เสาเข็มและการคำนวณการรับน้ำหนักของเสาเข็ม...

45
เสาเข็ม และการคํานวณ การรับน้ําหนักของเสาเข็ม กลุมงานวิเคราะหวิจัยและพัฒนา สํานักควบคุมการกอสราง พฤศจิกายน 2547

Upload: watatwork-atwork

Post on 23-Nov-2015

724 views

Category:

Documents


0 download

DESCRIPTION

เป็นของกรมโยธาและผังเมือง เพื่อใช้ในการก่อสร้างได้อย่างถูกหลักทางวิศวกรรม และปลอดภัย

TRANSCRIPT

  • 2547

  • 1. 1

    2. 1

    3. 2 3.1 2 3.2 2 3.3 5

    4. 7 4.1 8 4.2 8 4.3 9 4.4 9 4.5 10 4.6 10

    4.7 10 4.8 Friction Piles 11 4.9 Nagative Skin Friction 11 4.10 12 4.11 . 13 4.12 14 4.13 17 4.14 19

    5. 21

    - / 6.

  • - 2 -

    6. 23 6.1 23 6.2 27 6.3 35

    7. 36 7.1 I 36 7.2 39 7.3 40

  • 1.

    ( ) (Skin friction) (End Bearing)

    2.

    2.1 (End Bearing Piles)

    2.2 (Skin Friction) (Friction Piles)

    2.3 Granular soils Bearing Capacity Compaction piles

    2.4 Scouring

    2.5 (uplift) Overturning Moment Tension piles Uplift piles

    2.6 Anchorpiles

    2.7 Fender piles Dolphins

    2.8 Batter piles

  • - 2 -

    3. 3.1 -

    3.2

    2 3.2.1 (Reinforcement Precast Concrete piles)

    4 9 (Spun)

  • - 3 -

    3.2.2 (Precast Prestressed Concrete piles)

    . 95- 2517 ASTM 416-59 T JIS G 3536-1971

    0.7 fs (fs ) .45fc 0.6 fs (fc 150 . 300 . 28 )

  • - 4 -

    :-

  • - 5 -

    25 . () 30% 50% 0.2 I

    3.3 (Cast-in-place Concrete Piles)

    3 Shell type (case type) , Shell-less type(Uncased type) Pedestal (enlarged bulb)

    3.3.1 Shell type

    3.3.2 Shell-less type

  • - 6 -

    3.3.3 Pedestal Type

    3.3.4 (Steel Piles)

    H

    1/16

    3.3.5 (Composite Piles)

    (Uplift force)

    3.3.6 (Pre-bored Pile)

    1.

    2. Negative Skin Friction 5-10 .

  • - 7 -

    3. 4. 5. 6.

    3.3.7 (Micro Piles) 150 250 .

    (Bentonite) (Seamless pipe) (yield point) 2 3 2 Coupling non-return valve non-return valve 12 . 4 50 . 2

    4.

    5-10 .

    4 5 / 1 6 8 / 1 12 15 / 1

  • - 8 -

    (Silt) (pore water pressure)

    4.1

    1. Drop hammer 50

    2. Steam hammer Steam hammer Drop hammer

    3. Water jet

    4. Jacking Hydraulic Jack 4.2

    1. 2.

    3. Overdriving

  • - 9 -

    -

    - -

    4.

    - 4 5 blows - 6 8 blows - 12 15 blows

    5. - -

    6. 1 (disturbed) Shear Strength 90 % 30 50

    7. 4.3

    1. 2. End Bearing Piles

    2 2 2.5 75 . 12 30 .

    3. Friction Piles 3 5 3 6 (1.00 .)

    4. 5 4.4

    1. 3 (10 ) 1 3 6 (20 )

  • - 10 -

    2. Friction Piles

    20 6 30 9 35 10 45 13.50 50 100 15 - 30

    4.5 ,

    2 3

    1 -2 10 14 (25 35 .) 15-60 (200 850 ) Fine sand through sandy gravels capacity 500 100 300 . 1.00 , 4.6

    1 : 12 5 : 12 3 : 12(1:4)

    4.7

    1. 60 .

