

MAXCL (OVERLAY (50,3)) CALCULATE VARIABLE CLMAX FOR SECTION

68.

.v .-'CS

* C *.." -* C''

Page 76: 416yo 7X7 - DTIC

predictions. A cross of the two procedures (coordinates of NACA airfoils and

viscous correction from Kinsey and Bowers, and the aerodynamic methods of

Nieldling) yields a program that generates fairly accurate results.

The module is incorporated into Digital Datcom as Overlay 50, and

includes three secondary overlay programs. The routines use the IOM arrays

for data storage so that core size will be kept to a minimum. Table 5

describes each of the 22 module routines and the logic flow of the module. is

presented in Figurees 21 through 24.

4.1.1 Weber's Method

The calculation of the pressure distribution over the surface of

an airfoil in an incompressible inviscid flow is accomplished by use of

the method of singularities. Conformal transformations are used as an

intermediate step in deriving the methods for determining the distributions

of singularities from which the velocity distributions are calculated. The

routine inputs are the airfoil coordinates distributed in any fashion, the

angle of attack, and the Mach number. The airfoil shape is defined by curve

fitting the input coordinates to obtain the airfoil geometry at thirty-two

required points, i.e.; SX = 0.5 (COS e + 1)

e = vn/32 for o<v<32V _

The chord line is obtained by joining the leading and trailing edges

of the airfoil, where the leading edge is defined as the forward most point

so that all points on the airfoil surface have a positive x coordinate.

The airfoil is placed in a uniform stream V at an angle of attack0

relative to the chord line. The velocity V is resolved into compcnents0

parallel and normal to the chord line.

V - V cos aXo 0

V - V sin.zo 0

Combining the results for the parallel and normal flows, the velocity

distribution equation for a,symmetrical airfoil at angle' of attack is

V0 dzsr+J. ( dx'

V(x,z) C a +"2 1 L r dx' x - X

+ (dz/dx)21 [T T .Jx' X - d ]

0

+ sin + 2 z W) dx-'d, 1 - (1 - 2x')

69

pW,- -A '' :',,,. .. , 6

Page 77: 416yo 7X7 - DTIC

OVERLAY

CALL INIZ INITIALIZE I.O.M. ARRAYS TO BE USED

IN-0

FORIN =I.DOWING

IN - N +1IN = 2, 00 HORIZONTAL TAILIN=IN~1IN s3,DOVERTICALTAIL

I IN -4,O3OVENTRALFIN

ITIN>I ALSC IFI E

DEIE

TINFIAC

CSLL CALLE

FIUR 2 ARFILSETIN ODLE XECUTIV ROUTRLNG

(701

STAR CALULATLo m. NEXTXOV*

Page 78: 416yo 7X7 - DTIC

OVERLAY150,1)

=7 CORRS6

FIGUEL2 AIFI SETO ODUL CAAAEINAINLOTN

COOR14 NA O71.

--2* -5

CAL- CAL

CO04 .3 04C0 0

Page 79: 416yo 7X7 - DTIC

OVERLAY150,2)

CALCULATE IDEAL AERODYNAMICCALL PARAMETERSIDEAL aiJ ao. a OL, CLi., Cmc/4

CALLSLOPE CALCULATE Cl a @M=O

(M= 0.0)

I, ICALL MACH LOOP. CALCULATE.SLOPE Cl AT EACH MACH NUMBER INPUT

RETURN

FIGURE 23 AIRFOILSECTION MODULE - SECTION AERODYNAMICS ROUTINE

72 i

, \

Page 80: 416yo 7X7 - DTIC

OVERLAY

(50.3)

ClMAX FIGURE 4.1.1.4-5

(B~ASEIGR)411.-

A' A FIGURE 4.1.1.4-61

A2QIA FIGURE 4.1.1.4-7a

46 CIMAX NOT USED

CIMAX CIMAXBS+A +'A +'63

RETU RN

FIGURE 24 AIRFOIL SECTION MODULE -SECTION MAXIMUM LIFT ROUTINE'

Page 81: 416yo 7X7 - DTIC

V

In the Weber Method certain combinations of the above terms have been rede-

fined as follows:

S(x) W dz dx' (Function for Source Distri-- ~ X X x0 bution in Parallel Flow)

S ( 2 ) dz (Slope of Thickness

dx Distribution)

3 ) f (dz 2z(x') dx' (Functioa for Vortex Dirtri-

((x f 1 (xd x bution in Normal Flow, to

Account for a)

These functions are approximated by sums and products of the airfoil ordi-

nates and certain coeificients which are independent of the section shape

by

N-I N-i() ki() (2)1 (2)

(1) (x)= sw, Zs ( (x = s ZV=Iil

N-I(3) (3) (3)S(3 (x) sv z +sv

V=l' z2 Y-C

The effects of camber on the resulting velocity distribution are

obtained by assuming the camber to be small compared with the chord.

This results in the camber effect being accounted for in the parallel

flow V V cosc only.xo 0

The Vortex Distribution, V(X), 'on the chord line which produces a

given velocity normal to the chord 'line and which si zero at the trailing

edge is

Y(x (4) S(4)(x (Vortex Distribution due to2VxO ), =4z (x) Camber)2Vxo s z s

VV V

74 1.

-/ " I "No .4

Page 82: 416yo 7X7 - DTIC

The total velccity Vx(x,o) on the chord line for an airfoil with camber and

incidence is

V (x,O) = V eosa 1 + SM(x) + S(4)(x

+ V 0sin a ; -x [i + S(3)((x

with the + sign being for the upper surface and the - sign for the lower

surface.

The resulting velocity distribution at the airfoil surface is computed

using

dz (x)

S(5)(x) W x (Slope of Camber Line)dx

where V(x) cosa [1 + W;+lS(x) + S(4')(X sina/1 x i + (3) (xITo xa1 + (2)(x) + S(5)x1 2

which is the complete expression for an arbitrary airfoil at angle of attack

in an ideal flow. The S( 4 )(X) and S( 5 ) (X) terms are computed by approxima-

tion. The pressure coefficient is obtained by

(4) xx ]cos a + S (1)(x) + S((x ) s+ n 2 + S (3)(x

C 1l

1 + [S(2) (x) + (

75

,, _~~~'~ . ' • _ • : •. ' :• " . - - : - •• < .

Page 83: 416yo 7X7 - DTIC

The term I - S( 1 )(x) + S(4)(x) accounts for the vorticles beirig puL into

a flow with velocity V (1 ,+ S (x) + S()x)) instead of V * The term0 0

(1 + S( 3 )(x)) accounts tor the difterences in the vortex distribution between(1) (5) 2

the thick and thin wing. The term 1/ 11 + IS (x) + S (x)2 I is the cor-

rection between velocities on the chord l1ine and on the surface.

4.1.. Compressibility Correction and Integration

The effects of' compressibility are accoun,'.=A for in Weber's Method by

the application of compressibility factors to the Velocity distribution

contributions due to thickness and camber, respectively.

= - ) - + ( ) ) -

c 1 . (S-3 = :" 1 - C:•" ))o o P i

The velocity distribution in compressible flc- is then given by

S(I s(• ina S~i X1 -- - --

IAe compressible pressure coefficient from the compresible form of

Bernoulli's equation is

The airfoil lift, axia'l torce and pitching moment are computed froa thhe

compressible and incompressible solutions In'the following 2nner

Set Ix ,,,

"0 f

.where

f i

Page 84: 416yo 7X7 - DTIC

Therefore trapezoidal rule

ct, (:0 -- • I x sin 9. + Ix s.in O - x s n

)0 -CLC)r i.. Kl. 2 IL,

Similarly N v 2 iv]

( () (2)r) = : (")' (S (x) + S (x)) - c (00 (S W(x)

CA ('I) P (

.... ... ( ........ +r2 C'(M

4K11 I '2

77~ 2 L I-4.1.j Ideal Parameters

The ideal parameters are obtained from thirn atrtoil theory, which

in effect means results are obtained for tre meanline characteristics Inman

incompressibie inviscid flow. The ideal angle of attack '. is obtained fromI

l l-2x

r

However, at the leadi'ng and trailing edges the equation Is undefined and

increi~ents in the vicinity of the leading and trailing edges must be deter-

mined, in addition to the Integration over the interior piortion of the

iird.

77 ...

. . - ;#--'., L I I L

IT..

Page 85: 416yo 7X7 - DTIC

l% a -. 3739 z + 04745dzSIxx = .9619 1~

x - .9619 tox = 1.0

resulting in

Ai=57.3 + Aa. + A~iAti5x=7 to x=.0381 to x=.9619 to]x -. 0381 x-. 9 6 19 x=1.0

The angle of attack for zero lift is obtained in a similar manner1

01. = z If • (1-x)• l-] dx

with o

OL. -. 7834 7 + dzx

x-.9619 to x=.961d x-l.Ox1l.O

The total value is given by 0!. ]aOL - [aOL + a• , OL •01.

x-.9619 to x-O tox-1.0 x-.9619

The ideal lift coetficient is now simply

C 2 - [i + aOL57.3

The pitching moment about the quarter chord is

7r)

2os O + CSo QOL'C2, 90 57.3 2,, N u 72

78j

. . . . . . . . . .. '.

Page 86: 416yo 7X7 - DTIC

4.1.4 Crest Critical Mach Number

The crest critical Mach number is precisely defined as that free stream

Mach number for which local sonic flow is first reached at the airfoil

surface crest on the assumption of shock free flow. Its significance is

founded on its relation to the drag rise Mach number. Various empirical

studies have been aimed at finding the critical pressure ratio at the crest

which corresponds to a drag rise in the test data. Nitzberg (NACA KMA9G2U)

proposed a critical pressure ratio for drag rise of

PCREST/PTOTAL = U-5283

which corresponds to a crest Mach number of M 1.0. Sinnot (RAS TDM-b4U7)

proposed the ratio

PCREST/PTOTAL - . 515

which corresponds to a Mach number at the crest of M - 1.02 and which corre-

lates better with drag-rise data. Sinnot's value is used in the Airfoil

Section Module, thus the crest critical Mach number corresponds to a local

flow at Mach 1.02 at the crest rather than sonic conditions. The relation-

ship between the crest pressure and crest critical Mach number is

0.515(1 + 0.2 M 2 3

SO. 7 F M 2 c

cc

where

F - C + 1/2 (1 Pcc)Cl PCREST

M c CREST CRITICAl. MAC:;

C = INCO!,1PRESSIBLE VALUEPCREST

79

Page 87: 416yo 7X7 - DTIC

Rewritten so that MCC is a function of CpCREST, the relation is approxi-

mated by"Mcc- [12 .90 CpRT 414 CpRS • 1.061-

[1.023 - 9507 414 - 1506 CpaREST - .0212 Cp&RESTJ

The crest location for each angle of attack is determined by comparing

the airfoil surface slope for each x location to tangent a. The final

location is obtained by interpolating between the two'given x locations whose

airfoil slopes bracket the tangent a value. The CPCREST value is obtained

by interpolation of the Weber incompressible pressure distribution between

the two x values surrounding XCREST. The crest critical lift coefficient

is obtained using the' Karman-Tsien compressibility rule on the M = 0 Inte-

grated Weber lift coefficient.

