48 macroscopic fields in acceleratorshoff/lectures/06uspas/notes2.pdf · n m n m ψx y z bnm z x y...

31
[email protected] USPAS Advanced Accelerator Physics 12-23 June 2006 CHESS & LEPP CHESS & LEPP 48 E has a similar effect as v B. For relativistic particles B = 1T has a similar effect as E = cB = 3 10 8 V/m , such an Electric field is beyond technical limits. Electric fields are only used for very low energies or For separating two counter rotating beams with different charge. ) ( B v E q p dt d G G G G × + = + p p B G + p p B G + E G Electrostatic separators at CESR Macroscopic Fields in Accelerators

Upload: others

Post on 19-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    48

    E has a similar effect as v B.For relativistic particles B = 1T has a similar effect asE = cB = 3 108 V/m , such anElectric field is beyond technical limits.

    Electric fields are only used for very low energies orFor separating two counter rotating beams withdifferent charge.

    )( BvEqpdtd

    ×+=

    +p−p

    B

    +p−p

    B

    + E

    Electrostatic separators at CESR

    Macroscopic Fields in Accelerators

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    49

    Static magnetic fileds: Charge free space:

    (x=0,y=0) is the beam’s design curve

    0;0 ==∂ EBt 0=j

    0)(0

    )(0)(2

    00

    =∇⇒=⋅∇

    ∇−=⇒=∂+=×∇

    rB

    rBEjB tψ

    ψεµ

    x

    y

    For finite fields on the design curve,Ψ can be power expanded in x and y: ∑

    =

    =0,

    )(),,(mn

    mnnm yxzbzyxψ

    Magnetic Fields in Accelerators

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    50

    )()(

    0

    00

    001

    0

    000

    BAsdBsdB

    sdBsdBsdB

    sdBsdBsdBsdB

    X

    B

    A

    X

    X

    B

    B

    A

    A

    X

    X

    B

    B

    A

    A

    X

    r

    Ψ−Ψ=⋅+⋅≈

    ⋅+⋅+⋅=

    ⋅+⋅+⋅=⋅=

    ∫∫

    ∫∫∫

    ∫∫∫∫

    µ

    )in()out( ⊥⊥ = BB

    )i(1)out(

    )in()out(

    parallelparallel

    parallelparallel

    nBB

    HH

    rµ=

    =

    For large permeability, H(out) is perpendicular to the surface.

    For highly permeable materials (like iron) surfaces have a constant potential.

    X

    BA 0=×∇ B

    Surfaces of Equal Potential

    )()r( rB Ψ∇−=

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    51

    Knowledge of the field and the scalar magnetic potential on a closed surface inside a magnet determines the magnetic field for the complete volume which is enclosed.

    02 =∇ ψ

    )(),( 0020 rrrrG −=∇ δ

    [ ][ ]

    [ ][ ] 02000

    02

    0000

    03

    00000

    03

    020

    200

    03

    00

    )()(

    )()(

    )()(

    )()(

    )()()(

    rdGrBGr

    rdrGGr

    rdrGGr

    rdrGGr

    rdrrrr

    V

    V

    V

    V

    V

    ⋅+∇=

    ⋅∇−∇=

    ∇−∇∇=

    ∇−∇=

    −=

    ψ

    ψψ

    ψψ

    ψψ

    δψψ

    Green function:

    Green’s Theorem

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    52

    If field data in a plane (for example the midplane of a cyclotron or of a beam line magnet) is known, the complete filed is determined:

    Data of the magnetic field in the plane y=0 is used to determine b0(x,z) and b1(x,z).

    ⎟⎟⎟

    ⎜⎜⎜

    ∂−=⇒=∑

    = ),(),(),(

    ),0,(),(),,(

    0

    1

    0

    0 zxbzxbzxb

    zxByzxbzyx

    z

    x

    n

    nnψ

    [ ]∑

    ∑∑∞

    =+

    =

    −∞

    =

    +++∂+∂=

    −+∂+∂=∇=

    02

    22

    2

    2

    0

    222

    )1)(2()(

    )1()(0

    n

    nnnzx

    n

    nn

    n

    nnzx

    ybnnb

    ybnnybψ

    ),()()1)(2(

    1),( 222 zxbnnzxb nyxn ∂+∂++

    −=+

    Potential Expansion

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    53

    Iteration equation:

    The functions Ψν(z) along a line determine the complete field inside a magnet.