    2. Friction Piles

    3. End Bearing Piles x 250 . (1.2 t/m2)

  • - 11 -

    4.8 Friction Piles ... 10

    6 8 Maintain Loading Test 2 (Ultimate load) Quick Test

    1. 2. 4.4 -5.5 . (Maintain Loading

    Test) 5 .3.

    (F.S =2)4. Quick Test

    Maintain Load test 5.

    Reduction Factor = 1 Reduction Factor = 0.86 1

    6. Reduction Factor x 4.9 Negative Skin Friction

    1. Negative Skin Friction (Downward Drag) Compressible Soil Soft to Medium Clay, Soft silt, Peat Mud Negative Skin Friction Axial Load Negative skin Friction

    2. Negative Skin Friction - - (Disturbed)-

    3. Negative Skin Friction soft Bitumen

    Penetration at 25 oC = 53 to 70 mm.

  • - 12 -

    Soft Point (R and B) = 57oC to 63 oCPenetration Index = Less than + 2

    Bitumen 180o (Max) Coating 10 . 3/8 Coating (Prime) Shell Composites Bitumen Solvent Primer 2 . 10 .

    Full End Bearing Resistance 10 Coating Coating End Bearing Resistance

    Bitumen Coat 1 . Negative Skin Friction 90%4.10

    1. 5 15

    5 Vertical Pile 15 Dead Man

    2. VerticalPile 1,000 (500 .)

    3. Menulty (1956) Vertical Pile

    *

    24 (60 .)

    ()

    12 1,500 1,500 1,500* 12 5,000 4,500 4,000

    16 7,000 5,500 5,000* 16 7,000 5,500 5,000

    Vertical Pile ()

  • - 13 -

    4. vertical Pile Full Embedded 1/10 1/5 Deflection 1/2 (12.5 .)4.11 ...

    1. (Milligan)

    hBA0764.0Wmax =

    Wmax = , A = , ..B = , .h = , .

    2. (Humes)

    Wmin() ()

    15 P15 - 18 3/4P

    18 2/3PP =

    3. 1 - 2

    4. CP 2004 2.5 . (1/10 )

    Swedish Code 3 2 10 45 Compact Material 4

  • - 14 -

    5. Drop Hammer

    , 3 (90 .) (2.40 ) 8 4.12 (Dynamics Pile Driving Formula)

    . Engineering News Formula ( F.S. = 4)

    CSWhQu 54.2+=

    QU = Ultimate bearing capacity W = h = .S =

    10 C = 0.9 (drop hammer)F.S. = Factor safety

    . Hileys Formula* ( F.S. = 4)

    2Qu CS

    eWhZ+=

    QU = Ultimate bearing capacity PW

    PrWfactor Efficiencye2

    ++==

    W = P = r = Coefficient of restitution = 0.25

    h = Z = Equipment Loss Factor

    = 1 Falling hammer

  • - 15 -

    = 0.80 Drop hammer with Friction winchS =

    10 C = Temporary Compression = C1+C2+C3

    C1 = L2 (.)ALQ

    1.8 2u= .

    C2 = L (.)

    ALQ

    72.0 2u= .

