6ra24 englisch

Upload: raja-shannmugam

Post on 03-Jun-2018

239 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 6RA24 Englisch

    1/495

    SIMOREG K

    6RA24

    Instruction Manual

    SIMOREGSIEMENS

    Edition: G Order-No.: 6RX1240-0AD76

  • 8/12/2019 6RA24 Englisch

    2/495

  • 8/12/2019 6RA24 Englisch

    3/495

  • 8/12/2019 6RA24 Englisch

    4/495

  • 8/12/2019 6RA24 Englisch

    5/495

  • 8/12/2019 6RA24 Englisch

    6/495

  • 8/12/2019 6RA24 Englisch

    7/495

  • 8/12/2019 6RA24 Englisch

    8/495

  • 8/12/2019 6RA24 Englisch

    9/495

  • 8/12/2019 6RA24 Englisch

    10/495

  • 8/12/2019 6RA24 Englisch

    11/495

  • 8/12/2019 6RA24 Englisch

    12/495

  • 8/12/2019 6RA24 Englisch

    13/495

  • 8/12/2019 6RA24 Englisch

    14/495

  • 8/12/2019 6RA24 Englisch

    15/495

  • 8/12/2019 6RA24 Englisch

    16/495

  • 8/12/2019 6RA24 Englisch

    17/495

  • 8/12/2019 6RA24 Englisch

    18/495

  • 8/12/2019 6RA24 Englisch

    19/495

  • 8/12/2019 6RA24 Englisch

    20/495

  • 8/12/2019 6RA24 Englisch

    21/495

  • 8/12/2019 6RA24 Englisch

    22/495

  • 8/12/2019 6RA24 Englisch

    23/495

  • 8/12/2019 6RA24 Englisch

    24/495

  • 8/12/2019 6RA24 Englisch

    25/495

    03.94

    0/1

    SIMOREG K

    6RA24 converters with microprocessor,

    from 6kW to 774kW in a B6C fully-controlledtree-phase bridge circuit and

    circulating current-free, anti-parallel circuit

    (B6)A(B6)C for DC variable-speed drives

    Instruction Manual

    Order-No.: 6RX1240-0AD76

    Converter software release: starting with 2.00

    March 1994 Edition

  • 8/12/2019 6RA24 Englisch

    26/495

  • 8/12/2019 6RA24 Englisch

    27/495

  • 8/12/2019 6RA24 Englisch

    28/495

  • 8/12/2019 6RA24 Englisch

    29/495

  • 8/12/2019 6RA24 Englisch

    30/495

  • 8/12/2019 6RA24 Englisch

    31/495

  • 8/12/2019 6RA24 Englisch

    32/495

  • 8/12/2019 6RA24 Englisch

    33/495

  • 8/12/2019 6RA24 Englisch

    34/495

  • 8/12/2019 6RA24 Englisch

    35/495

  • 8/12/2019 6RA24 Englisch

    36/495

  • 8/12/2019 6RA24 Englisch

    37/495

  • 8/12/2019 6RA24 Englisch

    38/495

  • 8/12/2019 6RA24 Englisch

    39/495

  • 8/12/2019 6RA24 Englisch

    40/495

  • 8/12/2019 6RA24 Englisch

    41/495

  • 8/12/2019 6RA24 Englisch

    42/495

    03.94

    2/6

  • 8/12/2019 6RA24 Englisch

    43/495

  • 8/12/2019 6RA24 Englisch

    44/495

  • 8/12/2019 6RA24 Englisch

    45/495

  • 8/12/2019 6RA24 Englisch

    46/495

  • 8/12/2019 6RA24 Englisch

    47/495

  • 8/12/2019 6RA24 Englisch

    48/495

  • 8/12/2019 6RA24 Englisch

    49/495

  • 8/12/2019 6RA24 Englisch

    50/495

  • 8/12/2019 6RA24 Englisch

    51/495

  • 8/12/2019 6RA24 Englisch

    52/495

  • 8/12/2019 6RA24 Englisch

    53/495

  • 8/12/2019 6RA24 Englisch

    54/495

  • 8/12/2019 6RA24 Englisch

    55/495

  • 8/12/2019 6RA24 Englisch

    56/495

  • 8/12/2019 6RA24 Englisch

    57/495

  • 8/12/2019 6RA24 Englisch

    58/495

  • 8/12/2019 6RA24 Englisch

    59/495

  • 8/12/2019 6RA24 Englisch

    60/495

  • 8/12/2019 6RA24 Englisch

    61/495