C cc '

"cc CL(M)Ilc - I---

where, CL(M) = CL for M U.

No specific boundary layer correction is used. However, the Datcom

recommends a 5Z correction factor to bring the reaults in line with experi-

mental data, and the yiscous correction of section lift curve slope proposed

by Kinsey and Bowers (Appendix B, Volume ) has been incorporated.

80

- . . .7. . ... .. . .

Page 88: 416yo 7X7 - DTIC

4.2 TRANSONIC WING CL FAIRING, TRANSONIC WING X., FAIRING, and TRANSONIC

WING C1 FAIRING

Datcom wing methods in the transonic Mach regime calculate aerodynamic

parameters only at specific Mach numbers. Data at the requested Mach number

is then determined by interpolation. This approach is used for the wing

lift curve slope (CL ), wave drag (CD.), and aerodynamic center (Xac).

Nonlinear fairings for each of these parameters are discussed in the follow-

ing paragraphs.

4.2.1 Transonic Fairings of Wing. CI

Wing lift curve slope,, CL , is calculated in subroutine TRSONI, overlay

24. The. same methods are used for the horizontal tail in subroutine TRSONJ,

also in overlay 24.

Datcom section 4.1.3.2 defines the methods for calculation of CL at

five discrete Mach numbers from 0.b to 1.4. Values at Mach 0.6 and 1.4 ure

the subsonic and supersonic methods, respectively. The routine used to fair

this curve is a modified version of subroutine ASMINT used in the Airfoil'

Section Module, overlay 50. To ensure a smooth continuous interpolation, a

curve is constructed by fitting the points by a left-hand parabola joined to

a series of cubic curves, and finally a right-hand parabola. This technique

yields a function which has continuous derivatives everywhere. The slope

of the curve at subsonic Mach numbers is obtained by differentiating the

equation on Datccm page 4.1.3.2-49 with respect to Mach number. At Mach 1.4

th0 slope is found by calculating values at Mach 1.3, 1.4 and 1.5 and assum-

ing a curve of the form:

CL A + b/l + C/82

Subsonic methods are used to Mach 0.75, or 0.1 less than the force break

Mach nuwber (Mfb), whichever is smaller, and transonic fairings are initiated

at that point.

Subroutines TRANWG and TRANHT are used to calculate CL, at Mach 1.3,

1.4, and 1.5 and return CL, and its slope at Mach 1.4. Subroutines TRS0NI

and TRSONJ calculate CL using the subsonic equation if the Mach number

is less than 0.75 (or Mfb - 0.1), calculate the slope of the subsonic CL,

curve at Mach 0.75, and call the new fairing routine if the Mach number if

g:eater rhan 0.75.

81

Page 89: 416yo 7X7 - DTIC

4.2.2 Transonic Fairing of Wing CnW

The wing wave drag, CDw, is calculated in subroutines TRSONI and TRSONJ,

overlay 24, for the wing and horizontal tail, respectively. The method is

given in Datcom section 4.1.5.1.

Digital Datcom performs a linear interpolation of Datc.om Figure 4.1.5.1-

29 at fifteen discrete Mach numbers to determine the variation of C . Non-

linear interpolations of this curve are performed as required at te user

defined Mach numbers using the fairing routine developed for wing CL . Two

additional constraints were applied to perform this fairing.

a. If the linear slope to the left or right of a given point, except

the end points, is less than UNUSED, (10"60 on CDC computers), the

slope at that point is set to zero.

b. Any computed value less than zero is set to zero.

Within the fairing routine, the number of points in the curve is used to

discriminate between a fairing of CD and CL .

4.2.3 Transonic Fairings of Wing Aerodynamic Center

Aerodynamic center, Xac, is calculated in subroutine's TRANCM and

TRHTCM, overlay 25, for the wing and horizontal tail, respectively.

Dattom section 4.1.4.2 defines the method for calculation of X atac

six discrete Mach numbers from 0.6 to 1.4. Values at 0.6 and 1.4 are deter-

mined using the subsonic and supersonic methods, respectively; the remaining

four points are obtained from Datcom Figure 4.1.4.2-30 corrcsponding to

V - -2, -1, 0 and +1. If the thickness ratio is less than or equal to 7%,

these data are interpolated for the aerodynamic center. If the thickness

ratio is greater than 7%, the curve is defined using points which are a func-

tion of the force break Mach number, Mfb. An increment to the aerodynamic

center is found from Datcom Figure 4.1.4.2-33'and applied at the fifth point

(Mfb +0.07) and the resulting curve is then interpolated for the aerodynamic

center. The following table summarizes the interpolation table:

82

.....

Page 90: 416yo 7X7 - DTIC

Using Six Points Using Eight Pointst/c < 7% t/c > 7%

M1 0.60 0.60

M2 H for V - -2 (0. 6 0+Mfb)/ 2

M3 M for V --1 Mfb

M4 M for - 0 Mfb + 0.03

M5 M forV - +I Mfb + 0.07

M6 1.40 Mfb + 0.14

M7 - M for V -'+I

M8 - 1.4

The interpolation routine used is similar to the routine. used for CL and CD

(Sections 4.2.1 and 4.2.2).

4.3 TRANSONIC WING CL , TRANSONIC WING CD, TRANSONIC WING-BODY-TA LC ±4.NSNI TRANSONWIIC

TRANSONIC WING-BODY-TAIL C,_TRANSONIC NG C , and TRANSONIC WIN8-

BODY C

This section describes those methods used to compute the transonic con-

figuration aerodynamics using Second Level Methods, and are summarized in

Table 6. Additionally, the partial output is described.

4.3.1 Transonic Wing Lift Coefficient, C

The wing lift curve versus angle of attack id programmed in subroutine

WINGCL. The method described in Datcom section 4.143.3 is used as a guide to

produce trends and is not construed to be an exact methodof solution. Since

the method is an approximate 'one, the following procedure was employed to

produce the wing lift characteristics applicable io thin, low aspect ratio

wings:

1. The required experimental data inputs by tht user are a (zeroo

lift angle of attack) and a* (the angle of attack where the lift

becomes nonlinear).

2. The lift variation is assumed to 'be linear up to a*, and nonlinear

to a (maximum lift angle of attack).•CL

max

83

Page 91: 416yo 7X7 - DTIC

TABLE 6 PROGRAMMED TRANS3ONIC SECOND LEVEL METHODS SUMMARY

DATCOM AERODYNAMIC SUBROIl INE EXPERIMENTAL DATA PARTIAL OUTPUTSECTION PARAMETER CONFIGURATION PROGRAMMED INPUT REQUIRED AVAILABLE

4.1.3.3 CL WINGS WINGCL a.. a. a., a,

4.1.5.2 Crk WINGS WINGCL CL OR %, a. CDL/CL2

5.1.2.1 Cfý WINGS WINGCL CL OR %, a. CIO /CL

5.2.2.1 C WING-BODY WBCLB CL CI//CL

4.5.3.2 CD WING-BODY-TAIL COWBT CDWB (NONE)

CDH

cLH

q/q

C)oV OR CDoWBT*

4.5.3.1 CO0 WING-BODY-TAIL WBTCDO ITYPE (TYPE OF MDGENERAL CONFIGUR-ATIONi)

*CDoWBT IS AVAILABLE FROM THE SECOND LEVEL ROUTINE OF DA COM, SECTION 4.5.3.1,

SUBROUTINE WBTCDO.

84

Za:

Page 92: 416yo 7X7 - DTIC

3. The nonlinear lift region is modeled by a mathematical relationship

that satisfies the following conditions:

c L =c L at a CLmmax

C L = C L 0•,-• at •=•

dCCLL

= C

at "mI 1

* dCL

=0 atd ,i CLmax

A modified polynomial of the form

y A + B(X-X) + C(X-X )Ny0

is utilized to satisfy each of the boundary conditions and yield a cucve

somewhat parabolic in shape. This relationship has provided excellent

results in modeling the nonlinear lift range. Derivation of the unknowns A,

B, C and N is described in Section 4.3.7.

Two other user options are available from the routine; (a) the user

may input only a 0 or (b) the user inputs only a,. Since both a0 and a

are required to estimate the lift variation by the preceding technique, the

subroutine will provide an estimate for the missing parameter from a qua-

dratic expression. Specifically, a quadratic polynomial can be faired

through the nonlinear lift region if a* is an unknown. 'Applying the gener-

alized boundary conditions to a polynomial of order two, and solving for a*

will yield an estimate for this unknown. Conversely, if a is not input, it0

can be determined in a similar manner.

85

i C2I,- _t

Page 93: 416yo 7X7 - DTIC

The relationships used are as follows:

1. -a ,not inp';t CL

01 =a + 2[o -a C + max

Lmax max ot

2. ao not input

L ,- C

a o Cm a + 2 amax, L

If neither a 0 nor •, 'are user inputs, no solution is possible, but

the program calculated values for CL I CL and aC areci max L

available as partial output. max

4.3.2 Transonic Wing Drag due to Lift, C€L 2a

The programmed procedure for computing the ratio CD /CL is exactly asI' " L

described in Datcom section 4.1.5.2. The method does a three dimensional

table lookup for Figure 4.1.5.2-55a (A tan (ALE) 0) and for Figure

4.1.5.2-55b (A tan(ALE) - 3). Figure 4.1.5.2-55c shows a linear relation-

ship of the dependent variable (t/c)- 1 / 3 CDL/CL 2 as a function of the tran-

sonic similarity parameter A tan (ALE) for each value of the ratio (M2 -

)/(t/C)2/41; it was assumed that this linear relationship would hold for

all other taper ratios other than 0.50. Therefore, linear extrapolations on

all varibles would be performed if required.

This method was programmed in subroutine WINGCL with the calculation

,for wing CL. Since CL is required to calculate CDL, the calculation

of wing CL would enable the calculation of this parameter if CL is not

input as experimental data. The routine will not overwrite experimental data

input, and thus the user oriented, features are retained.

The ritio CDL/CL2 is available from the routine and will be output

for user reference if CDL cannot be calculated.

4.3.3 Transonic Wing Roll Derivative, Cq

Like the wing CDL calculation described, the method of Datcom Section

5.1.2.1 requires wing lift to calculate from the relationship C a/CL',

equation 5.1.2.1-c. Thus, this method is Also programmed in subroutine

WINGCL.. The calculated value f.;: C, will not overwrite any experimental

86

•-

Page 94: 416yo 7X7 - DTIC

data input. The ratio C2 /CL is provided if the calculation for C. cannot

be completed. No exceptions are taken for the Datcom method. The ratio.

C, /CL at Mach numbers 0.6 and 1.4 are obtained by calling the subsonic

and supersonic aerodynamic modules.

