44.. iffi mmrreeŽŽee n ((iie ee 880022..1111 … · 2019-09-30 · 42 44.. w iffi mmrreeŽŽee...

12
42 4 4 . . WIFI MREŽE (IEEE 802.11 STANDARD) WiFi je popularno ime kojim se označavaju bežične lokalne (LAN) mreže, koje su bazirane na nekom od standarda iz IEEE 802.11 familije. Prvi standardi iz ove familije datiraju još iz 1997. godine, i rezultat su težnje da se omogući interoperabilnost uređaja različitih proizvođača. Naime, IEEE (Institute of Electrical & Electronics Engineers) svojim standardima definiše preporuke koje bi proizvođači trebalo da slede, ali ne testira kompatibilnost uređaja sa standardom. Stoga su proizvođači 1999. godine formirali WiFi alijansu, kao neprofitnu organizaciju koja sprovodi sertifikaciju uređaja. Uređaji koji prođu proces sertifikacije dobijaju dozvolu da na sebi nose WiFi logo, što je znak potrošačima da je uređaj u stanju da radi u sprezi sa uređajima ostalih proizvođača koji su isto prošli proces sertifikacije. Danas, alijansa broji nekoliko stotina kompanija. IEEE standardi 802.11 familije definišu funkcionalnosti fizičkog sloja, kao i MAC podsloja veznog sloja OSI modela. Doživeli su mnogobrojne revizije, a u praksi se danas najčešće susreću uređaji kompatibilni sa 802.11b/g, kao i 802.11a standardom. Slika 71. Najznačajniji predstavnici IEEE 802.11 grupe standarda

Upload: others

Post on 17-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 44.. IFFI MMRREEŽŽEE N ((IIE EE 880022..1111 … · 2019-09-30 · 42 44.. W IFFI MMRREEŽŽEE N((IIE EE D880022..1111 SSTTAANDAARRDD)) WiFi je popularno ime kojim se označavaju

42

44.. WWIIFFII MMRREEŽŽEE ((IIEEEEEE 880022..1111 SSTTAANNDDAARRDD))

WiFi je popularno ime kojim se označavaju bežične lokalne (LAN) mreže, koje su bazirane

na nekom od standarda iz IEEE 802.11 familije. Prvi standardi iz ove familije datiraju još iz 1997.

godine, i rezultat su težnje da se omogući interoperabilnost uređaja različitih proizvođača. Naime,

IEEE (Institute of Electrical & Electronics Engineers) svojim standardima definiše preporuke koje

bi proizvođači trebalo da slede, ali ne testira kompatibilnost uređaja sa standardom. Stoga su

proizvođači 1999. godine formirali WiFi alijansu, kao neprofitnu organizaciju koja sprovodi

sertifikaciju uređaja. Uređaji koji prođu proces sertifikacije dobijaju dozvolu da na sebi nose WiFi

logo, što je znak potrošačima da je uređaj u stanju da radi u sprezi sa uređajima ostalih proizvođača

koji su isto prošli proces sertifikacije. Danas, alijansa broji nekoliko stotina kompanija.

IEEE standardi 802.11 familije definišu funkcionalnosti fizičkog sloja, kao i MAC podsloja

veznog sloja OSI modela. Doživeli su mnogobrojne revizije, a u praksi se danas najčešće susreću

uređaji kompatibilni sa 802.11b/g, kao i 802.11a standardom.

Slika 71. Najznačajniji predstavnici IEEE 802.11 grupe standarda

Page 2: 44.. IFFI MMRREEŽŽEE N ((IIE EE 880022..1111 … · 2019-09-30 · 42 44.. W IFFI MMRREEŽŽEE N((IIE EE D880022..1111 SSTTAANDAARRDD)) WiFi je popularno ime kojim se označavaju