    . Janbus Formula ( F.S. = 4)SK u

    WhQu =

    ++=d

    du CCK 11

    WPCd 15.075.0 +=

    2AESWhL=

    W = h = P = A = , S =

    10 E = /2L =

  • - 16 -

    Load Bearing Capacity ( F.S. = 5)abS

    aQu22

    1+=

    a = = eWhe = 1 falling hammer

    = 0.8 drop hammer with friction Winchb = L =

    AEW = P = L = .A = E = /.2h = Qu = Ultimate bearing capacity S = /

    10

    . Gates formula ( F.S = 3)( )sbEeap hhu log=

    PU = kips or kN Eh = kips ft or kN ms a b

    Fps in 27 1.0 SI mm 104.5 2.4

    eh = 0.75 for drop and 0.85 for all other hammersPU = Ultimate pile capacityeh = hammer efficiencyEh = manufacturers hammer energy ratingS = (amount of point penetration per blow)

  • - 17 -

    . Danish formula ( F.S. = 3 6)

    1CsEeP hhu += AE

    LEeC hh21

    = (units of s)L =

    4.13

    1.

    2.

    3. End Bearing Pile Janbu Hiley

    4. 88 Michigan State Highway Commission(1965) Gate 400 Kips (200 ) Olson Flaate (1967) 93 Hiley, Janbu Gate

    5. - load test failure

    - DH Gate Hiley, Engineering News So Gate 1.63

    - Janbu, Hiley, So Modified Eng News Janbu 1.54

    - Gate6. 6.1 End Bearing Pile

    Janbu Gate 200

  • - 18 -

    6.2 20 DH Gate Janbu

    - Modified Gate Formula( )22.8log6.44. += sthWR ru DH - Modified Janbu Formular

    absKu

    hWR ru

    21.

    .14.2

    +=

    RU = ,

    Wr = , h = , t = , s = ,

    ++=d

    du CCK 11

    r

    Pd W

    WC 15.075.0 +=Wp = ,

    2....sEALhWr=

    E = Mod. Of E = 1.8 x 106 /..L = , a = e.Wr h : (e = 0.80)b = L/A.E.A = , .

    7. ( ) .

  • - 19 -

    () 8. Safe load Fabers Formula

    ( )20.

    8.01.

    7. 2 sa

    Aa

    Hn

    F

    dHWP +

    +=

    Pa = Safe load, KN. tonsW = .., KN. tonsH = , . d = , . AS = , .. .n = ( . )a2 = 1 Imperial unit

    = 107.3 SI unitF = (1.5 2.5)

    4.14 . (Cohesive Soil) 1) (Pile Volume displacement) 2-5

    (remold) pore pressure 30 Shear Strength Skin resistance Consolidation porepressure

    2) 20 Skin friction

    3) 20 adhesion

    4) 20 adhesion 1.2-1.8 Skin resistance capacity

  • - 20 -

    5) (Heave) plastic Soil

    1) 28% Undisturbed Strength field vane test

    2) Undrain Shear Strength

    3) 14 4) Induced pore pressure local Shear failure Zone5) excess pore pressure 1

    () 1) (Subsidence)

    Silt saturated

    2) (Compaction) loose Sand (relative density Dr =17%) 3 3 2.5 3.5 mediumdense Sand (Dr = 3.5%) 4.5 5.5 3.0 - 4.5 loose Sand ( 6 ) Ultimate load capacity (i.e efficiency 1) dense Sand group efficiency 1

  • - 21 -

    5.

    Stress overlap Stress overlap Pile cap check effect

    1) Converse Labarre Method ( ) ( )

    nmnmmnE

    .90111 ++=

    E = m = n = = d/s d = s =

    E 2) Feld Method 1/16

    () 2 3 4 5 6 9E(%) 94 87 82 80 77 72

  • - 22 -

    3) Keriselos Method

    E

    1086543

    2.5

    1.00.950.900.850.750.650.55

    4) Sowers clay Group Efficiency 4.04.01.1 nSo +=

    ( ) 1.09.04.05.0 += nE

    n Clay 2 3

    Cohesionless Soil 2.5 4 3. x

    x E

  • - 23 -

    6. ( Static pile formula ) 6.1 ( Friction Pile ) ( Pile group ) .-

    . = n. AP. Ca . ( 2 ) () n =

    Ap = 1 Ca = adhesion = oc c. ( ca

    90 cohesion , 80 cohesion adhesion factor curve 4 ) 8

    = adhesion factor. () = c.L.P. + N c. c. Ag .( 8 )

    c = ( shear strength ) ( cohesion ) /

    L = ( p = = 2 ( F + B )