4.3.4 Transonic Wing-Body Roll Derivative, C

The derivative C, will be calculated by Datcom equation 5.2..2.1-d if

the wing-body lift coefficient variation with angle of attack is supplied, or

computed as described above. The ratio C /CL is given as partial output

if the lift variation is not sjx-cified. This method is implemented exactly

as described in Datcom and is programmed in subroutine WBCLB. Since Ct /

CL at Mfb and Mach 1.4 are required input items for this method, they are

calculated by calling the appropriate aerodynamic modules.

4.3.5 Transonic Wing-Body-Tail Drag Coefficient, CD

This method is a "method for all speeds" as described in Datcomm Section

4.5.3.2, and is incorporated in exactly the same manner as presently pro-

grammed for the subsonic solution. This method, as programmed in subroutine

CDWBT, require the following experimental data inputs:

1. CDwS vs angle of attack-. CD vs angle of attack

3. CLH vs angle of attack

4. q/qC vs angle of attack

5. f vs angle of attack

6. CDoV or CDowBT

If CDoV is not an experimental data input item, the program will

calculate it from the estimated CDowBT calculated as follows:

CDov CDowBT - CDowB - CDOHNo partial output is available from this method.

4.3.6 Transonic Wing-Body-Tail Zero Lift Drag Coefficient, CDo,

This method follows exactly the method of Datcom section 4.5.3.1,

and is programmed as subroutine WBTCDO; This routine does not require

experimental data input, although experimental data input is an optional

feature for this routine.

87

87,.i

...........................

Page 95: 416yo 7X7 - DTIC

Utilizing appropiate configuration description parameters the pro;3am

computes the drag divergence Mach number, MU, from Figure 4.5.3A1-19. The

experimental data input allows the user, at his option, to select ýhe type of

general configuration to be used in computing MD. The three options

are,:

o A - Straight wing designs without area rule.

o B - Swept wing designs without area rule.

o C - Swept wing designs incorporating transonic area rule theory.

The program default options are as follows:

"o No wing sweep - General Configuration A

"o Swept wing, configuration type not defined - General Configuration B

The general configuration types are defined by the parameter ITYPE,

where ITYPE=1 for. configuration type 'A, ITYPE=2 for configuration type

B, and ITYPE=3 for type C. In the case of configuration type C, the line

for type C, in Figuie 4.5.3.1-19, was linearly extrapolated and programmed.

All extrapolations in this figure, with the exception of thickness ratio, are

assumed to be linear; thickness ratio is extrapolated in a quadracic fashion.

With MD calculated from Figure 4.5.3.1-19, it is necessary to fair the

curve across the transonic Mach regime. The followiag criteria wasCDo

used to fair the curve:

dCDo1. ~j-=o, ooM=MD

dM MD2. CDo =CDoM=.7 e 002 @ M H

4., O C0= CDoM=1

d@ .3

A polynomial fairing of the same type as used for the wing nonlinear

lift coefficient is used here and has 'shown acceptable results.

The values of CD at Mach .7 and 1.1 for this method are obtained by

calling the subsonic and supersonic aerodynamic modules.

88

Page 96: 416yo 7X7 - DTIC

4.3.7 Data Fairing Technique

The 'data fairing technique used for computing the nonlinear lift region

of transonic wings and the transonic wing-body-tail zero lift drag co'.f-

ficient was chosen for its powerful features and ease of application.

The general fairing formula is a polynomial whose form is:

y A + B(X-Xo) + C(X-Xo)N

where A, H, C and N are, unknowns. Given the values of y and dy/dx at two

points, X 0 and XI, four simultaneous equations can be written. These

equations solved simultaneously for the four unknowns yield the following

results:

A-= y

B = d- @ '(=X'dx X0 "

Y [ YO a ' (Xl -xO )

Cdx x0 ( 1- 0

(X x- 0N

y ~y() Y dx )Y (XI - X0)

The -generalI equat ion reduces to

~' ~0 +dx X0 + 0 0 y x (X1 - 0 \X1 X0 x 0 10, xI

This equation is valid for X0 < X < XI and (dy/dx)x 0 • (dy/dx)Xl.

Neither of these conditions is violated in this application. The range of

values of X will always fall between X0 and X1 bepause of the program

logic, and in the nonlinear lift region the slopes at X0 and X1 will

never be equal. For the transonic wing-body-tail CD versus Mach0

fairing the Datecom relation (dCD /dM) 0.10 at M-MD.

89

Page 97: 416yo 7X7 - DTIC

4.4 SUBSONIC WING Cm, SUBSONIC AND SUPERSONIC WING AERODYNAMIC CENTER• SUB-

SONIC WING-BODY Cmand SUBSONIC WING-BODY-TAIL Cm

The subsonic wing pitching moment variation with angle of attack

follows Datcom Method I of Section 4.1.4.3, and is programmed in subroutine

CMALPH. The method is applicable to those configurations whose wing aspect

ratio satisfies the following criteriai

A f6 ("LOW ASPECT RATIO")(1+C 1 COS A LE

For "high aspect ratio" configurations, the default wing aerodynamic

center is either the quarter-chord of the wing mean aerodynamic chord,

or the user input value (variable name XAC in. the planform section charac-

teristics namelists). This value is used in computing pitching moment for

the wing tip to the angle of attack where the wing lift deviates by more than

7.5% from the linear value; at this point the method is no longer valid.

There are no methods in Datcom or Digital Datcom for supersonic wing

pitching moment, though the wing'XAC is estimated to be at the wing plan-

form centroid for unswept leading edges, and computed using the method and

design charts of Datcom section 4.1.4.2 for other surfaces. These supersonic

data are computed in subroutine SUPLNG.

There is no Datcom method for computing the wing-body pitching moment in

any Mach regime. Digital Datcom, however, computes the subsonic wing-body

pitching moment using the following formulation (programmed in subroutines

WBCMO and WBCM):

o Compute (Cmo)WB from regression formulation of Datcom Section

4.3.2.1, programmed in WBCMO. If the method is not applicable,

(Cmo)WB is computed from Method 1.

o Compute the wing-body aerodynamic center from Datcom Section 4.3.2.2

(WBCM), where Equation 4.3.2.2-a is used at all speeds.

o The wing-body C. curve is then computed as

SIB~~ CC+ 3CMW C OB+ C CL+ MCD

90

Page 98: 416yo 7X7 - DTIC

where CmCL is the pitching moment due to lift obtained by integr;-

ting the curve of XAC versus CL from CL - 0 and to CL at the desired

angle of attack, and CmC is the pitching moment due to wing-body drag

located at ZAC.

Subsonic wing-body-tail pitching moment versu- angle of attack is

computed by Digital Datcom in subroutine WBTAIL, though there is no Datcom

method for this parameter. The method formulation used is as follows:

CLj = CL - CLjiH j WBT j WB

C W Cmj) W + (q/q () a r ( C o (a)L

Cmj WBT (jWB(.)H+L H

+(cD) (q/q 00 )j SI N (a)] +(D( H L (q/ 0 ) COS(

r

-(C )L SIN (0)j

4.5 TRANSONIC BODY CL FAIRING AND TRANS NIC BODY CM FAIRING

The transonic CL, and Cm. derivat ves for the body alone configura-

ti.on is interpolated linearly between th subsonic (M - 0.60) and supersonic

(M - 1.40) Mach regimes in subrcutine B0D RT.

91

Page 99: 416yo 7X7 - DTIC

4.6 SUBSONIC ASYMMETRICAL BODY CL, SUBSONIC ASYMMERICAL BODY CMO

Cm, AND SUBSONIC ASYMMETRICAL BODY CDn, CD

Digital Datcom body solutions generally include lift, drag, and pitching

moment coefficients. In the transonic speed regime the solutions are re-

stricted to lift and pitching moment slopes, and drag coefficients.

4.6.1 Subsonic Bodies

Subsonic body analysis computes lift, drag, and pitching moment coef-

ficients for either axisymmetric or cambered bodies. Digital Datcom body

methods are identical to Datcom except for the base drag. Digital Datcom

calculates base drag using a minimum base area equal to 30% of the body

maximum cross-sectional area.

The cambered body pitching moment method is not defined in Datcom

and is therefore deqcribed in detail. For clarity, the lift method, which is

defined in Datcom, is also described. These body methods (subroutine

BODUPT) are executed when the parameters ZU and ZL are user specified

(namelist BODY). The method predicts the zero lift angle of attack,

zero lift pitching moment, and body lift and pitching moment versus angle of

attack. The Datcom drag methods are retained.

Zero lift angle of attack and pitching moment are calculated utilizing

conventional mean line theory. The equations are:

0O.95 1a -57.3 Z'0 = 7 d(X/T.), degrees

of L [(-X/L) [X/L - (X/L)21 1/2

C 0 2.0O Z [ 1[2.0 x X/L d (X/L)

0L X/L - (X/Q)2]1/2

92 •

Page 100: 416yo 7X7 - DTIC

These parameters are defined in Figure 25.

Lift and moment for asymmetric bodies are calculated by employing a

modified version of Polhamus's leading-edge suction analogy (References

2 and 3). Polhamus considers two components of lift, a potential flow

term, CLp, and a vortex-lift term CLV. Both of these terms are a

function of body aspect rAtio (A) and are defined as follows:

CL - CLp +. OV

CLp Kp sin a cosZ a

CLV = KV sin2 acos

- angle of- attack

Kp and KV are obtained from Figuee 26.

The Polhamus vortex lift equation ..ist be modified to make it applicable

to thick bodies because Lhe o-sC-L of vortex lift for such configurations is

not at zero angle of attack i it is with flat plate wings. The thick body

angle of attack for on!;et of vortex lift (av) can be correlated with the

fineness ratio (FR) ,-nd tae thickness ratio (TR) of the body as shown in

Figure 27a. 'The body thickness parameters are shown in Figure 27b. Experi-

mental data used in correlation are presented in References 4 through 7. The

redefired lift expressions for thick bodies are as follows:

CLp Kp sin a cos 2

C'LV 1 KV sin2 (' -•V) cos V)

C'L CLp + C'LV

The body pitching moment is obtained by estimating the center-of-

pressure locations of both the, potential- and vortex lift components.

The total pitching moment is equal to the sum of the moments produced

by the lift, forces acting at their respective center-of-pressure loca-

tions plus the zero lift pitching moment. The potential lift center-of-

pressure location employed stems from slender body theory and is presented inFigure 28 as a function of n. The equation for the powerla4 planform is of

the form R * Rmax (X/L)n. The program computes an exponent n that closelyapproximates the input planform area. The potential lift center-of-pressure

location is obtained from Figure 28 or the equation,

Xcp/L = 2n/(2n+l)

93

• , \\

Page 101: 416yo 7X7 - DTIC

LZ

Z*=ZNIOPOINT-ZCHMR

SIDE VIEW (Xi VALUES SHIFTED TO BODY NIOSE)

FIGURE 25 ASYMMETRIC BODY GEOMETRY INPUTS

1 2 3,4 10 1 .2 3 4A A

ASPECT RATIO' ASPECT RATIO

OATCOM FIGURE 4.2.1.2-38& OATCOM FIGURE 4.2LI.2-36b

FIGURE 26 POTENTIAL AND VORTEX LIFT COMPONENTS

94

Page 102: 416yo 7X7 - DTIC

20

uj

i I,--

0 5 111FINENESS RATIO - FR

0ATCOM FIGURE 4.2.1.2-37

FIGURE 27a CORRELATION OF aV

BODY PLANFORMl

LF

F INENE SS R ATIO - FRdTHINENESS RATIO - FR

ZRz

FIGURE 27b BODY THICKNESS PARAMETERS

95

Page 103: 416yo 7X7 - DTIC

Rmax POWER LAW PLANFORM

~~I-a ~ SLENDER BODY THEORY'-_________

0.6

.1.