    22222222 4)()(

    )(,,

    zwwzwwwwzyx

    wwwwywwx iiiiyxwiyxw

    ∂+∂∂=∂+∂−∂−∂+∂=∂+∂+∂=∇

    ∂−∂=∂−∂=∂∂+∂=∂−=+=

    ( )

    0})]()1)(1(4[Im{

    })()()(4Im{

    })(Im{

    ,,

    0,1

    0,0

    ,,

    1,0

    12

    0,

    =++++=

    ++=∇

    ⋅=

    ∑∑

    =+

    ==

    ==

    =

    νλνλ

    λννλ

    λν

    νλνλ

    λν

    νλνλ

    λν

    νλνλ

    λνλ

    λνλψ

    ψ

    wwwaa

    wwwawwwa

    wwwza

    )(,)1)(1(4

    10

    ,,1 zaaa νννλνλ λνλ

    Ψ=+++

    −=+

    Complex Potentials

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    54

    Ψν(z) are called the z-dependent multipole coefficients

    The index ν describes Cν Symmetryaround the z-axisdue to a sign change after

    })(Im{2!)!(

    !)1(),,(

    )}(4!)!(

    !)1(Im{),,(

    ]2[

    0,

    2

    ]2[

    0,

    νϕλν

    λν

    νλλ

    λν

    λν

    νλλ

    λνλνϕψ

    λνλνψ

    iezrrzr

    zwwwzyx

    −∞

    =

    =

    Ψ⎟⎠⎞

    ⎜⎝⎛

    +−

    =

    Ψ⎟⎠⎞

    ⎜⎝⎛

    +−

    =

    νπϕ =∆

    ze

    3=ν

    S

    S

    SN

    N

    N

    Multipole Coefficients

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    55

    Main fields in accelerator physics:

    Main field

    Only the fringe field region has terms with and 0≠λ 02 ≠∂ ψz

    0,0 2 =∂= ψλ z

    ⎪⎩

    ⎪⎨⎧

    =Ψ≠Ψ

    =Ψ0for0for

    0 ννν

    νϑ

    ν

    ν

    iei

    01

    )( }Im{),( Ψ+Ψ=∑∞

    =

    −−

    ν

    ϑϕνν

    ν νϕψ ierr

    B

    Fringe field

    Fringe Fields and Main Fields

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    56

    Main field potential:

    Where the rotation of the coordinate system is set to 0

    The isolated multipole:

    The potentials produced by different multipole components have

    a) Different rotation symmetry Cν

    b) Different radial dependence rν

    ∑∞

    =

    −Ψ−Ψ=1

    0 )](sin[ν

    ννν ϑϕνψ r

    )sin(νϕψ νν Ψ−= r

    νϑ

    νΨ

    Main Field Potential

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    57

    0

    )(4

    )(

    '0

    ''02

    ''02

    ''00

    =⋅∇⇒⎟⎟⎟

    ⎜⎜⎜

    Ψ−ΨΨ

    =

    ±Ψ−Ψ=

    BB

    zwwz

    y

    x

    …ψj

    wmBqiw

    mqBiw

    xy

    mzqB

    xy

    mqB

    yx

    BBB

    zyx

    qzyx

    m

    zz

    zz

    z

    zy

    zx

    γγ

    γγ

    γ

    2

    2

    '

    '2

    '2

    −−=

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−

    +⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−

    =⎟⎟⎠

    ⎞⎜⎜⎝

    ⎟⎟⎟

    ⎜⎜⎜

    −−

    ×⎟⎟⎟

    ⎜⎜⎜

    ⎛=

    ⎟⎟⎟

    ⎜⎜⎜

    ∫==

    t

    dtgiz eww

    mqBg 00,2 γ

    02

    0

    02

    0

    02

    20

    0)2(

    ygy

    xgx

    wg

    ewgwgiwgiww

    t

    dtgi

    −=

    −=

    −=

    ∫−++=

    Focusing in a rotatingcoordinate system

    Multipoles in Accelerators ν=0: Solenoids

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    58

    Solenoid focusing is weak compared to the deflections created by a transverse magnetic field.

    Transverse fields:

    Strong focusing

    zz

    zz rBmqvr

    mqBr

    ργγ 42

    2

    −=⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−=

    yyxx eBeBB +=

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−=⎟⎟

    ⎞⎜⎜⎝

    ⎛⇒

    ⎟⎟⎟

    ⎜⎜⎜

    ⎛×⎟⎟⎟

    ⎜⎜⎜

    ⎛=

    ⎟⎟⎟

    ⎜⎜⎜

    x

    yzy

    x

    BB

    mqv

    yx

    BB

    zyx

    qzyx

    γ0

    zz qB

    p=ρ

    If the solenoids field was perpendicular to the particle’s motion,

    its bending radius would be

    Weak focusing < Strong focusing by about ρr

    Solenoid vs. Strong Focusing

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    59

    The solenoid’s rotation of the beam is often compensated by

    a reversed solenoid called compensator.