  • 8/12/2019 6RA24 Englisch

    62/495

  • 8/12/2019 6RA24 Englisch

    63/495

  • 8/12/2019 6RA24 Englisch

    64/495

  • 8/12/2019 6RA24 Englisch

    65/495

  • 8/12/2019 6RA24 Englisch

    66/495

  • 8/12/2019 6RA24 Englisch

    67/495

  • 8/12/2019 6RA24 Englisch

    68/495

  • 8/12/2019 6RA24 Englisch

    69/495

  • 8/12/2019 6RA24 Englisch

    70/495

  • 8/12/2019 6RA24 Englisch

    71/495

  • 8/12/2019 6RA24 Englisch

    72/495

  • 8/12/2019 6RA24 Englisch

    73/495

  • 8/12/2019 6RA24 Englisch

    74/495

  • 8/12/2019 6RA24 Englisch

    75/495

  • 8/12/2019 6RA24 Englisch

    76/495

  • 8/12/2019 6RA24 Englisch

    77/495

  • 8/12/2019 6RA24 Englisch

    78/495

    03.94

    5/24

  • 8/12/2019 6RA24 Englisch

    79/495

  • 8/12/2019 6RA24 Englisch

    80/495

  • 8/12/2019 6RA24 Englisch

    81/495

  • 8/12/2019 6RA24 Englisch

    82/495

  • 8/12/2019 6RA24 Englisch

    83/495

  • 8/12/2019 6RA24 Englisch

    84/495

  • 8/12/2019 6RA24 Englisch

    85/495

  • 8/12/2019 6RA24 Englisch

    86/495

  • 8/12/2019 6RA24 Englisch

    87/495

  • 8/12/2019 6RA24 Englisch

    88/495

  • 8/12/2019 6RA24 Englisch

    89/495

  • 8/12/2019 6RA24 Englisch

    90/495

  • 8/12/2019 6RA24 Englisch

    91/495

  • 8/12/2019 6RA24 Englisch

    92/495

  • 8/12/2019 6RA24 Englisch

    93/495

  • 8/12/2019 6RA24 Englisch

    94/495

  • 8/12/2019 6RA24 Englisch

    95/495

  • 8/12/2019 6RA24 Englisch

    96/495

  • 8/12/2019 6RA24 Englisch

    97/495

  • 8/12/2019 6RA24 Englisch

    98/495

  • 8/12/2019 6RA24 Englisch

    99/495

  • 8/12/2019 6RA24 Englisch

    100/495

  • 8/12/2019 6RA24 Englisch

    101/495

  • 8/12/2019 6RA24 Englisch

    102/495

  • 8/12/2019 6RA24 Englisch

    103/495

  • 8/12/2019 6RA24 Englisch

    104/495

  • 8/12/2019 6RA24 Englisch

    105/495

  • 8/12/2019 6RA24 Englisch

    106/495

  • 8/12/2019 6RA24 Englisch

    107/495

  • 8/12/2019 6RA24 Englisch

    108/495

  • 8/12/2019 6RA24 Englisch

    109/495

  • 8/12/2019 6RA24 Englisch

    110/495

  • 8/12/2019 6RA24 Englisch

    111/495

  • 8/12/2019 6RA24 Englisch

    112/495

  • 8/12/2019 6RA24 Englisch

    113/495

  • 8/12/2019 6RA24 Englisch

    114/495

  • 8/12/2019 6RA24 Englisch

    115/495

  • 8/12/2019 6RA24 Englisch

    116/495

  • 8/12/2019 6RA24 Englisch

    117/495

  • 8/12/2019 6RA24 Englisch

    118/495

  • 8/12/2019 6RA24 Englisch

    119/495

  • 8/12/2019 6RA24 Englisch

    120/495

    03.94

    6/42

  • 8/12/2019 6RA24 Englisch

    121/495

  • 8/12/2019 6RA24 Englisch

    122/495

  • 8/12/2019 6RA24 Englisch

    123/495

  • 8/12/2019 6RA24 Englisch

    124/495

  • 8/12/2019 6RA24 Englisch

    125/495

  • 8/12/2019 6RA24 Englisch

    126/495

  • 8/12/2019 6RA24 Englisch

    127/495

  • 8/12/2019 6RA24 Englisch

    128/495

  • 8/12/2019 6RA24 Englisch

    129/495

  • 8/12/2019 6RA24 Englisch

    130/495

  • 8/12/2019 6RA24 Englisch

    131/495

  • 8/12/2019 6RA24 Englisch

    132/495

  • 8/12/2019 6RA24 Englisch

    133/495

  • 8/12/2019 6RA24 Englisch

    134/495

  • 8/12/2019 6RA24 Englisch

    135/495