43

Na slici Slika 71. Najznačajniji predstavnici IEEE 802.11 grupe standardaSlika 71 dat je

pregled nekih od najuspešnijih postojećih, kao i planiranih revizija 802.11 standarda. Interesantno je

primetiti da, iako su 802.11a i 802.11b izašli iste godine, pri čemu 802.11a omogućava veću brzinu

prenosa, na tržištu su mnogo zastupljeniji proizvodi kompatibilni sa 802.11b standardom. Razlog za

to leži u nižoj ceni uređaja koji rade na 2.4 GHz, kao i u činjenici da je 802.11a standard imao

regulatornih problema na tržištu Evropske unije, na kome opseg od 5 GHz do 2002. godine nije bio

dozvoljne za slobodnu ISM upotrebu. Već 2003. na snagu je stupila revizija 802.11g, koja

omogućava postizanje većih brzina prenosa u opsegu od 2.4 GHz, koristeći iste metode na fizičkom

sloju kao i 802.11a standard, pri čemu je, za raziku od 802.11a, ova revizija kompatibilna sa

uređajima proizvedenim po 802.11b standardu.

Uređaji kompatibilni sa 802.11a standardom se ipak mogu sresti u praksi, naročito u

korporativnim LAN mrežama, pre svega zbog toga što rade u manje zagušenom opsegu oko 5

GHz, tako da su smetnje manje. Takođe, u korporativnim primenama sreću se i 802.11n uređaji,

koji postižu velike brzine prenosa zahvaljujući višestrukim MIMO antenama.

S obzirom na popularnost i zastupljenost tehnolgije, u tekstu koji sledi bavićemo se

karakteristikama fizičkog i MAC sloja koje odgovaraju 802.11b/g standardima.

4.1. Fizički sloj

Standard definiše tri osnovne funkcije fizičkog sloja: CS/CCA (Carrier Sense / Clear

Channel Assessment), predaja (Tx) i prijem (Rx). Suštinske razlike između različitih revizija 802.11

standarda leže upravo u načinu na koji su realizovane funkcije predaje i prijema, dok je MAC sloj

zajednički za sve revizije.

Slika 72. Funkcije fizičkog sloja 802.11 mreže

4.1.1. Funkcije fizičkog sloja

i) CS/CCA

CS komponenta zadužena je za detekciju početka okvira, tj. služi kao „okidač“ za prijem. Sa

druge strane CCA komponenta zadužena je za proveru da li u telekomunikacionom kanalu ima

aktivnosti, pre nego što se počne slanje podatka.

ii) Predajnik Tx

Kada MAC sloj želi da pošalje podatak, on prvo poziva CCA komponentu fizičkog sloja.

Ukoliko od nje dobije potvrdu da je kanal slobodan, on poziva predajnik i inicira slanje podataka.

Page 3: 44.. IFFI MMRREEŽŽEE N ((IIE EE 880022..1111 … · 2019-09-30 · 42 44.. W IFFI MMRREEŽŽEE N((IIE EE D880022..1111 SSTTAANDAARRDD)) WiFi je popularno ime kojim se označavaju

44

Predajnik prihvata oktete podataka od MAC sloja, i priprema ih za slanje, tako što dodaje

odgovarajuću preambulu i primenjuje odgovarajuću modulaciju. Kada su svi podaci poslati,

predajnik o tome obaveštava MAC sloj.

iii) Prijemnik Rx

Po pravilu, fizički sloj svih WiFi uređaja se nalazi u stanju prijema, osim ukoliko MAC sloj

ne inicira slanje podataka. Kada CS komponenta detektuje preambulu i zaglavlje koje signalizira

početak okvira, prijemnik se aktivira, vrši demodulaciju, i prosleđuje primljene podatke MAC sloju.

Prijemna komponenta fizičkog sloja nekog uređaja ne proverava da li su podaci koji se primaju

zaista namenjeni tom uređaju, već to čini MAC sloj. Ukoliko MAC sloj zaključi da nema potrebe

primati ceo okvir fizičkog sloja, jer nije namenjen tom uređaju, on može signalizirati fizičkom sloju

da prekine prijem tokom nekog perioda, kako bi se pričuvala baterija.