  • - 24 -

    Undrained Shear Strength , c, tons / m.2

    1. Adhesion Factors for Clays C a = C

  • - 25 -Ag = ( = F.B. )

    cN = 2. 3

    1

    cN D / B 12345

    7.88.48.88.98.9

    6.47

    7.87.57.5

    F = , B = ,D =

  • - 26 -

    1 ..

    L = 8.0 .D = 80 .qu = Unconfined Compressive Strength 5.0 / .2n = = 12 F = 1.8 .B = 2.7 .

    ( 1 ) = n. Ap . ca

    = n. Ap . cq u = 5 / 2c = 2.5 / 2

    4 = 0.85N = 12

    ( )( )( )LDAp == ( 3.14 ) ( 0.30 ) ( 8.0 )= 7.536 2

    ca = 0.85 x 2.5= 2.125 / 2

    = ( 12 ) ( 7.536 ) ( 2.125 )= 192.2

    F.S = 3.0 Allowable load = 192.2 = 64.1

    32.

    gc AcNcLp .+=c = 2.5 / 2L = 8.0 .P = 2 ( 1.8 + 2.7 ) = 9.0

  • - 27 -Ag = 1.8 x 2.7 = 4.86 2D/B = 4.4 , cN = 7.5

    2.5 x 8 x 9 x 7.5 x 2.5 x 4.86= 271

    F.S = 3 Allowable load on pile group = 271

    3= 90.3

    Allowable load on pile group= 64.1

    6.2 Consolidation 20 Ultimate Bearing Load = Ultimate End Bearing

    FSo + Skin Friction Capacity - ..

    Ultimate End Bearing ( Q b ) .Skin Friction Capacity ( Q f ) . FSo ( 3 )

    . Ultimate End Bearing of a Single Pile Terzaghis Equation

    NBDNcNq qcb 4.02.1 ++= . (4) qb Ultimate End Bearing Capacity / .2

    c = = Effective Unit Weight / .3D = .

  • - 28 -B = .

    Clay = 0, NC = 5.7 , Nq = 1, N = 0 Equation (4)

    Dcqb += 4.7 25

    BD

    Dcqb += 9 ( Terzaghi )

    standardpenetration test c 6. c

    C = 0 NBDNq qb 4.0+=

    Nq, N = Bearing Capacity Factor 7.. Skin Friction Capacity

    tan2DKDcq saf += ..( 5 ) qf = Ultimate Skin Friction Capacity, / .

    Ca = Adhesion / .2= c

    = Adhesion Factor 4 = Angle of Friction

    43

    Ks = Coefficient of Earth pressure . -

    N Ks 0 4

    4 10 10 30 30 50

    0.50.60.70.8

  • - 29 -

    6 PENETRATION RESISTANCE

    VS. UNCONFINED STRENGTH OF CLAY

  • - 30 - N q Nr

    7 Corelation of Standard Penetration with Bearing Capacity Factors and Angle of Shearing Resistance ( Peck , Hanson, Thornburn 1953 )

    N = adjusted number of blow= ( )15

    2115 + N

    N = observed number of blow

  • - 31 -Skin Friction For Clay

    = 0 Equation (5) eDq f =Skin Friction For Sand

    C = 0Equation (5)

    = 43tan2DKq sf

    2 .. ( allowable load )

  • - 32 -

    Qu + .. = fb FFSF +0

    (a)

    .. = 0.30 x 0.30 x 2400 x 20= 4320 Kg.