POWER BODY EXPONENT -n

FIGURE 28 POTENTIAL LIFT CENTER OF PRESSURE

96

I,. _ _

Page 104: 416yo 7X7 - DTIC

Vortex lift center of pressure is assumed to be located at the total planform

centroid of area. The equation for the body pitching moment coefficient is:

Cm - CMO + Crp + CMV

Cmp %€p (xCG XCp)/L

CMv CNv (XCG - X)/L

where X is the location of the total planform center of area measured from

the body nose. The method.is applicable at angles of attack equal to or

greater than the wing maximum lift angle of attack.

4.b.2 Transonic Bodies

Digital Datcom body solutions are restricted to lift and pitching

moment'slopes, and drag coefficients in the transonic speed regime. These

data are computed.by performing a linear interpolation between the subsonic

(M - 0.60) and supersonic (M - 1.4) Mach regimes.

Subroutines that implement the transonic body methods are B0DYRT,

SUPBOD, TRSONI, and TRSONJ.

4.b.3 Supersonic Bodies

Supersonic body analysis provides solutions for lift, drag and pitching

moment coefficients. Datcom methods for lift, pitching moment slope,

and drag coefficient require the body to be synthesized from a combina-

tion of body components comprised of a nose, after-body, and/or taii seg-

ments. Digital Datcom requires synthesized body configurations to be either

nose alone, nose-after body, nose-after body-tail, or nose-tail segment

combinations.

Some of the Datcom body drag merhits in this speed regime have not been

implemented in Digital Datcom. The effects of blunted noses on drag are not

incorporated since the body lift and pitching moment methods do not ref lecc

the influences of this parameter. Some of the Datcom interference drag

methods are also deleted. In this case,.the methods were omitted because 'of

their limited range of applicability.

Calculation of wing-body, or horizontal tail-body, stability requires

the lift curve slope of the body ahead of the'wing or horizontal -tail. Body

CN methods are executed for the portion of the body ahead of the wing, if

the wing is present; the portion: of the body ahead of the horizontal tail, if

the horizontal tail is present; and entire body.

97

Page 105: 416yo 7X7 - DTIC

All methods are implemented by subroutine SUPB0D except for a portion

of the drag methods contained in subroutine FIG26.

4.b.4 Hypersonic Bodies

Hypersonic body analysis is performed at user designated. Mach numbers

that are equal or greater than 1.4. In this speed regime, Digital Datcom

stability solutions include lift, drag and pitching moment coefficients.

Hypersonic body analyses for lift and pitching moment slopes and drag

coefficients, like the supersonic body methods, require the body to be

synthesized from a combination of body segments. Hypersonic body analysis is

unlike the other Datcom hypersonic configuration analyses since the methods

are defined independent of the supersonic results. Body CN, for portions

of the body ahead of the wing and/or horizontal tail are also calculated.

The methods are implemented in subroutine HYPBOD. A small portion

of the drag methoas are found in subroutine FIG26.

.4.7 TRANSONIC WING-BODY CL

The transonic wing-body lift coefficient, if not input using name-

list EXPR-, is computed in subroutine WBCLB using the following equations:

C1" (C )( (a)

•WB [%(B),+KB(W) La 4 ,

L jW

SB(W)

+ [kW(B) + B(W)] CL,

98

Page 106: 416yo 7X7 - DTIC

In computing the transonic wing-body pitching moc .nt slope,. the center

of pressure of body-wing carryover is linearly interpolated between the

values obtained at Mach 0.60 and Mach 1.40 in subroutine TRANCM.

4.8 WING-BODY-TAIL MOVEABLE HORIZONTAL TAIL TRIM

Tne dil moveable horizontal tail incidence required to trim the vehicle

(CMC.G" - U) at angle of attack is calculated in subroutine TRIMR2. At

trim, the forces on the tail are CLH and CDH (trimmed lift an- drag),,

and are referenced to the local flow at a tail angle of attack of ( a- fH)-

Since these trimmed forces are located at the tail aerodynamic center, which

is known, the total body moments can be summed as follows:

"qH [AXAc AZAc ( )lC + C" " C - AC Cos (-x-C + H) sin (a-

MWB "OH q L H qX cH W;H

C ! [ZAC cos (a-) - sin (a-ek 00 H % H -

CDH can be expressed as

(CLH)2

CDH CDO + HA eH

Hence, the only unknown is CLH, the tail lift at trim, which can be

evaluated. From Sketch (a) note that

99 9

'.. y ' - f .4 4' L

M m'mn I I I "- "I I- l m u

Page 107: 416yo 7X7 - DTIC

a ACLtrim

Disneorme~.t nurer-hr on g. oiotLsaiie A

LAngllae defined yitreto of attacithkR (positive as shown)

with horizontal stabilizer above c.g.)

Sketch (a)

100

. . ...... .. .. ... ....

Page 108: 416yo 7X7 - DTIC

AX x

Aac XH

Thus,

A)ac Co ac AZac (-(eH) +-T. sinl aH)

- I Cos Q2 Cos (aE)+ sin ýi sin (i-;E H)l

cw

- H Cos a E EH)

cw

"'cCos (a~ac -~sin (a-E)

cw c w

[ H sin a co s cos cHsi (a-C H)]

s i X Hl ( z- + EH )

iOl

Page 109: 416yo 7X7 - DTIC

The moment equation reduces to

q H qH XHC- COSL( q + H)

(CLH) H H XHH 7ACD HAe AH q. W in ( - + LHI -0

Letting 6 = a- + cH and re-arranging yields a quadratic on CLH.

~ XH 6(CLH) 2qH XH sin 6q. C- rAHeH

wqH XH

Cos 6 (CLH)• = CwH

+ C sin6+C H 0ODOH qr¶ CW MW +CMoq

Simplifying,

.. tan .'6 (CL )2 C + C tan 6 + C MwB ; MOHC + CMoH

AHe H "H CLH CDOH qt' XH =x0•Cos

From the, quadratic formula,

q Hw[ iC + Hi

1 + [1- 4 ta 6!A 1C tand6 Mw CMO q.ir TH e H DI OH 9H XH

L JL ~ - Cos

102

Page 110: 416yo 7X7 - DTIC

In this form, the equation becomes invalid for - 0, and can be further

reduced to

q

H qHB + C MOHHcos

C 2 - H q H Cc:DOH ]a OHCCq

LH q H

F1 -4 tan6 MWB 'MOIH tanCo . Co

A plus sign in front of the radical is the valid solution, otherwise at

6 0 the solution is undefined. This result is similar to Datcom equation

4.5.3.2-e, with the exception of the term "CmOH qH/q=-"

Once the tail lift at trim (CLH) has been determined, a variation

of Datcom equation 4.5.1.2-a can be used to calculate the tail incidence

cH.

C L H q~ (K H(B) + KB (H))HH

+CL.. (a)[k H(B) k B(H)]

(H(b/2 " b*/) C '

+ IVB(H) raV (b/' 2 ) aL effH •H

where CLH is the pseudo lift-curve-slope of the horizontal tail in the

presence of the body,

CL* CL (KH(B) + KB(H))H aH

103

_ ___

Page 111: 416yo 7X7 - DTIC

CLU and CL. are the horizontal tail lift and lift curve slope at

(l - CH + ctOH)and aeff is the effective angle of attack of the horizontal tail in the

presence of the body .+

eff = "-CH + 'OH + 'lH(" KR•B) +

The incidence angle to trim can, then be solved directly, and becomes

CL \H(B) + KBH) L' + C' OH /2aLH HýH E( . ,~ H ]

(B(H) + k H(B))[L' + IVBH . /2 b/ ) C(L Ha H VB(H) U• H ' b72 t

Once the tail lift and drag at trim has been" computed the panel hinge

moment about the pivot point can also be computed. Since CL,, and CDH are

are referenced to the local flow, they must be computed relative to the

freestream flow. Relative to Voo, trim lift and drag are

CL = (CL Co's C- C sn )HTRIM HT HT

'2

CD H 0 , (C7LHeHTRIM HH

The pitching moment trimmed is

! H

CM C [ Cos ]+ CD sin siHTRIM H TRIM WH TR IM ;

The hinge moment about the pivot point is

CHM [CL Cos a + DHTRIM sin

104

Page 112: 416yo 7X7 - DTIC

4.9 WING-BODY-TAIL TRIM WITH CONTROL DEVICES

Configuration trim with wing or horizontal tail control devices is

performed in subroutine TRIMRT. The method programmed, which is not a

Datcom method, essentially does a table look-up of the control device

incremental pitching moment coefficient versus control deflection for

the deflection required to trim. The incremental lift coefficient and

drag coefficient ire then obtained by performing table look-ups for these

variables (which are a function of control deflection aagle) at the trimmed

control deflection.

4.10 STANDARD ATMOSPHERE MODEL

Incorpozation of a standard atmosphere model. (subrodtine ATMOS) into

Digital Datcom provides input and output flexibility for the user. The

program can operate on Mach number and altitude as separate independent,

variables. The addition of vehicle weight and flight path angle permit

calculation of equilibrium flight conditions.

The program allows the user to input either Mach number or velocity

as an independent variable for speed reference. If velocity is input,

the free stream static temperature must be available so that Mach number

can be calculated. The user will also have the option to. specify a flight

altitude, or static pressure and temperature, as an independent variable

defining the atmospheric conditions. If altitude is specified, pressure and

temperature will be found using the "U.S. Standard Atmosphere, 1962."

The user may input up to 20 Mach or velocity points. If Mach number is

input, the velocity will be calculated for each point where atmospheric data

are input. When velocity is input the Mach number will be calculated using

atmospheric conditions. If velocity is input instead of Mach numbers and

atmospheric conditions are not defined, an error message will be written and

Mach numbers will be calculated using a speed of sound of 1000 ft/sec.

The user may also input up to 20 atmospheric conditions. The atmosphere

may be defined by altitude, pressure and temperature, or Reynolds number. If

the altitude is given, pressure and temperature will be determined using the

105

• . , . * ..

Page 113: 416yo 7X7 - DTIC

- atmosphere model developed in Reference 9. The Reynolds number will be

calculated using the following equatior, (in the foot-pound-second system of

units):

RN/L - pV/- - 1.2527 X 106 PM (T + 198.6)/T 2

This equation was derived using the following relationships:

P = P/RT

- M 1R

V a 2.270 X 10- 8 T1 ' 5 /kT + 198.6)

If the Reynolds number is not input and cannot be calculated, an error mes-

sage will be written and the Reynolds number will be set to 5 x 10 6 /ft.