4.1.2. DSSS fizički sloj

Ovaj tip fizičkog sloja odgovara 802.11b standardu. Naziva se i DSSS (Direct Sequence

Spread Spectrum), zbog činjenice da se u određenim slučajevima vrši širenje spektra signala,

množenjem sa pseudoslučajnom sekvencom.

i) Modulacije

Prema 802.11b standardu, moguće je postići jednu od četiri brzine prenosa: 1 Mb/s, 2 Mb/s,

5.5 Mb/s i 11 Mb/s. Brzina prenosa koja se može postići direktno zavisi od primenjene modulacije.

Najniža brzina prenosa, 1 Mb/s, postiže se primenom DBPSK modulacije. Binarna fazna

modulacija (BPSK) objašnjena je u BPSK, a DBPSK se od nje razlikuje samo po tome što, umesto

apsolutne vrednosti faze nekog simbola, prenosi razliku faze između dva uzastopna simbola. Na

ovaj način, postiže se bolja otpornost na promene faze koje unosi prenos kroz telekomunikacioni

kanal. Brzina prenosa od 2 Mb/s postiže se primenom DQPSK modulacije – D-QPSK.

Za postizanje većih brzina prenosa koristi se CCK (Complementary Code Keying)

modulacija, zbog koje je ovaj tip fizičkog sloja i dobio naziv DSSS sloj. Kod CCK modulacije,

kompleksan simbol formiran po pravilima DQPSK dodatno se množi kodnom sekvencom, kako bi

se izvršilo širenje spektra. Kodne sekvence koje se koriste su osmobitni „komplementarni“ kodovi.

Skup CCK kodova karakteriše duboko usađena simetrija, koju ovde nećemo objašnjavati.

Postoje dva tipa CCK modulacije koji se koriste u 802.11b mrežama: 4CCK i 8CCK. Kod

4CCK modulacije, dva bita podatka određuju fazu simbola po DQPSK pravilima, dok preostala dva

bita služe odabiranju jedne od 4 sekvence kojima se tako formiran simbol množi pre predaje - Slika

73.

Slika 73. 4CCK modulacija

Page 4: 44.. IFFI MMRREEŽŽEE N ((IIE EE 880022..1111 … · 2019-09-30 · 42 44.. W IFFI MMRREEŽŽEE N((IIE EE D880022..1111 SSTTAANDAARRDD)) WiFi je popularno ime kojim se označavaju

45

U slučaju 8CCK modulacije, sekvenca od dva bita podatka opet određuje fazu, po DQPSK

pravilima, dok preostalih šest bita određuju jednu od 64 mogućih osmobitnih kodnih reči, kojima se

taj simbol množi – Slika 74.

Slika 74. 8CCK modulacija

CCK kodne reči imaju frekvenciju od 1.375 MHz, a u jednom ciklusu se kod 4CCK

modulacije prenosi 4 bita podatka i ostvaruje brzina prenosa od 5.5 Mb/s, dok se kod 8CCK

modulacije prenosi 8 bita podatka i ostvaruje brzina prenosa od 11 Mb/s.

ii) Format okvira

Okvir fizičkog sloja sastoji se od preambule, zaglavlja i podataka - Slika 75. Preambula

označava početak okvira i služi sinhronizaciji, dok zaglavlje sadrži relevantne kontrolne podatke.

Polje sa podacima popunjeno je sadržajem koji dolazi sa MAC sloja, tj. sadrži odgovarajući MAC

okvir.

Preambula može biti duga (144 bita) ili kratka (72 bita). Sastoji se iz polja za sinhronizaciju

(SYNC) i polja koje označava početak okvira (SFD – Start Frame Delimiter). Kod duge preambule

SYNC se sastoji od jedinica, a SFD sadrži predefinisanu vrednost 0xF3A0. Kod kratke preambule,

SYNC polje čine nule, dok je vrednost SFD polja 0x0C5F. Tip preambule definiše brzinu i

modulaciju kojom se prenosi zaglavlje okvira: ukoliko je preambula dugačka, brzina prenosa

zaglavlja je 1 Mb/s, sa DBPSK modulacijom, dok je kod kratke preambule u pitanju DQPSK i 2

Mb/s.