    Fb = qb x Abqb = 9c + D

    = 9 x 20 + ( 0.5 x 14 x 0.6 x 5 + 08. x 1.0 ) 190.8 / 2 Ab = 0.30 x 0.30 = 0.09 2

    Fb = 190.8 x 0.09= 17.1

    Ff = Qf x As= 1c1D1As+ 2c2D2As= As(1c1D1+ 2c2D2 )

    As = 0.30 x 4 = 1.20 2 / .1c1D1 = 0.4 x 12 x 5.0

    = 24 2c2D2 = 0.30 x 20 x 1.0

    = 7.6 Ff = 1.2 ( 24 + 7.6 )

    = 37.9 (a ) FSo = 3

    9.3731.173.4 +=+uQ= 43.6

    Qu = 43.6 4.3= 39.3

    = 2.572.15

    5.23.39 ==aQ /

  • - 33 -

    3 ( allowable load )

    Qu + .. = fb FFSF +0

    .(b)

    Qu = ? .. = 4.3

    Fb = qb x Ab NBDNq qb 4.0+=

    D = 0.5 x 14 + 0.6 x 5 + 1.0 x 1= 11 / 2

  • - 34 -

    0.4 B N = 0.4 x 0.30 x 1.0 x 46= 5.52 / 2

    NBDNq qb 4.0+== 11 x 43 + 5.52= 478.5 / 2

    Fb = 478.5 x 0.09= 43.1

    21 fff

    FFF +=Ff 1 = Friction very stiff clay

    = sf AQ 1 11 CDq f =

    = 0.4 x 12 x 5.0= 24.0 / .

    Ff 1 = 24 x 1.20 = 28.8 Ff 2 = Friction 1.0 .

    = qf 2 x A s

    43tan

    21 2

    112

    += DDDKq Sf= 0.7 ( 10.0 + x 1.0 x ( 1.0 ) 2 tan x 36= 0.7 ( 10.0 + 0.5 ) tan 27= 7.35 x tan 27= 3.75

    Ff 2 = 3.75 x 1.20= 4.50

    Ff = Ff 1 + Ff 2= 28.8 + 4.50= 33.3

    ( b ) FSo = 3Qu + .. = Fb + Ff

    3Qu + 4.3 = 43.1 + 33.3

    3= 47.7

  • - 35 -Qu = 47.7 - 4.3 = 43.4

    = 2.5Qu = 43.4 = 17.35

    2.5

    6.3 Dutch Cone Penetration Test

    dutch cone

    ( )=

    +=n

    icaifiu WAQPLQQ

    1 ..(6)

    Qu = Qfi = . Qca =

    4d d ( d = )

    Li = P = A = W =

    , = 3 ( )

    .

  • -36-

    7. 7.1 I Design of prestress concre I PILE

    1. PILE SECTION PROPERTIES

    X4 X5 X4 SIZE OF PILE = 18.000 CM.LENGTH = 14.00 M.

    X1 X1 = 3.00 CM. X2 = 2.00 CM.

    X2 X3 = 8.00 CM.X4 = 6.00 CM.

    X3 X5 = 6.00 CM.Ag = 204.00 CM^2PERIMETER = 89.30 CM.

    X2 DEAD LAOD = 48.96 KG/MMIN MOMENT = 205.36 KG-(2 POINT PIC

    X1 IMPACT LOAD = 30.00 %MAX MOMENT = 266.97 KG-M

    MOMENT OF INERTIA Ix = 7,708.00 CM^4SECTION MODULUS(TOP) Zt = 856.44 CM^3SECTION MODULUS(BOT) Zb = 856.44 CM^3

    2. DESIGN CRITERIA

    1. fc' = 400.00 KSC.2. fci' = 0.8fc' = 320.00 KSC. 3. fci = 0.6fci' = 192.00 KSC.4. fti = -0.8 SQR fci' = -14.31 KSC.5. fca = 0.45fc' = 180.00 KSC. (BENDING)

    = 0.33fc' = 132.00 KSC. (BEARING)6. fta = -1.59 SQR fc' = -31.80 KSC.7. fr = -1.99 SQR fc' = -39.80 KSC.