Given the vehicle weight, flighat path angle, and atmospheric condi-

tions, the equilibrium flight aerodynamic data can be determined. Equilib-

rium flight is achieved when the following relationship is satisfied.

Wr -(CL cOsS - CD sin6 ) qS

Along with the untrimmed aerodynamic output, the level flight (6 - 0)

lift coefficient will be output. Trim data output wi.llprovide an addi-

tional line of output at the equilibrium flight conditions (subroutine

FLTCL).

106

Page 114: 416yo 7X7 - DTIC

SECTION 5

SYSTEM RESOURCE REQUIREMENTS

Digital Datcom is a large and rather complex computer program which

requires specific computer resources to execute within a fixed core require-

ment. The program is written to conform to the American National Standards

Institute (ANSI) Standard Fortran IV. Certain computer resources must be

available to make the program operational without modifications These

resources are:

o Six disk files or scratch tapes are required for manipulation

and retrieval of input data. The logical 1/0 units used are 8, 9,

10,, 11, 12 and 13. These logical units are in addition to logical

unit 5 (read) and unit 6 (write).

o The system must have capability for primary and secondary overlay

structures.

"o The system must have a Fortran compiler which provides for NAMELIST

.input and output, and statement transfer when an end of file is

detected.

Each logical unit referenced by the program is reserved for a specific

purpose. The units referenced and their use in the program are listed

below:

Unit Program Usage

5 Standard system input (card reader)

6 Standard system output (printer)

8 Storage of experimental data namelists for the case being

executed

Storage of input namelists, dxcept experimental data, for the

case being executed'

10 Storage of experimental data namelists for a single Mach

number

11 Storage of all input data after processing by the input diagnos-

tic analysis module (CONERR)

12 Storage of extrapolation messages for processing by overlay 57

13 Storage of output data for use with the Plot Module as a post-

processing option

107

Page 115: 416yo 7X7 - DTIC

SECTION 6

PROGRAM CONVERSION MODIFICATIONS

6.1 GENERAL REMARKS

The program was written in Fortran IV for the CDC Cyber 175 computer

system. Several program modifications may be required to run under other

Fortran compilers or computer systems. It is recommended that users imple-

menting the program for their computer system become familiar with their

installation operatLng system and Fortran compiler requirements. Users are

forewarned that program core requirements and run times discussed in this

report may no longer be valid.

6.2 PROGRAM STRUCTURE

The program is composed of a root segment overlay (overlay 0), fifty-

seven primary overlays and twenty-eight secondary overlays. Table 7'shows

the overall program structure and lists those routines that are contained in

each overlay. In the CDC system, the first routine in an overlay is called a

"program" and subsequent routines "subroutines." Several subroutines appear

in more than one overlay. These subroutines are called "common decks" and

are listed in Table 8.

6.2.1 Calls to Overlay

All primary overlays are called by the root segment overlay, and

secondary overlays called by their respective primary overlay using the

calling sequence-

CALL OVERLAY (4LDATC, XX, YY, 6HRECALL)

where: DATC is the disc file where the overlay is located,,

XX is the primary overlay number in decimal, and

YY is the secondary overlay number in decimal.

Hence, each overlay is written to a disk file with the name "DATC."

Users should refer to the Fortran reference manual for their system and

determine the correct overlay calling procedure.

6. 2.2 Common Decks

Several subroutines are used in more than one overlay. The most commonly

used routines are located in the root segment for access by all overlay

programs.and subroutines. However, several decks are used by only a few

109

. . ......... ....

Page 116: 416yo 7X7 - DTIC

routines and placing them in the root segment would require an increase in

overall program core size. In order to maintain a low core requirement,

these common decks are located in each overlay in which it is referenced.

Warning - Not all systems allow two routines to have the same name even

though they are identical. If the user's system does not allow this option,

three alternatives are available as follows:

"o Rename each deck that is common, and change the calling sequence to

it.

natives are available as follows:

"o Place all common decks in the root segment (overlay 0) and re-

move the deck from each associated overlay. The user will increase

the overall program core requirement by using this technique, how-

ever, it is easier than the procedure outlined above.

o On some systems that have multiple region capability, these common

decks can be placed in a separate overlay region.,

6.2.3 "OVERLAY" and "PROGRAM" Cards.

Each primary and secondary overlay main program contains these two

cards. The CDC Fortran compiler requires all overlays to begin with an

"OVERLAY" card followed by a main program which begins with a "PROGRAM" card.

These must be replaced by corresponding code required by the operating system

and compiler being employed.

6.2.4 End of File Tests

Routines INPUT, CONERR and XPERNM utilize a transfer on end of file.

This statement must be modified for the Fortran compiler being used.

6.2.5 Use of 'I'.JJSED" and "KAND"

These cnstants are set in' BLOCK DATA. The value for "UNUSED" is

setin the program as 10-60. It is sometimes used as a program flag and is

used for initializing all variable arrays, to some number other than zero.

The value for "UNUSED" can be changed if desired and must be defined in BLOCK

DATA as a small positive number. The variable "KAND' defines the alphabetic

character used by the NAMELIST i-tputs. It is set to '$' for CDC systems.

110

- -~- ---- ---. ----

Page 117: 416yo 7X7 - DTIC

SECTION 7

PROGRAM DECK DESCRIPTION

This section contains a description of all routines in Digital Datcom.

Table 7 lists the decks by overlay, Table 8 lists those "common decks" in the

program, and Table 9 describes the purpose of each deck and the overlays

referenced. For convenience, Table 9 lists the routines in alphabetical

order. Table 10 discusses the use of *each of the variables in the Digital

Datcom control data olocks. The description of the plot module routines is

provided in Volume III of this report.

A complete program listing, which includes Digital Datcom and the

Piot Module, is provided as a microfiche supplement to this report..

Ill

• -•I I• I' ! •1| --- , .• -- • .' • , -- - .. .. ...

Page 118: 416yo 7X7 - DTIC

LnJ

-LJ

C0

I-j

CLL

Li

-LJiw-J :

Li

ui

C)co

cn

0j -j -i

1112

Page 119: 416yo 7X7 - DTIC

z I

I-- 4L C

tn LI)

0i -. cxc- a CD L

0. i -i LA- ~ ()0 m

<. 0j u-

(cm LA 0.C

Li 0 L') NI

0. 0. -1( m t --- I- ý- I-(A

sk I-- I--

Co 0ULA0

0 I L

- 0.113

Page 120: 416yo 7X7 - DTIC

Lnn

LI-

u LA;h

00W -U

>- C

I.- L0 -A U4

La 0j Cr. )>- Lm 39 14 1 ) O W 1,c a c

ennI-. LU LUCD

I.- 114

Page 121: 416yo 7X7 - DTIC

CoCo a)

CL-

06 ;E

o A 0LALj Qco)

>.Cl

Lfl LAU U- . C

< -cc -cc

C-.

C-) - C5

00

I- Ln t LL. a LU j 0 1- c l%I.- at In m.

04 C-)C-

ag" m".s

Page 122: 416yo 7X7 - DTIC

-LJ

I-l

-cc

< CD00

< oJ

C)C

0

0 -- '

-A :. -4 b-4'

;:- C0gC) 0

00 Ln V V

lLhJ 0i LA I

LC L) L&J.

iAJA

w 0 .

co :I - I- C9 co C

- -

L"

-11

'C Elm=

Page 123: 416yo 7X7 - DTIC

:3

Cl (nCl3

V) a- L

L LL L

093 ccP.:

04

-JJ 0L

CD -i0 2i

0. CD -

Cl..

C) 0 (n 0-4 -4o oI.-

In -

LCD=

IM LU -- u2Cl :3-J

u0 a- l C4e

Page 124: 416yo 7X7 - DTIC

U)

u ;I-

0-0

I-.4

V) . cr..

U)

Ln

-J .- U

-i-oA > 0-

0> CDD

CDco-

r. 0. c - nu

C', -J

cm w V-4 P-0

Ln CL

LO tzLUL0 I-. - I- I

C.) C.. C.)118

Page 125: 416yo 7X7 - DTIC

LUL

3-

CD.

z =U

-4 I" tv

SL4 LU c

oo 0 6 3c

cnI Co)C

lm =4 LU04 V

Ch~ 0.

LU ~ .0

0m InmoD

Page 126: 416yo 7X7 - DTIC

CLd

Li L

(A LJ 0. L

LLAU

C) cc

CL. Cl.a.

(A V

- LU

I--

LAJ vn COdl%0 GO U -j

06 0. .0

12

Page 127: 416yo 7X7 - DTIC

co u

-cm

o to

L) ca

(f cl 9- an0

0-4

P-- D-4

C) 4/>4/) Lo

0 * -4

uj U-J ZiLS L

-I U *

LU - I-

Lu iz0 0 U

V) u oLn V

0 e C1 CD

L" C4, Cz

-120

Page 128: 416yo 7X7 - DTIC

'-c

)I-

'-44

P-4

6. 0

a. - 0- ~ E5 Lco

CDL ) - DC

oi 0i 0 ji

0 -4

oo b-4 u14-39~U :aC o -,c

o~C I-I- I

CM N.a ML

dC LU

LVUcmcmc

I12-

Page 129: 416yo 7X7 - DTIC

;PIC'-C

WxC'-

CL LU

AA 0U wa - U.. Lu '

ccU. ZoLU 0

Cl (>. Cl 0. CD

Co) LU

(.3 V) 4n (A

I-LU Lu Lu LU L

CD R-

r- a,3 (J

r-- MCDU~

at-J

LU C

12

Page 130: 416yo 7X7 - DTIC

I.-J

LUJ

Lai

X 0-4

I- 0

-j

0 P-0 ::

a- a- In aa- dc L

I/cc L) LaiZw -1 = a.

ULULU J Cc) 'L4 L

0 L ~ 0 0 .5 -J

41. m- ca (.) .0

LU~~u (A . j I

0n%

:3.

-12

C......... .

Page 131: 416yo 7X7 - DTIC

0-4

LL-J

LAJ b-4

o) -

IL u-

Sm, a. uz )I-

0a 0 u t

o l co (A

-cc4

-7w~

Page 132: 416yo 7X7 - DTIC

LUJ LUJ0-4 1-4

L>L

0a.

CD I ) 0noD w) W

u 0)

cc 0.

C-1 Ln cm 0 1-W~ Li. >-0 % )J U

- i LUw V ( .

m/ ILn LA V) a..I

LUw

o - .126

......... L..

Page 133: 416yo 7X7 - DTIC

LuJ

a-U

L-

L&Lu

>- a-

cz V)

0In -C <

R. .

(A Lu If

CL. a- 0 . ui

-O CC 0. aLu -j0: -

0- e- 0L"

o" m m

127 a

Page 134: 416yo 7X7 - DTIC

L~J

I-L

-4-

'I)

LM L

-JJ Cl

C) 02

M 3c

-4 I

Li 0

LJ4 0 '-

-J C5cuv

LiI= LU u

Li. Li

... ,,lo -J..........