Slika 75. Format okvira po 802.11b standardu

Page 5: 44.. IFFI MMRREEŽŽEE N ((IIE EE 880022..1111 … · 2019-09-30 · 42 44.. W IFFI MMRREEŽŽEE N((IIE EE D880022..1111 SSTTAANDAARRDD)) WiFi je popularno ime kojim se označavaju

46

Zaglavlje fizičkog okvira sadrži kontrolne informacije sadržane pre svega u SIGNAL i

LENGTH poljima. SIGNAL polje sadrži kod, koji signalizira kako brzinu prenosa, tako i korišćenu

modulaciju: DBPSK za brzine od 1 Mb/s, DQPSK za brzine od 2 Mb/s, 4CCK za brzine od 5.5

Mb/s i 8CCK za brzine od 11 Mb/s. LENGTH polje sadrži informaciju o dužini MAC okvira koji se

prenosi u polju za podatke. Pored ova dva polja, u zaglavlju postoji još i SERVICE polje koje se ne

koristi, već je rezervisano za kasniju upotrebu, kao i CRC polje, koje sadrži zaštitni CRC kod, kako

bi se osigurao uspešan prenos zaglavlja.

U polju za podatke enkapsuliran je sadržaj MAC okvira, o čemu će biti više reči u kasnijim

poglavljima.

iii) Raspoloživi frekvencijski kanali

Opseg oko učestanosti 2.4 GHz podeljen je u kanale širine 22 MHz, čije su centralne

učestanosti na razmaku od 5 MHz. U Evropi, na raspolaganju je 13 kanala u ovom opsegu, dok je

na teritoriji SAD i Japana na raspolaganju 11 kanala. S obzirom na to da je širina kanal veća od

razmaka centralnih učestanosti, to znači da u praksi imamo preklapanje kanala. U nekom trenutku,

u istom prostoru možemo imati na raspolaganju maksimalno tri nepreklapajuća WiFi kanala – Slika

76.

Slika 76. Raspored kanala

4.1.3. Višestruka propagacija i intersimbolska interferencija

Višestruka propagacija je jedan od osnovnih problema sa kojima se susreću bežični

telekomunikacioni sistemi. Za razliku od ožičenih veza, kod kojih postoji dobra izolacija i jedna

jedina putanja između izvora i odredišta, kod bežične komunikacije signal se može prostirati

višestrukim putanjama između izvora i odredišta – Slika 77. Neke od putanja kojima se signal

prostire su znatno duže od direktne putanje, pa samim tim imaju i značajno veće kašnjenje.

Poslati simbol do odredišta stiže u nekoliko verzija, od kojih su neke značajno zakašnjene.

Može se dogoditi da zakašnjena verzija nekog simbola do prijemnika stigne u trenutku u kome on

već prima sledeći simbol koji je došao direktnom putanjom. U tom slučaju, dolazi do mešanja

signala susednih simbola, tj. međusimbolske (intersimbolske) interferencije – ISI. Zakašnjeni signal

ometa ispravan prijem signala koji se prostire direktnom putanjom.

Page 6: 44.. IFFI MMRREEŽŽEE N ((IIE EE 880022..1111 … · 2019-09-30 · 42 44.. W IFFI MMRREEŽŽEE N((IIE EE D880022..1111 SSTTAANDAARRDD)) WiFi je popularno ime kojim se označavaju

47

Slika 77. Višestruka propagacija u bežičnim mrežama

Intersimbolska interferencija je osnovna prepreka za povećanje brzine prenosa u bežičnim

mrežama. Što više povećavamo brzinu prenosa, to smanjujemo vreme u kome se simboli smenjuju.

Sa smanjenjem trajanja simbola, kašnjenje usled višestruke propagacije prouzrokuje više problema,

jer je v.eća verovatnoća preklapanja simbola.

Rešenje za problem ISI i višestruke propagacije predstavlja posebna tehnika koja se

primenjuje u 802.11a i 802.11g mrežama, i naziva se OFDM (Orthogonal Frequency Division

Multiplexing).

4.1.4. OFDM fizički sloj

Uređaji proizvedeni po 802.11a i 802.11g standardu mogu prenositi podatke brzinama i do

54 Mb/s, zahvaljujući primeni OFDM tehnike. Princip na kome se OFDM bazira predstavljen je na

slici Slika 78. Umesto da se prenosi signal velike učestanosti, koji je podložniji uticaju ISI, prenosi

se više signala manje učestanosti paralelno. Raspoloživi opseg jednog WiFi kanala podeli se na K

podopsega (podnosilaca). Time se trajanje svakog simbola vremenski produžava K puta, čime se

smanjuje uticaj ISI. Po Nikvistovom kriterijumu, potrebna širina opsega za prenos svakog simbola

se smanjuje K puta. To znači da se korišćenjem istog frekvencijskog opsega istovremeno može

preneti K simbola. Dakle, korišćenjem raspoloživog opsega, efektivno se za određeno vreme

prenosi isti broj simbola, ali su u slučaju priemene OFDM oni manje osetljivi na ISI.