  • 8/12/2019 6RA24 Englisch

    136/495

  • 8/12/2019 6RA24 Englisch

    137/495

  • 8/12/2019 6RA24 Englisch

    138/495

  • 8/12/2019 6RA24 Englisch

    139/495

  • 8/12/2019 6RA24 Englisch

    140/495

  • 8/12/2019 6RA24 Englisch

    141/495

  • 8/12/2019 6RA24 Englisch

    142/495

  • 8/12/2019 6RA24 Englisch

    143/495

  • 8/12/2019 6RA24 Englisch

    144/495

  • 8/12/2019 6RA24 Englisch

    145/495

  • 8/12/2019 6RA24 Englisch

    146/495

  • 8/12/2019 6RA24 Englisch

    147/495

  • 8/12/2019 6RA24 Englisch

    148/495

  • 8/12/2019 6RA24 Englisch

    149/495

  • 8/12/2019 6RA24 Englisch

    150/495

    03.94

    7/30

  • 8/12/2019 6RA24 Englisch

    151/495

  • 8/12/2019 6RA24 Englisch

    152/495

  • 8/12/2019 6RA24 Englisch

    153/495

  • 8/12/2019 6RA24 Englisch

    154/495

  • 8/12/2019 6RA24 Englisch

    155/495

  • 8/12/2019 6RA24 Englisch

    156/495

  • 8/12/2019 6RA24 Englisch

    157/495

  • 8/12/2019 6RA24 Englisch

    158/495

  • 8/12/2019 6RA24 Englisch

    159/495

  • 8/12/2019 6RA24 Englisch

    160/495

  • 8/12/2019 6RA24 Englisch

    161/495

  • 8/12/2019 6RA24 Englisch

    162/495

  • 8/12/2019 6RA24 Englisch

    163/495

  • 8/12/2019 6RA24 Englisch

    164/495

  • 8/12/2019 6RA24 Englisch

    165/495

  • 8/12/2019 6RA24 Englisch

    166/495

  • 8/12/2019 6RA24 Englisch

    167/495

  • 8/12/2019 6RA24 Englisch

    168/495

  • 8/12/2019 6RA24 Englisch

    169/495

  • 8/12/2019 6RA24 Englisch

    170/495

  • 8/12/2019 6RA24 Englisch

    171/495

  • 8/12/2019 6RA24 Englisch

    172/495

  • 8/12/2019 6RA24 Englisch

    173/495

  • 8/12/2019 6RA24 Englisch

    174/495

  • 8/12/2019 6RA24 Englisch

    175/495

  • 8/12/2019 6RA24 Englisch

    176/495

  • 8/12/2019 6RA24 Englisch

    177/495

  • 8/12/2019 6RA24 Englisch

    178/495

  • 8/12/2019 6RA24 Englisch

    179/495

  • 8/12/2019 6RA24 Englisch

    180/495

  • 8/12/2019 6RA24 Englisch

    181/495

  • 8/12/2019 6RA24 Englisch

    182/495

  • 8/12/2019 6RA24 Englisch

    183/495

  • 8/12/2019 6RA24 Englisch

    184/495

  • 8/12/2019 6RA24 Englisch

    185/495

  • 8/12/2019 6RA24 Englisch

    186/495

  • 8/12/2019 6RA24 Englisch

    187/495

  • 8/12/2019 6RA24 Englisch

    188/495

  • 8/12/2019 6RA24 Englisch

    189/495

  • 8/12/2019 6RA24 Englisch

    190/495

  • 8/12/2019 6RA24 Englisch

    191/495

  • 8/12/2019 6RA24 Englisch

    192/495

  • 8/12/2019 6RA24 Englisch

    193/495

  • 8/12/2019 6RA24 Englisch

    194/495

  • 8/12/2019 6RA24 Englisch

    195/495

  • 8/12/2019 6RA24 Englisch

    196/495

  • 8/12/2019 6RA24 Englisch

    197/495

  • 8/12/2019 6RA24 Englisch

    198/495

  • 8/12/2019 6RA24 Englisch

    199/495

  • 8/12/2019 6RA24 Englisch

    200/495

  • 8/12/2019 6RA24 Englisch

    201/495

  • 8/12/2019 6RA24 Englisch

    202/495

  • 8/12/2019 6RA24 Englisch

    203/495

  • 8/12/2019 6RA24 Englisch

    204/495

  • 8/12/2019 6RA24 Englisch

    205/495

  • 8/12/2019 6RA24 Englisch

    206/495

  • 8/12/2019 6RA24 Englisch

    207/495

  • 8/12/2019 6RA24 Englisch

    208/495

  • 8/12/2019 6RA24 Englisch