    3. P.C. WIRE OR STRAND

    TYPE OF P.C. WIRE OR STRAND P.C.WIREDIAMETER OF P.C.WIRE OR STRAND = 5.000 m.m.CROSSECTIONAL AREA ( a ) = 0.1964 CM^2fs' = 18,000.00 KSC.fsi = 70% OF fs' = 12,600.00 KSC.Fi/Wire = fsi*a = 2474.64 KG.Fe/Wire ( LOSS 20% ) = 1,979.71 KG.NO. OF P.C. WIRE OR STRAND = 8.00PERCENTAGE OF STEEL ( Pg ) = 0.7702

    4. CHECK STRESS

    Fe/Ag =EFFECTIVE PRESTRESS = 77.64 KSC.Mmax/Zt = 31.17 KSC. Mmax/Zb = 31.17 KSC.Mmin/Zt = 23.98 KSC.Mmin/Zb = 23.98 KSC.

    4.1 Fe/Ag+Mmax/Zt ( pc ) = 108.81 KSC.

  • IF pc IS LESS THAN fca = 180 KSC.(CONDITION A)O.K.

    4.2 Fe/Ag-Mmax/Zb ( pt ) = 46.46 KSC. IF pt IS MORE THAN fta = -31.80 KSC.

    (CONDITION B)O.K.

    4.3 Fi/Ag+Mmin/Zt ( pci ) = 121.02 KSC. IF pci IS LESS THAN fci = 192 KSC.

    (CONDITION C)O.K.4.4 Fi/Ag-Mmin/Zb ( pti ) = 73.07 KSC.

    IF pti IS MORE THAN fti = -14.31 KSC.(CONDITION D)O.K.

    5. CONCLUSION OF CONDITION

    CONDITION A O.K.CONDITION B O.K.CONDITION C O.K.CONDITION D O.K.

    6. CRACKING MOMENT

    Mcr =(Fe/Ag-fr)*Zb = 1,005.77 KG-M

    7. ALLOWABLE CONCENTRIC LOAD

    Na = (0.33fc'-0.27Fe/Ag)Ag = 22,651.82 K.G.

    = 22.65 TONS

    8. ALLOWABLE LOAD AT DRIVING

    Ncr = (3.1416^2*Ec*I)/L^2Ec = 4270*W^1.5* SQR fc'

    = 327,496.75 KSC.Ix = 7,708.00 CM^4Ncr = 12,711.43 K.G.

    = 12.71 TONS

    9. ULTIMATE DESIGN

    As = 0.7856 CM^2 b = d = 18.000 CM

    d' = 2.200 CM dp = d - d' = 15.800 CM p = As/bdp = 0.0028

    fs' = 18,000.00 KSC. fc' = 400 KSC.

    fsu fs'(1-0.5pfs'/fc') = 16,881.27 KSC. q = pfsu/fc' = 0.12 (UNDERREINFORCED)

    Mu = 0.9*{As*fsu*dp(1-0.59q)}= 1,756.13 KG-M

    CRACKING MOMENT = 1,005.77 KG-M F.S. = 1.75

    RECOMMEND

    1 TO ECONOMIZE AND CONTROL CRACKING pt SHOULD BE NEARLY 02 EFFECTIVE PRESTRESS SHOULD BE LESS TH = 80 KSC.3 SUITABLE EFF.PRESTRESS FOR 21 METERS LONG = 40 KSC.