Page 7: 44.. IFFI MMRREEŽŽEE N ((IIE EE 880022..1111 … · 2019-09-30 · 42 44.. W IFFI MMRREEŽŽEE N((IIE EE D880022..1111 SSTTAANDAARRDD)) WiFi je popularno ime kojim se označavaju

48

Slika 78. Princip na kom počiva OFDM

Slika 79. Princip na kom počiva OFDM predajnik i prijemnik

U praksi, predajnik se realizuje kao IFFT kolo, dok je prijemnik FFT kolo – Slika 79.

Page 8: 44.. IFFI MMRREEŽŽEE N ((IIE EE 880022..1111 … · 2019-09-30 · 42 44.. W IFFI MMRREEŽŽEE N((IIE EE D880022..1111 SSTTAANDAARRDD)) WiFi je popularno ime kojim se označavaju

49

Pored OFDM, kao dodatna zaštita od ISI, uvodi se i takozvani zaštitni interval - Slika 80.

Deo korisne informacije se ponavlja, što predstavlja višak na fizičkom sloju protokola, ali osigurava

veću otpornost na ISI.

Slika 80. Zaštitni interval

Uvodi se i zaštitno konvoluciono kodovanje, pri čemu je konvolucioni koder definisan

standardom i predstavljen na slici Slika 84Slika 81. Ovaj koder ima kodni količnik R=1/2. Standard

definiše i kodovanje sa kodnim količnikom R = ¾ - Slika 82, kao i ono sa R = 3/4 - Slika 83. Oba

kodna količnika dobijaju se izostavljanjem nekih izlaza iz kodera na predaji.

Slika 81. Konvolucioni koder za OFDM fizički sloj

Page 9: 44.. IFFI MMRREEŽŽEE N ((IIE EE 880022..1111 … · 2019-09-30 · 42 44.. W IFFI MMRREEŽŽEE N((IIE EE D880022..1111 SSTTAANDAARRDD)) WiFi je popularno ime kojim se označavaju

50

Slika 82. Konvolucioni koder sa R = 2/3

Slika 83. Konvolucioni koder sa R = 3/4

Page 10: 44.. IFFI MMRREEŽŽEE N ((IIE EE 880022..1111 … · 2019-09-30 · 42 44.. W IFFI MMRREEŽŽEE N((IIE EE D880022..1111 SSTTAANDAARRDD)) WiFi je popularno ime kojim se označavaju

51

Kao rezultat, imamo predajnik i prijemnik predstavljene na slici Slika 84.

i) Modulacije

Kao i kod DSSS fizičkog sloja, brzina prenosa zavisi od primenjene modulacije simbola.

Koriste se BPSK, QPSK, 16-QAM i 64-QAM modulacija. Pored primenjene modulacije, na

efektivnu brzinu prenosa utiče i primenjeno konvoluciono kodovanje.

Slika 84.OFDM predajnik i prijemnik

ii) Format okvira

Format okvira dat je na slici Slika 85. Okvir se sastoji iz preambule, zaglavlja i podataka.

Slika 85. Format okvira po 802.11g standardu

Page 11: 44.. IFFI MMRREEŽŽEE N ((IIE EE 880022..1111 … · 2019-09-30 · 42 44.. W IFFI MMRREEŽŽEE N((IIE EE D880022..1111 SSTTAANDAARRDD)) WiFi je popularno ime kojim se označavaju

52

Preambula služi sinhronizaciji i kanalnoj estimaciji. Sastoji se iz dva dela jednake dužine.

Prvi sadrži 10 ponavljanja kratke trening sekvence (standardom definisan obrazac, trajanja 0.8μs),

koja signalizira početak okvira. Drugi deo sadrži dva ponavljanja duge trening sekvence

(standardom definisan obrazac, trajanja 3.2μs), koja služi proceni prenosne karakteristike

telekomunikacionog kanala.