    209/495

  • 8/12/2019 6RA24 Englisch

    210/495

  • 8/12/2019 6RA24 Englisch

    211/495

  • 8/12/2019 6RA24 Englisch

    212/495

  • 8/12/2019 6RA24 Englisch

    213/495

  • 8/12/2019 6RA24 Englisch

    214/495

  • 8/12/2019 6RA24 Englisch

    215/495

  • 8/12/2019 6RA24 Englisch

    216/495

  • 8/12/2019 6RA24 Englisch

    217/495

  • 8/12/2019 6RA24 Englisch

    218/495

  • 8/12/2019 6RA24 Englisch

    219/495

  • 8/12/2019 6RA24 Englisch

    220/495

  • 8/12/2019 6RA24 Englisch

    221/495

  • 8/12/2019 6RA24 Englisch

    222/495

  • 8/12/2019 6RA24 Englisch

    223/495

  • 8/12/2019 6RA24 Englisch

    224/495

  • 8/12/2019 6RA24 Englisch

    225/495

  • 8/12/2019 6RA24 Englisch

    226/495

  • 8/12/2019 6RA24 Englisch

    227/495

  • 8/12/2019 6RA24 Englisch

    228/495

  • 8/12/2019 6RA24 Englisch

    229/495

  • 8/12/2019 6RA24 Englisch

    230/495

  • 8/12/2019 6RA24 Englisch

    231/495

  • 8/12/2019 6RA24 Englisch

    232/495

  • 8/12/2019 6RA24 Englisch

    233/495

  • 8/12/2019 6RA24 Englisch

    234/495

  • 8/12/2019 6RA24 Englisch

    235/495

  • 8/12/2019 6RA24 Englisch

    236/495

  • 8/12/2019 6RA24 Englisch

    237/495

  • 8/12/2019 6RA24 Englisch

    238/495

  • 8/12/2019 6RA24 Englisch

    239/495

  • 8/12/2019 6RA24 Englisch

    240/495

  • 8/12/2019 6RA24 Englisch

    241/495

  • 8/12/2019 6RA24 Englisch

    242/495

  • 8/12/2019 6RA24 Englisch

    243/495

  • 8/12/2019 6RA24 Englisch

    244/495

  • 8/12/2019 6RA24 Englisch

    245/495

  • 8/12/2019 6RA24 Englisch

    246/495

  • 8/12/2019 6RA24 Englisch

    247/495

  • 8/12/2019 6RA24 Englisch

    248/495

  • 8/12/2019 6RA24 Englisch

    249/495

  • 8/12/2019 6RA24 Englisch

    250/495

  • 8/12/2019 6RA24 Englisch

    251/495

  • 8/12/2019 6RA24 Englisch

    252/495

  • 8/12/2019 6RA24 Englisch

    253/495

  • 8/12/2019 6RA24 Englisch

    254/495

  • 8/12/2019 6RA24 Englisch

    255/495

  • 8/12/2019 6RA24 Englisch

    256/495

  • 8/12/2019 6RA24 Englisch

    257/495

  • 8/12/2019 6RA24 Englisch

    258/495

  • 8/12/2019 6RA24 Englisch

    259/495

  • 8/12/2019 6RA24 Englisch

    260/495

  • 8/12/2019 6RA24 Englisch

    261/495

  • 8/12/2019 6RA24 Englisch

    262/495

  • 8/12/2019 6RA24 Englisch

    263/495

  • 8/12/2019 6RA24 Englisch

    264/495

  • 8/12/2019 6RA24 Englisch

    265/495

  • 8/12/2019 6RA24 Englisch

    266/495

  • 8/12/2019 6RA24 Englisch

    267/495

  • 8/12/2019 6RA24 Englisch

    268/495

  • 8/12/2019 6RA24 Englisch

    269/495

  • 8/12/2019 6RA24 Englisch

    270/495

  • 8/12/2019 6RA24 Englisch

    271/495

  • 8/12/2019 6RA24 Englisch

    272/495

  • 8/12/2019 6RA24 Englisch

    273/495

  • 8/12/2019 6RA24 Englisch

    274/495

  • 8/12/2019 6RA24 Englisch

    275/495

  • 8/12/2019 6RA24 Englisch

    276/495

  • 8/12/2019 6RA24 Englisch

    277/495

  • 8/12/2019 6RA24 Englisch

    278/495

  • 8/12/2019 6RA24 Englisch

    279/495

  • 8/12/2019 6RA24 Englisch

    280/495

  • 8/12/2019 6RA24 Englisch

    281/495

  • 8/12/2019 6RA24 Englisch

    282/495

  • 8/12/2019 6RA24 Englisch