  • -38-

    7.2 DESIGN OF P.C. SQUARE PILE

    1. PILE SECTION PROPERTIES

    DIMENTION = 40.00 CM.LENGTH = 13.50 M.DEAD LOAD OF PILE = 392.00 KG/MMINIMUM MOMENT(TWO POINT PICK) = 1,528.86 KG-MPROVIDE IMPACT LOAD = 30.00 %MAXIMUM MOMENT = 1,987.52 KG-MCROSSECTION AREA Ag = 1,600.00 CM^2SECTION MODULUS( Zt = 10,666.67 CM^3SECTION MODULUS( Zb = 10,666.67 CM^3

    2. DESIGN CRITERIA

    1. fc' = 400.00 KSC.2. fci' = 0.8fc' = 320.00 KSC. 3. fci = 0.6fci' = 192.00 KSC.4. fti = -0.8 SQR fci' = -14.31 KSC.5. fca = 0.45fc' = 180.00 KSC. (BENDING)

    = 0.33fc' = 132.00 KSC. (BEARING)6. fta = -1.59 SQR fc' = -31.80 KSC.7. fr = -1.99 SQR fc' = -39.80 KSC.

    3. P.C. WIRE OR STRAND

    TYPE OF P.C. WIRE OR STRAND STRAND GRADE 250KDIAMETER OF P.C.WIRE OR STRAND = 0.375 inchCROSSECTIONAL AREA ( a ) = 0.5175 CM^2fs' = 18,300.00 KSC.fsi = 70% OF fs' = 12,810.00 KSC.Fi/Wire = fsi*a = 6629.175 KG.Fe/Wire ( LOSS 20% ) = 5,303.34 KG.NO. OF P.C. WIRE OR STRAND = 8.00PERCENTAGE OF ST( Pg ) = 0.2588

    4. CHECK STRESSFe/Ag EFFECTIVE PRESTRESS = 26.52 KSC.

    Mmax/Zt = 18.63 KSC. Mmax/Zb = 18.63 KSC.Mmin/Zt = 14.33 KSC.Mmin/Zb = 14.33 KSC.

    4.1 Fe/Ag+Mmax/Zt ( pc ) = 45.15 KSC. IF pc IS LESS THAN fca = 180 KSC.

    (CONDITION A) O.K.4.2 Fe/Ag-Mmax/Zb ( pt ) = 7.88 KSC.

    IF pt IS MORE THAN fta = -31.80 KSC.(CONDITION B) O.K.

    4.3 Fi/Ag+Mmin/Zt ( pci ) = 47.48 KSC. IF pci IS LESS THAN fci = 192 KSC.

    (CONDITION C) O.K.4.4 Fi/Ag-Mmin/Zb ( pti ) = 18.81 KSC.

    IF pti IS MORE THAN fti = -14.31 KSC.(CONDITION D) O.K.

  • 5. CONCLUSION OF CONDITION

    CONDITION A O.K.CONDITION B O.K.CONDITION C O.K.CONDITION D O.K.

    6. CRACKING MOMENT

    Mcr =(Fe/Ag-fr)*Zb = 7,073.78 KG-M

    7. ALLOWABLE CONCENTRIC LOAD

    Na = (0.33fc'-0.27Fe/Ag)Ag = 199,744.79 K.G.

    = 199.74 TONS

    8. ALLOWABLE LOAD AT DRIVING

    Ncr = (3.1416^2*Ec*I)/L^2Ec = 4270*W^1.5* SQR fc'

    = 327,496.75 KSC.I = b^4/12 CM^4

    = 213,333.33 CM^4Ncr = 378,355.42 K.G.

    = 378.36 TONS

    9. ULTIMATE DESIGN

    As = 2.0700 CM^2 b = d = 40.000 CM

    d' = 4.500 CM dp = d - d' = 35.500 CM p = As/bdp = 0.0015

    fs' = 18,300.00 KSC. fc' = 400 KSC.

    fsufs'(1-0.5pfs'/fc') = 17,689.77 KSC. q = pfsu/fc' = 0.06 (UNDERREINFORCED)

    ULTIMATE MOMENT (Mu) = 0.9*{As*fsu*dp(1-0.59q)}Mu = 11,254.39 KG-M

    CRACKING MOMENT (Mcr) = 7,073.78 KG-M F.S.= Mu/Mcr = 1.59

    RECOMMEND

    1. TO ECONOMIZE AND CONTROL CRACKING pt SHOULD BE NEARLY 02. EFFECTIVE PRESTRESS SHOULD BE LESS THAN 0.2fc' 80 KSC.3. SUITABLE EFF.PRESTRESS FOR 21 METERS LONG = 40 KSC.