    Solenoid or Weak Focusing:

    Weak focusing from natural ring focusing:

    Solenoid magnets are used in detectors for particle identification viaqBp

    Solenoids are also used to focus low γ beams: wm

    qBw z2

    2 ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−=

    γ

    γϕ

    mqBz2

    −=

    rmqBrvrrrr

    yxrRyrRxrR

    Rrr

    ∆⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−=∆⎟⎟

    ⎞⎜⎜⎝

    ⎛−=∆−=∆⇒∆−=∆∂

    ∆+∆=∆∆=∆−∆++∆−∆+

    −=∆

    2222

    00

    220

    20

    )sin(cos:inionLinearizat]sin)[(]cos)[(

    γρϕ

    ϕϕϕϕ

    ϕ

    Rrϕ

    Solenoid Focusing

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    60

    C1 Symmetry

    Dipole magnets are used for steering the beams direction

    (+,-) in Ψ

    (S,N) in B

    yeByiyx 111 }Im{ Ψ=∇−=⇒⋅Ψ−=−Ψ= ψψ

    -

    + +

    - B⇑

    ρ

    ⊥⊥ ===⇒=⇒×= qB

    ppdp

    vdtddlqvB

    dtdpBvq

    dtpd

    /ϕρ

    ϕdpdp =p

    ϕd

    qBp

    =ρBending radius:

    Equipotential.const=y

    Multipoles in Accelerators ν=1: Dipoles

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    61

    aHaHlH

    aHlHsdHnI

    Fe

    FeFe

    r22

    22

    0001

    0

    ≈+=

    +=⋅= ∫µ

    anI

    pq 01 µ

    ρ=

    C-shape magnet: H-shape magnet: Window frame magnet:

    )in()out(

    )in()out(

    ⊥⊥

    ⊥⊥

    =

    =

    HH

    BB

    anIB 00 µ= Dipole strength:

    Different Dipoles

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    62

    Shims reduce the space that is open to the beam, but they also reduce the fringe field region.

    anIB 00 µ=B < 1 T: Region in which

    B < 1.5 T: Typically used region

    B = 2 T: Typical limit, since the field becomesdominated by the coils, not the iron.Limiting j for Cu is about 100A/mm2

    Dipole Fields

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    63

    HERA Tunnel

    Where is the vertical Dipole?

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    64

    C2 Symmetry

    In a quadrupole particles are focused in one plane and defocused in the other plane. Other modes of strong focusing are not possible.

    +

    +-

    -

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛Ψ=∇−=⇒⋅Ψ−=−Ψ=

    xy

    Bxyiyx 22})Im{( 222

    2 ψψ

    +

    -+

    -z

    y

    x

    Multipoles in Accelerators ν=2: Quadrupoles

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    65

    ⇒⋅Ψ−= xy22ψ yx const.=Equipotential:

    0

    2

    20 µ

    adrHsdHnIa

    r Ψ=≈⋅= ∫∫

    rerBxy

    B 22 2)10(2 Ψ=⇒⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛Ψ=

    20

    012anI

    pqB

    pqk yx

    µ=∂=

    Quadrupole strength:

    Quadrupole Fields

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    66

    PETRA Tunnel

    The coils show that this is an upright quadrupole not a rotated or skew quadrupole.

    SLAC

    Real Quadrupoles

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    67

    i) Sextupole fields hardly influence the particles close to the center, where one can linearize in x and y.

    ii) In linear approximation a by ∆x shifted sextupole has a quadrupole field.

    iii) When ∆x depends on the energy, one can build an energy dependent quadrupole.

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−

    Ψ=∇−=⇒−⋅Ψ=−Ψ= 22323

    33

    3

    23)3(})Im{(

    yxxy

    Byxyiyx ψψ

    C3 Symmetry

    )(62

    3

    23

    23223

    223

    xOxy

    xyx

    xyB

    xxxyx

    xyB

    ∆+⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∆Ψ+⎟⎟

    ⎞⎜⎜⎝

    ⎛−

    Ψ≈

    +∆

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−

    Ψ=∇−= ψ

    S

    S

    SN

    N N

    Multipoles in Accelerators ν=3: Sextupoles

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    68

    2303yB

    xyΨ−=

    =

    ⇒−⋅Ψ= )3( 232 yxyψ2

    31const. y

    yx +=Equipotential:

    0

    3

    30 µ

    adrHsdHnIa

    r Ψ=≈⋅= ∫∫ 3002

    26anI

    pqB

    pqk yx

    µ=∂=

    Quadrupole strength:

    Sextupole Fields

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    69

    ESRF

    Real Sextupoles

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    70The CESR Tunnel

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    71

    Higher order multipoles come fromField errors in magnetsMagnetized materialsFrom multipole magnets that compensate such erroneous fieldsTo compensate nonlinear effects of other magnetsTo stabilize the motion of many particle systemsTo stabilize the nonlinear motion of individual particles

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛Ψ==⇒−⋅Ψ=−Ψ= −

    −1

    1 0)0()(})Im{( nnn

    nn

    n xnyByxniiyx …ψ

    Multipole strength: )!1(10, +Ψ=∂= += npqB

    pqk nyxy

    nxn units: 1m

    1+n

    p/q is also called Bρ and used to describe the energy of multiply charge ions

    Names: dipole, quadrupole, sextupole, octupole, decapole, duodecapole, …

    Higher order Multipoles

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    72

    The discussed multipolesproduce midplane symmetric motion. When the field is rotated by π/2,

    i.e , one speaks of a skew multipole.