    283/495

  • 8/12/2019 6RA24 Englisch

    284/495

  • 8/12/2019 6RA24 Englisch

    285/495

  • 8/12/2019 6RA24 Englisch

    286/495

  • 8/12/2019 6RA24 Englisch

    287/495

  • 8/12/2019 6RA24 Englisch

    288/495

  • 8/12/2019 6RA24 Englisch

    289/495

  • 8/12/2019 6RA24 Englisch

    290/495

  • 8/12/2019 6RA24 Englisch

    291/495

  • 8/12/2019 6RA24 Englisch

    292/495

  • 8/12/2019 6RA24 Englisch

    293/495

  • 8/12/2019 6RA24 Englisch

    294/495

  • 8/12/2019 6RA24 Englisch

    295/495

  • 8/12/2019 6RA24 Englisch

    296/495

  • 8/12/2019 6RA24 Englisch

    297/495

  • 8/12/2019 6RA24 Englisch

    298/495

  • 8/12/2019 6RA24 Englisch

    299/495

  • 8/12/2019 6RA24 Englisch

    300/495

  • 8/12/2019 6RA24 Englisch

    301/495

  • 8/12/2019 6RA24 Englisch

    302/495

  • 8/12/2019 6RA24 Englisch

    303/495

  • 8/12/2019 6RA24 Englisch

    304/495

  • 8/12/2019 6RA24 Englisch

    305/495

  • 8/12/2019 6RA24 Englisch

    306/495

  • 8/12/2019 6RA24 Englisch

    307/495

  • 8/12/2019 6RA24 Englisch

    308/495

  • 8/12/2019 6RA24 Englisch

    309/495

  • 8/12/2019 6RA24 Englisch

    310/495

  • 8/12/2019 6RA24 Englisch

    311/495

  • 8/12/2019 6RA24 Englisch

    312/495

  • 8/12/2019 6RA24 Englisch

    313/495

  • 8/12/2019 6RA24 Englisch

    314/495

  • 8/12/2019 6RA24 Englisch

    315/495

  • 8/12/2019 6RA24 Englisch

    316/495

  • 8/12/2019 6RA24 Englisch

    317/495

  • 8/12/2019 6RA24 Englisch

    318/495

  • 8/12/2019 6RA24 Englisch

    319/495

  • 8/12/2019 6RA24 Englisch

    320/495

  • 8/12/2019 6RA24 Englisch

    321/495

  • 8/12/2019 6RA24 Englisch

    322/495

  • 8/12/2019 6RA24 Englisch

    323/495

  • 8/12/2019 6RA24 Englisch

    324/495

  • 8/12/2019 6RA24 Englisch

    325/495

  • 8/12/2019 6RA24 Englisch

    326/495

  • 8/12/2019 6RA24 Englisch

    327/495

  • 8/12/2019 6RA24 Englisch

    328/495

  • 8/12/2019 6RA24 Englisch

    329/495

  • 8/12/2019 6RA24 Englisch

    330/495

  • 8/12/2019 6RA24 Englisch

    331/495

  • 8/12/2019 6RA24 Englisch

    332/495

  • 8/12/2019 6RA24 Englisch

    333/495

  • 8/12/2019 6RA24 Englisch

    334/495

  • 8/12/2019 6RA24 Englisch

    335/495

  • 8/12/2019 6RA24 Englisch

    336/495

  • 8/12/2019 6RA24 Englisch

    337/495

  • 8/12/2019 6RA24 Englisch

    338/495

    03.94

    9/140

  • 8/12/2019 6RA24 Englisch

    339/495

  • 8/12/2019 6RA24 Englisch

    340/495

  • 8/12/2019 6RA24 Englisch

    341/495

  • 8/12/2019 6RA24 Englisch

    342/495

  • 8/12/2019 6RA24 Englisch

    343/495

  • 8/12/2019 6RA24 Englisch

    344/495

  • 8/12/2019 6RA24 Englisch

    345/495

  • 8/12/2019 6RA24 Englisch

    346/495

  • 8/12/2019 6RA24 Englisch

    347/495

  • 8/12/2019 6RA24 Englisch

    348/495

  • 8/12/2019 6RA24 Englisch

    349/495

  • 8/12/2019 6RA24 Englisch

    350/495

  • 8/12/2019 6RA24 Englisch

    351/495

  • 8/12/2019 6RA24 Englisch

    352/495

  • 8/12/2019 6RA24 Englisch

    353/495

  • 8/12/2019 6RA24 Englisch

    354/495

  • 8/12/2019 6RA24 Englisch

    355/495

  • 8/12/2019 6RA24 Englisch

    356/495