Page 135: 416yo 7X7 - DTIC

VIN

x

LLJ LLi

I- L&i

o1 Lii

-k L' .L .

Lii

C))

CL C.>

Li <

Lii

o >o

Q QI- (A - L Q t jV082

P..

C.) 0129

Page 136: 416yo 7X7 - DTIC

.c:

L1U

0.

L) J

-J (ALj J n oL

u 0S e45oc

MLm M I

oC

-J

13

-M-4

Page 137: 416yo 7X7 - DTIC

C-)

cr.

LiJ 0D

a- a

ai:

'Lij

o 0o

Luj-J

LjJj

V) f- 1-4 1 m-M

CD - C'-

LnLO Ln

CD C

A- L 131

Page 138: 416yo 7X7 - DTIC

V) W

I-- (D L

frol

LU J

~ M-

U.LU u

LLU

CI 6 J I - c L0. 0 C L U LU -4 LU LU u a

%a (n to -30 . a c ý ) 0CDS0 Lt

w 1rLn DrLO-nJnL

Luin t

>-z n OL

L13

Page 139: 416yo 7X7 - DTIC

p.L

o o

- I-

I-133

Page 140: 416yo 7X7 - DTIC

TABLE 8 PROGRAM COMMON DECKS

Deck Name Overlays R-ferenced

ALl 7, 10, 20, 28, 35ANGLES 2, 13, 15, 16, 18ARCCOS 12, 21, 41, 42, 50, 53ARGSIN 21, 41, 42, 44BODOWG 7, 10, 20, 28, 35CALCALC 31, 33.CALCAO 15, 16CDRAG 3, 5CLMXBS , 15, 16CLMXBl 24 (Both Secondary Overlays)CMALPH 31, 33DFLCON 41, 53DMPARY 11, 39, 42,46, 47, 49EQSPCE 4, 6EQSPCI 4, 6FIG53A 3, 5FIG68 21, 42GETMAX 4, 6, 29INFTGM 2, 21LIFTCF 15, 16PRSCID- 12, 39, 42, 46, 47SETUP1 2, 18SIMUL2 38,'42, 47SWRITE 12, 39TABLEC 7, 20, 25TABLES 7, 24TBSUB 7,. 24TBSUP 7, 24TBTRN 7, 24TEST 1,34TLIN4X 17, 25, 26, 52TLIPIX 43, 44, 45, 54TLIP2X 43, 44, 45, 54TLIP3X 43, 44, 45, 54TRANF 24 (Both Secondary Overlays)TRAPZ 4, 6, 9, 19,.23, 26,29, 37, 46, 47WBCDL 7, 24WBCMO j 7, 20, 25WBCM1 25 (Both Secondary Overlays)'WTGEOM 2, 18WTLIFT 15, 16YUP 43, 44, 45, 54ZERANG 1, 2, 13, 18

134

Page 141: 416yo 7X7 - DTIC

C3d

rO d= a , e

6 -8- J

clL)JL LA-L

co (a z0 CD

D&. U. I CD U-ia

aI CDL 00 CD 0)iCD CI- uLji U- =j

CD E n = tv V - fL.) I- V) 0 L = Cfl =c C X L3U I <LV

= 0-JI o-u.)

= w- =~v UI- co b.f ;=I-U u- U-~ Ln wU coLU( J

<U 0 x =D )~ UZ )- m C.. j. ~ L C, 9 M.4Z d u CD L, ... '-ECU

CD <)D C.D, < < oc.JZ -~i0 I uLU 0/ WI- U. V) 0 IU)- CL)LV)LL I (nU CD U-U C)

= u ~ =u. z Ln cn F U 1&n'0 ..J OL. a. U. I1 U- C; V;~ *

U- CDP) CDL < ;V) C) =CA Iý

u) ..- J 'n-0 CDi w -I,

L)~U 0- QLa W J z 40 a~I.L ~ ~ ui

0-a 0 Co = I-I- ) -J Zw U

U-LU L uj u V) U- 0 w

LUOLII-CII = =S < li. E )>-LI C0l 14 L)DO "- aZ >- =u = =f~C - -i . c DX i

<J V) -iU LU 0- " <. C o<D:c 3

'-i (n- Z~ "...J F- --. L I- Z ECDL~. )L) )L a-)CJ InC. 0. LU VI .) a..L) )L)C

I- L (5 L C

C9L L %O .u u U uu .W V

'\I ' C 'In ai -o~

CDL _1 1* ao= a . - -a

LUW r" 0 m CJ' 0 M cljr9 m "r to w 0 cm. ~j~=0 (U- f~ M W) Mi ainl ai Ln Inf 9 mo 40 .qrw,~

L . -J -J U ~ In O%". c

0D C. - j E .=DL)L ) m tu C

135 -

Page 142: 416yo 7X7 - DTIC

U))LAi

Z~ 01~

caD V) Ln w) Vi ) U) wi 0

L) 0 -

0 (.D) 00 (D aI 0 0F- D t- CD D

imi m~ 2ý <' I-- U. CD. C) 0 0zl (D =. D = L)- tsM . A

C-0 0 =~ = c -i M E= = s"C

o. C) - U- C/ U - U- )U1 - U- 0U - 0= U-.. 0 0 n uZ P-4 U L 0JL. i.

I-= _j oLi4 >- cn M) V) 0 i & i I Li LiC-) m -cn 0 * V) C.. C..) VI VDJC) Li 1 - i!

~ L~ CD u4 C-) U) " Q 0 4 ull 110-- Li<CI v -. .i fp 00 m C. M 0 D co U 00

_j.. C,0 ) Z < W / U) U) u (JU u)~ 'U- ~ ~ CDD ZC LA.U-U-

0) 40 V) -) V)CA- Ln- 46- t..)C..

ul (i i CA) Lii 0 uLiiu u -i < -A.Li <i <iU ) O L ) 1 - I_- ) U U C oUU C f - J - j -. 1-j - -

.CL ) u .m -w -u .. Li 0.0in. 0.. m CL a . 3 .) U - U- - . - -

1- Lii

U)Lin"-C-, r C) L l% L; c b L , CV r D (=I- 06.. iLii (n M. c n F n U) u O L

ce,

ww 0i 0..- C U)

c o u <-0 X -< X m c i -i = CCCo W -w .) Ci . w w- g-) w.. c-) u- c-) CJ . Cu Cw . c-) w- 41 C-) 4-) Cu.

136

I _ _ _ - - - - -- --- ------ _ __ _

Page 143: 416yo 7X7 - DTIC

LjJm

m -i -i (D I-dwV

0 C L) <I =.L- U- V) ( >

< LU < L

L-J cia CD LL

21I- = :el n 9 Xs-s 00 C 0 0 UJ V) cc< V) tn(0- 0 EU.. gm LU0

-l 0 - 0:1-I-0 UJUJ0. ?'- .. JL 2 0. 0Q

L 0-L 0.. < < J ... *i u -Co LA. 00 LU = .~cc..0 A /~ - C P- < - D Li..

>< I- . 0 0 ca 07 0m C-. c C..)L LaJ V) & < .2= = =~

Li CL) -cc CD . 0) -D . L i. LL V)I-S u U- LA C-4 cc m -ccIn L

OZ C. c.)a0 .LAJ ~l ~ L Z ~ -J 2= c-r 0

m- el V) cn 4f"4.a

l LA C> C, Q)

CCD 0L 0 L= <D IWLUO LAJ C u-i J L. =00 L. L) Ci.0 IU LAJ LU n L

2:U LUJX- a--Li 0 = = =L . I- L.A Cr etI 61-o .. J (.D = J .J ..

a C) 03 .J LD u0 0 0 0 .(L) LL C J LA- V) = -J L)LJ LC..U L )C.. L )0. t- U

-j a LAE -Ji -i-i VJE

L)O C.) C.. u ) u - C) LJ L) 0 C

r,: etJ

0 Li. Ln U n " L n a. % qr q M -

LU

(0u ( -

137

Page 144: 416yo 7X7 - DTIC

L&U

Ln I

>- co

LA-C co

LI CD . L/) a

cmL =LSI

0,L Li 0D LI ILI L

N4 C) uj ILIJ 5 LL.

_j en t LIj La.. I.-I-. LL =.4C

0..< LI LU - 0 L La ItCL. ti =- m~ -

Cll 0 n 410 V) -i=Ir <U- U-& Ln

L0 LI -< L-L LU04 uj =

-l 0 = ;,<JL = C)>. V

0 411 '- OLI <ujin * U>. LD ... ..J -C cr can.-

0 u. " j.DO CI< D1CDI' I- 0a * 1 U Z L. U -

L) uZ L n Z< ~ L.

0~~ LIz L 'ClLU

... jJ U - La - u

411= = Z La C% - L. U.. 0 0 a.U 0. 0 -<i LI x w nco

41, (L) 0 =10.(1 L , ~ ~ < ) ~ C 1LI LI- 0-4 Z L L IL I I-L ~ 0 L

LI ~ ~ V -c L) LM X>0 I I ~ <~LU0< ' JL

wa Ua . w< clL 6U

V) n ( a 4n UJ A ) tA 4aan cA =C < (A Nd L9 L C

X- La a. La b-LaI u x ( u

< cc L C - D uJ uU- '0 U)

0)V ) -i V) Ln 0(A ~ U~ ' ~4~~ -CJ

zLU~~ co cl <JL a< CO ~ o

_ % Z (n41 LfW 0. CD 40M q CD < ImL

La138

=m______ - .:-.~:-

Page 145: 416yo 7X7 - DTIC

LLf

I- C)l

LJJ'-4 u

ca ..)

LUJ

CD I- L/3 4i LJ -LIP w. =) =J .a o c o

0D e 0 0 & OW I <~ u -a L. I-=& -4 LJ0 12 0. (A OL.)

0 Dc LJP .O U. CL F L A. Lu L=. - s- 4 *ý ". .. J( I.- Ln Ln O

U =. < . U.. _jL .L J Ln =- (0 1- -Cn ZA -4 u < = L 4 CD~ LA- 1= LL Ln <

o 5-x I U ) 4 C) =L 1-- 0 (DX = .C) LU Q6 I- C.) P.-~-0D 0iIE - cEi0=I.a -i L). >- ce -E mLL A

-LJ WD L6 w1) V)O 0 m L L~~V)- L)D) F-L LL L . zj

cc -. < r%4 V) Ln V) I.. - 1 -

0 00 Cn L- -1 J 0 0 0 0 0 C(m~ ~ a a: ce w5c<=-jA0" .J V)a.a.LLJAO tmP AJ Sa

ULOf -0Ln (A (A L- UC UJ -J OL)aLa lUJ L&J~ " ~ LUJ LLJ 14 Il j r-4 a-T< C

U.S '-J. X.S LU ceJZ ~ ~ . .. S .