Slika 86. Preambula okvira po 802.11g standardu

Zaglavlje okvira fizičkog sloja sastoji se iz SIGNAL i SERVICE polja. SERVICE polje se ni

po 802.11g ne koristi. SIGNAL polje nosi kontrolne informacije vezane pre svega za brzinu

prenosa. Prenosi se uvek istom brzinom od 6 Mb/s, sa BPSK modulacijom. U okviru SIGNAL

polja, nalazi se podpolje RATE, koje definiše brzinu prenosa u zavisnosti od tipa modulacije i

kodnog količnika konvolucionog kodera, prema tabeli Tabela 1. Pored toga, SIGNAL sadrži i

informaciju o dužini MAC okvira koji se prenosi (u podpolju LENGTH), kao i kontrolni bit provere

na parnost, koji osigurava ispravan prenos zaglavlja. S obzirom na primenjeno konvoluciono

kodovanje, u zaglavlju se prenose i završni biti za konvolucioni koder (u okviru podpolja TAIL),

koji omogućavaju ispravno dekodovanje zaglavlja. Obično je u pitanju niz od 6 nula, s obzirom na

to da primenjeni konvolucioni koder (Slika 81. Konvolucioni koder za OFDM fizički sloj pamti 6

bita.

Tabela 1. Brzina prenosa po 802.11g standardu

RATE Modulacija R Brzina

(Mb/s)

1101 BPSK 1/2 6

1111 BPSK 3/4 9

0101 QPSK 1/2 12

0111 QPSK 3/4 18

1001 16-QAM 1/2 24

1011 16-QAM 3/4 36

0001 64-QAM 2/3 48

0011 64-QAM 3/4 54

iii) Organizacija podnosilaca

Rekli smo već da OFDM raspoloživi kapacitet kanala deli na veći broj podopsega. U praksi,

opseg od 20 MHz u WiFi kanalu deli se na 64 podopsega, sa međusobno ortogonalnim centralnim

Page 12: 44.. IFFI MMRREEŽŽEE N ((IIE EE 880022..1111 … · 2019-09-30 · 42 44.. W IFFI MMRREEŽŽEE N((IIE EE D880022..1111 SSTTAANDAARRDD)) WiFi je popularno ime kojim se označavaju

53

učestanostima (podnosiocima). Svaki podopseg je širine 312.5 KHz. Od toga, 12 podopsega se ne

koristi (nulta snaga) – oni se nalaze na krajevima opsega, kako bi se eliminisalo preklapanje

susednih kanala, ko i oko centralne učestanosti opsega, kako bi se smanjio uticaj šuma koji

proizvode elektronske komponente prijemnika. Zatim, 4 podopsega se koriste za prenos kontrolnih

pilot signala, koji služe kanalnoj estimaciji. Preostalih 48 podopsega koristi se za prenos korisnih

informacija.

Slika 87.Organizacija OFDM podnosilaca

Pilot simboli omogućavaju prijemniku da proceni amplitudska i fazna izobličenja koja unosi

telekomunikacioni kanal. Simboli koji se šalju putem 4 podopsega namenjena za prenos pilota su

definisani standardom, tako da su poznati prijemniku. Na osnovu primljenih podataka, prijemnik

može odrediti promene u fazi i amplitudi - Slika 89. Pri demodulaciji, procenjene vrednosti faznog

pomeraja i promene amplitude se uzimaju u obzir, kako bi se ispravno detektovao primljeni simbol.

Slika 88. Pilot simboli

Slika 89.Kanalna estimacija

Naravno, varijacije u telekomunikacionom kanalu mogu biti česte, tako da je moguće da ih

ne uhvatimo slanjem pilota sa učestanošću koju definiše standard. Slanje većeg broja pilot simbola,

po većem broju raspoloživih podopsega, poboljšala bi kanalnu estimaciju, ali bi imala negativan

uticaj na performanse sistema, jer bi se resursi trošili na slanje podataka koje ne generiše korisnik.

Pilot simboli omogućavaju da se grubo procene prenosne karakteristike telekomunikacionog kanala,

dok duga trening sekvenca omogućava da se na nivou svakog podopsega procene varijacije

prenosne karakteristike.