  • 8/12/2019 6RA24 Englisch

    357/495

  • 8/12/2019 6RA24 Englisch

    358/495

  • 8/12/2019 6RA24 Englisch

    359/495

  • 8/12/2019 6RA24 Englisch

    360/495

  • 8/12/2019 6RA24 Englisch

    361/495

  • 8/12/2019 6RA24 Englisch

    362/495

  • 8/12/2019 6RA24 Englisch

    363/495

  • 8/12/2019 6RA24 Englisch

    364/495

  • 8/12/2019 6RA24 Englisch

    365/495

  • 8/12/2019 6RA24 Englisch

    366/495

  • 8/12/2019 6RA24 Englisch

    367/495

  • 8/12/2019 6RA24 Englisch

    368/495

  • 8/12/2019 6RA24 Englisch

    369/495

  • 8/12/2019 6RA24 Englisch

    370/495

  • 8/12/2019 6RA24 Englisch

    371/495

  • 8/12/2019 6RA24 Englisch

    372/495

  • 8/12/2019 6RA24 Englisch

    373/495

  • 8/12/2019 6RA24 Englisch

    374/495

  • 8/12/2019 6RA24 Englisch

    375/495

  • 8/12/2019 6RA24 Englisch

    376/495

  • 8/12/2019 6RA24 Englisch

    377/495

  • 8/12/2019 6RA24 Englisch

    378/495

  • 8/12/2019 6RA24 Englisch

    379/495

  • 8/12/2019 6RA24 Englisch

    380/495

  • 8/12/2019 6RA24 Englisch

    381/495

  • 8/12/2019 6RA24 Englisch

    382/495

  • 8/12/2019 6RA24 Englisch

    383/495

  • 8/12/2019 6RA24 Englisch

    384/495

  • 8/12/2019 6RA24 Englisch

    385/495

  • 8/12/2019 6RA24 Englisch

    386/495

  • 8/12/2019 6RA24 Englisch

    387/495

  • 8/12/2019 6RA24 Englisch

    388/495

  • 8/12/2019 6RA24 Englisch

    389/495

  • 8/12/2019 6RA24 Englisch

    390/495

  • 8/12/2019 6RA24 Englisch

    391/495

  • 8/12/2019 6RA24 Englisch

    392/495

  • 8/12/2019 6RA24 Englisch

    393/495

  • 8/12/2019 6RA24 Englisch

    394/495

  • 8/12/2019 6RA24 Englisch

    395/495

  • 8/12/2019 6RA24 Englisch

    396/495

  • 8/12/2019 6RA24 Englisch

    397/495

  • 8/12/2019 6RA24 Englisch

    398/495

  • 8/12/2019 6RA24 Englisch

    399/495

  • 8/12/2019 6RA24 Englisch

    400/495

  • 8/12/2019 6RA24 Englisch

    401/495

  • 8/12/2019 6RA24 Englisch

    402/495

  • 8/12/2019 6RA24 Englisch

    403/495

  • 8/12/2019 6RA24 Englisch

    404/495

  • 8/12/2019 6RA24 Englisch

    405/495

  • 8/12/2019 6RA24 Englisch

    406/495

  • 8/12/2019 6RA24 Englisch

    407/495

  • 8/12/2019 6RA24 Englisch

    408/495

  • 8/12/2019 6RA24 Englisch

    409/495

  • 8/12/2019 6RA24 Englisch

    410/495

  • 8/12/2019 6RA24 Englisch

    411/495

  • 8/12/2019 6RA24 Englisch

    412/495

  • 8/12/2019 6RA24 Englisch

    413/495

  • 8/12/2019 6RA24 Englisch

    414/495

  • 8/12/2019 6RA24 Englisch

    415/495

  • 8/12/2019 6RA24 Englisch

    416/495

  • 8/12/2019 6RA24 Englisch

    417/495

  • 8/12/2019 6RA24 Englisch

    418/495

  • 8/12/2019 6RA24 Englisch

    419/495

  • 8/12/2019 6RA24 Englisch

    420/495

  • 8/12/2019 6RA24 Englisch

    421/495

  • 8/12/2019 6RA24 Englisch

    422/495

  • 8/12/2019 6RA24 Englisch

    423/495

  • 8/12/2019 6RA24 Englisch

    424/495

  • 8/12/2019 6RA24 Englisch

    425/495

  • 8/12/2019 6RA24 Englisch

    426/495

  • 8/12/2019 6RA24 Englisch

    427/495

  • 8/12/2019 6RA24 Englisch

    428/495

  • 8/12/2019 6RA24 Englisch

    429/495

  • 8/12/2019 6RA24 Englisch

    430/495