-J-J W - -J -j 4i =

X -c

a.) UC) L .)C. .Ln a. k- 4- Ln 5- '-m i

0aW c W C t-WU M W nL

LiJ M' ~ CJ ~ ~ If ' n S U ) 4- en w m- 4- - 0< en

co ('. ... CU C'r-* 4 5 = U U

139

Page 146: 416yo 7X7 - DTIC

l-4

o =A

Z U

U CL -iC( A w (A U-

Zl 0 a. u J < i

( J A U CL P- V OUI- (J Lj<LU < in t U 0J 2

a. - -3 A (A = ~ -j L) Oa

LnUn > tAJJ LL wJ 0J LA- .Z < -<A 0~ <- WA >-~ LLJ. P-4.Z -L

In00 =E Lm -LA.(A= <-- - 0AJ Lia < ( L = = 0U-L- =- CD = >-0 4- (A = LJ

IA uULJL w I F- -4 <. 0 6.4 <Z Z~LAJ LJO0 Ln i < Z0 co L =

a-0U. Lj LA- < = 0 L.) 0-

x- 3:AO . 1 -J -J : e L : = " COL CD Z caJ C6 I-D CDA w Ln = C UZ

= -= (-) UU U Z .Jw nU3 LA < -j W :w =..J. = (A(A. - 0 Z 0

(A I--c ~i LL. < >. wd V) (n (A 4n ( -n LUi L A- LL Ia u w.O L 00 (A OLJ~

<0 ~ O CL~ < LAJ - x 1 = = = w< = (Au-Lj (0 -j ..J U- U- U- L.

0 C> = V I-i. w 0- ) A A( A A(L - i U w . < U'iJ (D LD i

U -4 O ( I-U U-- :m- 0 0 0',- ZAi' Uja .. J- -

x I- I- V)I - -I

X:l co X 1) 0 Cl ( a a0 0a0~ ( (0 =UCD CD.A~ O Li.

L" CD q Lii M L Oi en Lii Lii Lii( 4 0

I'a uj w - 0 6-4 ?.J- I.- (AU UU I- U (Ja .a.a .

140

Page 147: 416yo 7X7 - DTIC

f.-I cc ) vi)

a- Ln

(A 1' 0 co5 LUJ 0 ) ..u -.=U

Lu 0.0 -. O~ 00 _jj (A >- _j1., ~1-4 - 1-- 9=

F- Ln V -u

w.. . o CD Li Li O) (UL; .U- 4/) L"

... C.-0 4/) 0c U- a.U

0 a. W C)X C,0 0 OO Q n= V Ln l(u -) LU tn V) V) U, V) CD) M, M, w, M

J =, LU = M- =U =A =/ =A D = = ,=

.U &U 0.) a& a Q I al r; a;Is

1 - c w.. >- >- >- >- 'o r - ~ .. - -

In Q J J - -J -J -J -J -.J -J _j. _UJ .J . jJ

uj .J wi. L . L L a Li. LL Li. Li~ w L U. wL wL LA. w L u. Lw wA

w- w w w LU LU LU LU"UL UJ LUL UL LU LU LU LU L

::w U.. C) LU LU L U L U L U'U L U L U L LU LU L

*J M W n .. 0 J-

VLU e ><u 0, (\J en -4 LO) to0 P% C Q ft ML -m L.Lem e

wL CD LU .n %o ~ I 10 !. 0 - ~ ~ ~ a r-. .

141

Page 148: 416yo 7X7 - DTIC

'C

(A >- clV A L A IL .) 0)L

- - 0 0

(A -i 'C> CO A Lj 1.) Li.Z) ... 0 C.) C.. >- .J .) -

LU 0Co . -i -J = = - .. J 5 cc- ;- LL> - < icI I.- ~ J Li

Oz Z =CJ I-I w :

>-CL :m <LI 0c) u -C C'

Ww a j 1LI-4 "' (A wi

LU U w

LU C-3 0 '-ý C) C.. a~ C> C). 0 C

3.. (A (A V) (A V) CD 0) 0 n C.A Ln wAO c 1 C -J CL.I-- = =A wA = ) L = = == =

cxCL CL 0. CCL CL a- CL cnC m

a. C..3 V) (A.( V) V) (A L - Ln (A -1 -3. V) Ln (A 0 U-CL Li..0A

q(AO C. -

_j _ ~ cj _'j _j (A _=j -=cj o-=jf 'O -j>C.- ::3 >. >- N N - 5. >. >. >.N >. >. z- -- > *

-L" L LL. L& L& LA. LU U.U LA. L 6 LUL LA.UU LU LU LU- W U.) L

LU L LU LU U.) LU LU LU LU LU L" u LU LU LaU I. La WU LU W

>.>.> >4-4:4- >-- :;o-4- ;P :. :M :1 1. >.=. .=1 M,>

x 1C :< X> K X X >

L" LU w L U L u LU 10 f%. eo c" LU L U LU C2 I LU 4U.L LU

L(AL

>1142

Page 149: 416yo 7X7 - DTIC

C)-

xA -i U- C>uu

c U0 Li-

o (L w wa <L= w 0 >- uJ u

LU- C> cm <.J- -

a- m m CM >-w C5 at I CA Co) = m C

-cJ <. -cc < m=

U. f- -LLJ M0 I L u i -i wC

W P- 0 =- - 0<LUCCo =~ Co- 0D U K Cl <

- CA.. Cn a0 - Co~ = Q = U

CDI a. V ) - C 5 (5 = L.U ( 4 Co -

O ) Q.. (/ Q -) M < . (A cc. LU -

0J -0J -A 0 J -J -3 -j _ j

a 0 C C>a CA (D Cl LU CD Q Z~ (A- aA .a Q(ACýC

ao C a (Al CoU (D a CD a 0 CL Icfl U0 W (D 0CU. U. . . 0- . _. U. U. w w a. . " W-)

0% ~ ~ ~ > >- UJ 'U 0J UJ UL. w Ju Ju JU LU u u

C-)~~~~- ta a * a a a * * aL" U JL JU W L SW w U jU Uj oujcae uifL

0m 1C > . C :C 24 X X ý < x x x X 1--JU JU JU JU u aU JU J 6 U

kn .

-W L.J LU Ln Ln LU Ln Ln Ln LU to to L0 La %a LU LU LU .i

~L L LL h UU LL ULL

LU zUL I~ itL ULUULL LU LnJUU L Ln LU

LUL~ L U U U U UUJLULU .U U U UL143LUL

Page 150: 416yo 7X7 - DTIC

C-9J

-J OLJ

0 0 t-) CL L A0~ ~ LJ f ..A j

LA.1 (j ui Wp o t0 ~LAJ 4x

I.-LJ Lai ~ a l

L*4 .j -. L<L LLu a).. = =

4.jo _VLA LA. U

tJUJ L,& ce C L W LJ

LA.' ZE C_ jZ

W 0> cc jC. C

o 0 Ujeý0 ACu~1 ( a00I-- ~ ~ cJL & JL U. I --

cla .- L, C U.0= c

-JC osA j L. 9 c

LuL&J

___ w__Ix I1.........--. C . .imaii)ii 1 ~~

Page 151: 416yo 7X7 - DTIC

LL-. - "

CL V

>- w

>- 4 0D U- ~CA co (n w

Li rl cr CC Wi SI- -i ui LM

0. Ul 0- JM '-C> tn -n U- C> m

P4 V)M <.lý C j ?5 C3- -Z

=D uA (A0 M -iCkaA 0 - L <X C-) - CD I- CL= U tn LiJ -) < Li S

Lii 1-J < -< 1- ...J Licm - < CA (5C <- L' V)0Jc

0< 0 ( = A =A wA m 0 <~ c-C

P -4 >- CA ELJ CJ-) CC 1--

0.-~4 1- L -jC CD -tc~ia ma~- - m < tn CA

L) CA LiC1-. 1

a) V) ý4 = Zl( LO CA Li X =

VO Q- >- u Z:C:i C> C= -4 UJ C) 00j UJ UJ J

w =L =- E-4C> W - >LD V) U- .V) tn-

:2.~40~ c d0~ to CACAJCA o m wC..) .C~~ J CA 0 n CD A 1 1- C - Li i

0 C (A1- ~ i US 0. tn V)V C/0 (A

< Li 0J W.L ~ L 0. 0 - 0. 1~ < L/.)CA iW 0 CA -- ='0 - V)V n L CA C5- L ) 0 ) Ln V)(

*CA 0 :I- 0U 00 LU W UJ U W W

-j ~ tn 0) Li 0J u.J __ Iu Li Li -CC O 0 0 -- 1 4-2 -

(n w.J. C) .__ -(D 0i C) ui a < 0 5 c a. < <~ <- 0 0 0 0 0<.U Ui .I) Ui 0) V. V). CA U Ul UL V- Ui U U CA CA C CA CA

wJ L iD Ln 0 0n 0; CA. CA 0.D CA CA CA CA C-U m~ m - i.J 1 0,nC

Li Lo M. Li CM L" tn Mi U.. U) Li V1 U,

=i u0. L qrL LiCD Li =V. 1-0 00 0. -j -. C.. uj < X: X - C < >

E~~~> CA = -J, a. a. = -- ~- 4 . O - 4 i0 i0 L 0_Li <i 0 0 0 M0 C, C- V) CCL wC mC Ca.. I= V.) V) V-) CA V.) CA CV CA CA V-) CA (.C V-) Ln V) CA .)0 tn. V.) V.) %n.

14

Page 152: 416yo 7X7 - DTIC

LII

LLI-::I LI)