    ),,(),,(),,(),,(),,(),,(

    ),,(),,(),,(),,(),,(),,(

    zyxBzyxBzyxBzyxBzyxBzyxB

    zyxBvzyxBvBvBvzyxBvzyxBvBvBvzyxBvzyxBvBvBv

    zz

    yy

    xx

    xyyxxyyx

    zxxzzxxz

    yzzyyzzy

    −=−=−−=−

    ⇒−+−=−−−−=−−−−−=−

    y

    y−

    yp

    yp−

    nn 2πϑ =

    ),(),(

    ),,(),,(

    ⊕⊕⊕

    =⇒=

    −=

    −=

    prFpprFp

    ppppzyxr

    dtd

    dtd

    zyx

    ),,(),,( zyxzyx ψψ −=−

    { } { }{ }[ ] 00)(Re2Im

    )(Im)(Im

    =⇒=+Ψ⇒

    +Ψ−=+Ψ

    nnin

    n

    ninn

    ninn

    iyxe

    iyxeiyxen

    nn

    ϑϑ

    ϑϑ

    Midplane Symmetric Motion

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    73

    Above 2T the field from the bare coils dominate over the magnetization of the iron.But Cu wires cannot create much filed without iron poles:5T at 5cm distance from a 3cm wire would require a current density of

    Cu can only support about 100A/mm2.

    Superconducting cables routinely allow current densities of 1500A/mm2 at 4.6 K and 6T. Materials used are usually Nb aloys, e.g. NbTi, Nb3Ti or Nb3Sn.Superconducting magnets are not only used for strong fields but also when there is no space for iron poles, like inside a particle physics detector.

    20

    22 mmA138921 ===

    µπ Br

    ddIj

    Superconducting 0.1T magnets for inside the HERA detectors.

    Superconducting Magnets

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    74

    Problems:Superconductivity brakes down for too large fieldsDue to the Meissner-Ochsenfeldeffect superconductivity current only flows on a thin surface layer.

    Remedy:Superconducting cable consists of many very thin filaments (about 10µm).

    Superconducting Magnets

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    75

    Straight wire at the origin: ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−==⇒=×∇

    xy

    rIe

    rIrBjB

    πµ

    πµµ ϕ 22

    )( 000Wire at :

    { }{ } ( ) aaa

    aa

    a

    a

    ia

    IawI

    awwI

    awwI

    waww

    wI

    aww

    aw

    I

    aa

    aIyx

    ew

    i

    iwwww

    wwiiBB

    ϕννπ

    µν

    ν

    νν

    νπµ

    πµ

    πµ

    πµ

    πµ

    πµ

    νψ 1121

    122

    22

    22

    02

    02

    0

    20

    20

    2

    200

    Im)1ln(Im

    )1ln(Im2)1ln(

    1))(()(

    =Ψ⇒⎭⎬⎫

    ⎩⎨⎧

    −=−=

    −∂−=−∂=

    −=

    −−−−

    =+

    ∑∞

    =

    a

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−−−

    −=

    x

    y

    axay

    arIyxB

    ][)(2

    ),( 20

    πµ

    This can be represented by complex multipole coefficients νΨ

    ( ) ψψ wyxyx iiBByxB ∂−=∂+∂−=+⇒Ψ∇−= 2),(

    Complex Potential of a Wire

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    76

    Creating a multipole be created by an arrangement of wires:

    addIi

    ade

    a

    a ϕϕπ

    ϕννπ

    µν ν∫=Ψ

    2

    0

    112

    0

    Inannˆ11

    20µ

    νν δ=Ψ aa nII ϕϕ cosˆ)( =if

    aϕa

    adϕ

    x

    y

    y y

    Ideal multipole Approximate multipole

    Air-coil Multipoles

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    77

    LHC dipole

    Quadrupole corrector

    RHIC Tunnel

    Real Air-coil Multipoles

  • [email protected] USPAS Advanced Accelerator Physics 12-23 June 2006

    CHESS & LEPPCHESS & LEPP

    78

    LHC double quadrupole

    RHIC SiberianSnake dipole

    Accuracy

    Special SC Air-coil Magnets