  • 8/12/2019 6RA24 Englisch

    431/495

  • 8/12/2019 6RA24 Englisch

    432/495

  • 8/12/2019 6RA24 Englisch

    433/495

  • 8/12/2019 6RA24 Englisch

    434/495

  • 8/12/2019 6RA24 Englisch

    435/495

  • 8/12/2019 6RA24 Englisch

    436/495

  • 8/12/2019 6RA24 Englisch

    437/495

  • 8/12/2019 6RA24 Englisch

    438/495

  • 8/12/2019 6RA24 Englisch

    439/495

  • 8/12/2019 6RA24 Englisch

    440/495

  • 8/12/2019 6RA24 Englisch

    441/495

  • 8/12/2019 6RA24 Englisch

    442/495

  • 8/12/2019 6RA24 Englisch

    443/495

  • 8/12/2019 6RA24 Englisch

    444/495

  • 8/12/2019 6RA24 Englisch

    445/495

  • 8/12/2019 6RA24 Englisch

    446/495

  • 8/12/2019 6RA24 Englisch

    447/495

  • 8/12/2019 6RA24 Englisch

    448/495

  • 8/12/2019 6RA24 Englisch

    449/495

  • 8/12/2019 6RA24 Englisch

    450/495

  • 8/12/2019 6RA24 Englisch

    451/495

  • 8/12/2019 6RA24 Englisch

    452/495

  • 8/12/2019 6RA24 Englisch

    453/495

  • 8/12/2019 6RA24 Englisch

    454/495

  • 8/12/2019 6RA24 Englisch

    455/495

  • 8/12/2019 6RA24 Englisch

    456/495

  • 8/12/2019 6RA24 Englisch

    457/495

  • 8/12/2019 6RA24 Englisch

    458/495

  • 8/12/2019 6RA24 Englisch

    459/495

  • 8/12/2019 6RA24 Englisch

    460/495

  • 8/12/2019 6RA24 Englisch

    461/495

  • 8/12/2019 6RA24 Englisch

    462/495

  • 8/12/2019 6RA24 Englisch

    463/495

  • 8/12/2019 6RA24 Englisch

    464/495

    03.94

    12/2

  • 8/12/2019 6RA24 Englisch

    465/495

  • 8/12/2019 6RA24 Englisch

    466/495

    03.94

    13/2

  • 8/12/2019 6RA24 Englisch

    467/495

  • 8/12/2019 6RA24 Englisch

    468/495

  • 8/12/2019 6RA24 Englisch

    469/495

  • 8/12/2019 6RA24 Englisch

    470/495

  • 8/12/2019 6RA24 Englisch

    471/495

  • 8/12/2019 6RA24 Englisch

    472/495

  • 8/12/2019 6RA24 Englisch

    473/495

  • 8/12/2019 6RA24 Englisch

    474/495

  • 8/12/2019 6RA24 Englisch

    475/495

  • 8/12/2019 6RA24 Englisch

    476/495

  • 8/12/2019 6RA24 Englisch

    477/495

  • 8/12/2019 6RA24 Englisch

    478/495

  • 8/12/2019 6RA24 Englisch

    479/495

    06.96

    16/1

    16 Installation instructions for EMC-correct

    installation of Drives

    NOTE

    These Installation Instructions do not purport to handle or take into account all of the equipmentdetails or versions or to cover every conceivable operating situation or application.If you require more detailed information, or if special problems occur, which are not handled inenough detail in this document, please contact your local Siemens office.

    The contents of these Installation Instructions are not part of an earlier or existing agreement or legalcontract and neither do they change it. The actual purchase contract represents the complete liabilityof the ASI 1 Variable-Speed Drives Group of Siemens AG. The warranty conditions, specified in thecontract between the two parties is the only warranty which will be accepted by the ASI 1 Variable-Speed Drives Group. The warranty conditions specified in the contract are neither expanded norchanged by the information provided in these Installation Instructions.