  • -40-

    7.3 DESIGN OF STEEL PLATE

    1.SECTION OF PILE

    DIMENTION ( b ) = 25.00 CM.LENGTH = 10.50 M.

    2.MATERIAL PROPRETY

    STRENGTH OF CONCRETE (Fc') = 350.00 KSC.STRENGTH OF STEEL (Fy) = 3,000.00 KSC.

    3.LAOD-MOMENT

    DEAD LOAD OF PILE = 150.00 KG/MMOMENT = 353.90 KG-MPROVIDE IMPACT LOAD = 30.00 %MAXIMUM MOMENT = 460.07 KG-M

    4.WELD JOINT DESIGN

    CONSIDER MOMENT (M) = 460.07 KG-MREQUIRED ONE EDGE STRENGTH (T) = M*100/b KG-M

    = 1,840.29 KGUSE WELDING ROD TYPE = E60SIZE OF THROAT = 3.00 m.m.WELD STRENGTH (Fv) = 267.00 KG/CMWELD LENGTH (Lw) = T/Fv CM.

    = 6.89 CM.IF Lw IS LESS THAN = 25.00 CM.

    (CONDITION A) O.K.5.DOWEL BARS

    CENTER OF STEEL FROM EDGE (d) = 3.00 CM.CONSIDER FORCE (P) = T*b/(b-2d) KG.

    = 2,421.44 KG.REQUIRED AREA OF STEEL = P/Fy*0.5 CM^2

    = 1.61 CM^2DIAMETER OF DEFORMED BARS (Db) = 12.00 m.m.NO.OF DEFORMED BARS PER ONE EDGE = 2.00AREA OF STEEL PER ONE EGDE (a) = 2.26 CM^2IF a IS GREATHER THAN = 1.61 CM^2

    (CONDITION B) O.K.DEVELOPMENT LENGTH (ld)(ACI CODE) = 0.0594Ab*Fy/SQRFc'

    = 10.77 CM.BUT NOT LESS THAN ( ACI CODE) = 0.006*(Db/10)/Fy

    = 21.60 CM.RECOMMEND ld = 30 CM.

  • 6.END PLATE CONSIDER MOMENT = T*d KG-CM

    = 5,520.88 KG-CMTHICKNESS OF END PLATE (t1) = 6.00 m.m.THICKNESS OF SIDE PLATE (t2) = 3.00 m.m.HEIGHT OF SIDE PLATE (h) = 5.00 CM.

    7.FIND C.G. OF STEEL PLATECROSS SECTION AREA = 18.00 CM^2C.G. OF PLATE (X) = 0.77 CM.MOMENT OF INERTIA C.G. (I) = 26.30 CM^4STRESS (p) = MC/I KSC.

    C = 4.83 CM.p = 1,014.61 KSC.

    IF p IS LESS THAN = 1,200.00 KSC.(CONDITION C) O.K.

    8.CONCLUSION OF CONDITIONCONDITION A O.K.CONDITION B O.K.CONDITION C O.K.

    T T TM

    T Plate

    Plate t1

    vh P P

    d dt2 b t2 b

  • - , , 2524 - , 2530 - , , 2521 - .. , , , 2546 - . , ( - ) , 2545

    - Ralph B. Peck , Water E. Hanson , Thomas H . Thornburn , Foundation Engineering.

    2 nd Edition , June 1973 - Joseph E. Bowles , Foundation Analysis and Design 5 th Edition , 1997

    total.pdf6.pdf 1 1NKs 6 3 \(

    -.pdf

    -.pdf