- U- LA-

>- (A 0n L

0 L)LI _j "

0 <JC>~I cc < I-

>- <- I LiJ Lu. .LU1( 0 0 0 0

u C) 0A uJ :j

I- o L i >-~ 0>- - ui

Cl 0. E -i LIi U

LAJ CD 00 iz i C.. *0I-- r-4 r-4j ca c d F-

- 0 E 0= -i -i -i

u U 0 r-4 - r-.i r-oD c) ca>- (.D o LL- CD tD LL UJ (M -- biJ-

ULUJ 1 C3 = =0l = = DC I-*- = cI-0 CD 0 '-"k- CD0 C) *0Ln C UJ LAJ0 Q

cc m m ~ = ~= = >. -j -j::.

~~~C C~C.) C() () C . . ) a CD. a CDO a .. 0 a.

m - m0 0 0-0. 00 .u 0.00 .00 -0.00V- (f) (A V LI) V) I) C/) -i Cn V ) V) ) V) V )V n V

L/ (A) LI) LIVI ) $A) C ) . J L ) VI) ' Cl) L(A L ) C/) L ) (A) L(A L )I.--

uL) LI I LI) LI uI U.) u u C-)' uI uI u/ w u/ ul u/ /Lii Lix Li i i i i i Li Li Li L J. Li Li i i i i i

ULt u u u )

In= = = = 0= == =(A .).)(. UU.)..C) UCU U J

Lii Lii

oD LA -W c U') 'IJ V, C.J -W LO -c w e~CIA . % .~ . . cli~ "r w

0A a c== = = CY :m ===

V I) L) I) IA L) LI) I) LI) I) (A)CV) cl) V7) C) Cl) CI L) Cl) 4n) C)

146

Page 153: 416yo 7X7 - DTIC

oz

LAJ Lm CA-e z u.

= - U- IIJ 1-1 IU-z - V) LA - -A

0. >-. A(AC

_ (A .. JW -b 4 -P" LA U.. U-.>- w m- -i LU ClJ (

I -j -:r.- <~- <

I- ~ C - 2 1,- 1% toUL - a aJ

u F- w V iU

o- >. u0bJ ,, s Li .M: = w ( 0 A ( a( a U.1 U.1

(D 0 l 0::0I -~ b- LA. U-. = C i %..J w' 4:

cocaI- DU-U U- Q L .0 UJ = 4- '4- -4-.a a- a.C,. *n U. 40 0 L OW Lw . w. L ii cn l 11 11 if

oj ( 0 C-0 0C> 0L6 = 0Dta. w w OIxW >- >-U.1L Zj wZ LUL. 0 LiU.1 l tAm- I- C (A q ~ ~ i V)- ~ i~ x J C)=

0 a 0x - OZ~ 0 w w F-w w . w U

~- 1u uL -. V )(l)4 w Zu WZZZbZ * *V) (n (n UJ .4 I (ZW A~ =0L U 00P-0 0I.

0iU1 .~Z U -. L .L w UJ U 0.1u O 00.10

(A ~~~0 (AAi Zi (AZ UL i Z L1 -- 1111

=U Q U JL J Uu

C" Ln (n (A u V)( n I- ZZ Z

C5 Ln 1-W U C L0 i 4 L C.0

U, - u -(%Lfl LlU I

a a a

CJ cc CJ CJ 0.- u~I.% ~ I -% bD 4 ( O 0i i a aj aj

LU.

0.ON. .0 0 L A ( -( A L 4'4 ~0~~~ ~ 4 44 0. 0; 2n Ln U ~ .J. .j...j..

(A ( A( A ( Ii1 1 - 1 1 1 1-j R- - -W #-1 Wit

cli.4 N " C~ 147.

In~~ -oq

Page 154: 416yo 7X7 - DTIC

/j

V) -4

u 0ý

C> -i C, I

0L -) <(~

Zi E- C) d

o- 0oJ=I 1

0 uj co qt ~L) 0

-J 0 ~-J:3 LA UE ' -

w- V) 0j .r X UJL#

0 0 0E CO 0J 80 Ln I.-- - * C/

Lii~ LL U . .J

09 .2 0D Z 00 U- Z3 C)

I L.) M0 3,- F- r-J F- <- U ".J d

5- i 0 C ~ . C.0 Lo I-- -j -. iC 0m

0. U. L ii >. i V)i i -

I- V) C-) V) u ca)LJ a

In, (A)V V) w u I " 40 C3

0~ U-=

.) ) In In In VC..ul V) 0

-Li

w- w . w_ _ j - _ J i

< iC.)J-C.) LiZAJ- < < < < vi)

"i u i u

OLI C% .J jJ C C~j C 'j C. C~i w en) eni. mV c m) C' g C

148

Page 155: 416yo 7X7 - DTIC

LA.

-J L)0L

CL 0 C)caAL

uLij 00

-L 0n CD(Aý( <wA L

= LL c -j L iJ

C-cf.. - 0L.

0ý I =) ui

o -i

u-i ' ~-C 1- =A C)D fm I D1- w- cm 1z 31 1 2c (DL

cc . =- >- =LJ i -i .J 0- 1 0 4

Li 00 C. U L .

U L ) 0 =O ) _j _= 1-4 o c CD co' CD

Li = -i C.. cc: Li=Z ) -vi - V

1- ~ L L < > 0 ) =. co I- co coCC 93 w 0o 0 m V)l

Ll u u > L .>. 0 0 0 .41

LiN 0p I--<- -C I- I--D !Z C 0

1-. -C <) 0C 0ii -

CC ::C M CDC DZ 0 <D cC<D

0J -J -J Li J-i 0 -J -j -j - <- 3 _ - i <- 4

_j _j _j LiJ (A UJ -J (A I -J -J -J - J=i - 10 ;o=zo 0 _j _j

LCJ U (A L J U~ U A =j L>A ( U U

w C4

u< La.a)(A- (A (Aý( (A (A (A/Lf,(( (A (zA( (A Ln 0

Lil Li enL Li Li Li Li .Li .Li L: L L i Li Li l Lin i L L 4 L

uj -iIcU. U-

149

Page 156: 416yo 7X7 - DTIC

LiJ Lai

X-,

P-4

Li ~ (~DLL -4on C. tAL

Lhi w0') I ~ 4 Q

7' < r.a UJi

-4- CL V) .- L .~~- -

40.

-J I- LL ( LL&.

I---(

-~~ ~ a.~i .. JD D&.

-j -c L.(A ~LL.cc~ WL><iL J Li D-$(D

ccn-~~ w -I-- I)

r.i i L5 wA-w

~~b- -- 44 -

a W W .J

o. U--0.Di

0- 0. A. f-I.C

________

*..n~-

%0~- Lb-c-

Page 157: 416yo 7X7 - DTIC

Li 0

5 0o

C12 V) U LA-f44, I-- L

-cc

-j I-- Cflu I-s ;5

C'. Li. )- *i Li

.-o >4 m LiJt...Ji 64 -Z V)

V) a-O CDO~ =0 oxNe 0D U) >- -1 0. =i V) C

a. 0 u. i kn C). 0 ico X D u - en

0. UJ CDP Q-i~

a- U 0- CAiLa~l 0 -O a. U- ) (n = 0..

LM N4 < a ~ 0-Li w4 L.-i uJ X u V) ~ Li f Cn0.. 0

dZ ( J U ) L A . U .L n- i 4 i <

o2 = p f4 Z~-L0. . - L/&n U, tn. =) I--* 0 o: C~l >- >-U (n tn

CD 0 -I-0~J . a. L) -j 4x=i V- )..JUJ Li. ~ =44~ "*ICC <-< - i u.Ji c.D (nU)

oc VU) U i U)V) CD I-'- ý- (A %L Q . U Cý- < 0 -4 cn-L-.i Z l C i LAi P4 401-I- w i >- CD I >. L"~ (W u .-j

a. > J V)L W 44 V)...J V) u ( I i ..JLi CDLa U- 0- =~ =Z-~Z ýL. I =~ U- = x L6. ui

Li (..) Li w -O .4.. b C U

C, 0J 0- FS ~ w pd Li Li 0D L"..>- = - U.._. w -Ji .0L L C1 0. U- I 0

CC'- wi L U) M U) i-) U- P" Li2

W U) W. cn 4n . .. Zi 0

u- J

ca i uiQ L)4 I--J U

0C) ca w

151

Page 158: 416yo 7X7 - DTIC

I,-

LAJca

It e

M% M oJC

V) La.J 0J - z

M - W 0. -cc.

V) L~ 0 :E I ( l w w 0.z U. .

w- I m~ C-) :o =J LA L LAJ ým _ C

(/ 0e L < x x > D C L C LL.

LAS V) 1 " LiAh LU W Lh .1 L u - > -. 1.ýjLAJ Ul ix C.. >- (. * * (- '.

0 0 X ~ Ij. Li.. (D =i. LA.LA. CSL Li :cLL- < -A co4^ c -- c 1:5 - -

LO LL LiJ -ccLA >- V) Mi LiJ3 J Li

CC tm-j-Q

-JL

C) - 190 I - 1 0

ES Li

Lii

152

Page 159: 416yo 7X7 - DTIC

-j =D0

V) V) V) j LoL LAJ U, A-U

CK:~> U4 cc-----c

-AJ LIJ V) . -j L iJ 3c

co a.> L V)C n w &w ( x. >-. x- m. i.(-3V F- -- V) = :3.~ CL CL >. -)3c k == > Z a Q. 0 ". = :, tnU A .J ..C.)# *I1- A^ C.) , C.)C 40. 441 4001. 400 0) Ln ~ L L.

i. LL . LL.

cr.S

-j m- in c c.s V . Q-

CO I... I- - - n L V . tLA

-J 0. C) CL t.0 a.0. o CL~-.. C.AJL 0w = 0.C' 0 . ) 3 W Z a

U. 1 Z06 -- j .J I.- !fl Q,~. ( - 9

153

Page 160: 416yo 7X7 - DTIC

-J

LO

II.

(ajL-J

cr--

.1 =

0j -LJ LA. f

0) -I cc i0. J UzC.

= - kA LLJ =D LI- c L

a.0. )0 Mc

-i U. .LS

co Mi MU, -ý' I-Il U jT

o. w LA. w w

U.: Li

CO La Ij 2: C

Im:M t-L ~ U0. U, 0LL~ 2:~ Li : ECo

Li0.k LLi U. -i Z 0

IQ Z. U~0 V 2~ O W 002

15

~ U 0 . ~ 4 0 Ti 00

Page 161: 416yo 7X7 - DTIC

REFERENCES

(1) Glauert, H., "The Elements of Airfoil and Airscrew Theory," Cambridge at

the University Press, 1948.

(2) Polhamus, Edward C., "Predictions of Vortex-Lift Characteristics Based

on a Leading-Edge Suction Analogy." AIAA Paper No. 69-1133, October

1969.

(3) Polhamus, Edward C., "A Concept of the Vortex Lift of Sharp-Edge Delta

Wings Based on a Leading-Edge-Suction Analogy." NASA TN D-3767,

December 1966.

(4) Stivcrs, Louis S., Jr. and Levy, Lionel. L., Jr., "Longitudinal Force and

Moment Data at Mach Numbers from 0.60 tr. 1.40 for a Family of Ellitic

Cones with Various Semiapex Angles." NASA TN D-1149, 1961.

(5) Spencer; Bernard, Jr. and Phillips, W. Pelham, "Effects of Cross-Section

Shape on the Low-Speed Aerodynamic Characteristics of a Low-Wave-Drag

Hypersonic Body." NASA TN D-196, 1963.

(6) Spencer, Bernard, Jr. and Phillips, W. Pelham, "Transonic Aerodynamic

Characteristics of a Series of Bodies Having Variations in Fineness

Ratio and Cross-Sectional Ellipticity." NASA TN D-2622, 1965.

(7) Spencer, Bernard, Jr., "Transonic Aerodynamic Characteristics, of a

'Series of Related Bodies with Cross-Sectional Ellipticity." NASA

TN D-3203, 1966.

I (8) McDonnell Douglas Corp.: USAF -tability and Control Datcom. Air Force

Flight Dyn. Lab., U.S. Air-Force, Oct. 1960. (Revised April 1976).

(9) Centry, A. E., Smyth, D. N., Oliver, W. L, "The' Mark IV Supersonic-

kypersonic Arbitrar Body Program." AFFDL-TR-73-i59, 1973.

'155

• *U. iOvwrfm4et PvIntin Oftftes iSS-- O57-0441

7a,S.....' :•- " ..... "'•'!•'•=• -•i •" va•="•I•:... ? '" " -" '"" " '*"'