    WARNING

    These converters have components and parts at hazardous potentials, have

    dangerous rotating machine components (fans) and control rotating mechanical

    equipment (drives). Death, severe bodily injury or significant material damage

    could occur if the instructions in the associated Instruction Manuals are not

    followed.

    Only qualified personnel who are knowledgeable about all of the safety informa-

    tion and instructions specified in the Instruction Manual as well as installation-,

    operating- and maintenance information may work on these converters.

    Perfect and safe operation of the converters assumes that they have beenprofessionally transported, stored, installed and mounted as well as careful

    operator control and maintenance.

    16.1 EMC basics

    16.1.1 What is EMC

    EMC stands for electromagnetic compatibility and defines the capability of a piece of equipment tooperate satisfactorily in an electromagnetic environment without itself causing electromagnetic

    disturbances which would be unacceptable for other electrical equipment in this environment.

    Thus, the electrical equipment should not mutually disturb each other.

    16.1.2 Noise radiation and noise immunity

    EMC is dependent on two characteristics of the equipment/units involved - the radiated noise andnoise immunity. Electrical equipment can either be fault sources (transmitters) and/or noise receivers.Electromagnetic compatibility exists, if the fault sources do not negatively influence the function of thenoise receivers.

    A piece of electrical equipment/unit can also be both a fault source and fault receiver at the same time.For example, the power section of a converter can be considered as noise source, and the control

    section (gating unit, etc.), as noise receiver.

  • 8/12/2019 6RA24 Englisch

    480/495

    06.96

    16/2

    16.1.3 Maximum values

    The Product Standard E DIN IEC 22G/21/CDV is available as draft for electric drives. According to thisproduct standard, all EMC measures are not necessarily required for industrial supply networks, and asolution should be defined, adapted to the actual environment. Thus, it may be more cost-effective toincrease the noise immunity of a sensitive piece of equipment than implementing noise suppressionmeasures for the converter. Thus, a solution is selected dependent on its cost-effectivness.

    The basic EN 50081 and EN 50082 Standards are valid until the Product Standard comes into force.These specify that EN 55011 must be maintained. These define max. values for noise radiation inindustrial- and domestic environments. Cable-borne noise at the supply connection point is measuredunder standardized conditions as radio interference noise voltage, electromagnetically radiated noiseas radio interference (radiated noise). The standard defines max. values A1 and B1, which are validfor the radio interference voltage in the range between 150kHz and 30MHz and for radio interferenceradiation between 30MHz and 2GHz. As SIMOREG K converters are used in industrial applications, inthis case, limit value A1 is valid. To achieve value A1, SIMOREG K converters must be providedwith external radio interference suppression filters.The noise immunity defines the behavior of a piece of equipment subject to electromagnetic noise. For

    industrial applications, the EN50082-2 Standard defines the demands and evaluation criteria for thebehavior of the unit/equipment. This standard is fulfilled by the converters listed in Section 16.2.3.

    16.1.4 SIMOREG K converters in industrial applications

    In an industrial environment, equipment must have a high level of noise immunity whereas lowerdemands are placed on noise radiation.SIMOREG K converters are components of an electric drive system, along with contactors andswitches etc. Professionally trained personnel must integrate them to form a complete drive system,which comprises, as a minimum, the converter itself, motor feeder cables and motor. Generally,commutating reactors and fuses are also required. Limiting (max.) values can only be maintained ifthese components are installed and mounted in the correct way. In order to limit the radiated noise

    according to limit value A1, in addition to the converter, a radio interference suppression filter and acommutating reactor are required. If SIMOREG K converters are not equipped with radio interferencesuppression filters, the radiated noise exceeds limit value A1, specified in EN55011.

    If the drive is part of an overall system, initially it does not have to fulfill any requirements regardingradiated noise. However, the EMC Law specifies that the system as a whole must be electromagneti-cally compatible with its environment.If all of the system control components (e.g. PLCs) have noise immunity for industrial environments,then it is not necessary that each drive maintains limit value A1 for itself.

    16.1.5 Non-grounded supplies

    Non-grounded supplies (IT-supplies) are used in several industrial sectors, in order to increase theavailability of the plant. If a ground fault occurs, a fault current does not flow, and the plant can stillproduce. However, when a radio interference suppression filter is used, when a ground fault occurs, afault current does flow, which can result in the drive being shutdown or even the radio interferencesuppression filter being destroyed. Thus, the Product Standard does not define limit values for thesesupplies. From a cost standpoint, if radio interference suppression is required, this should be realizedat the grounded primary of the supply transformer.

  • 8/12/2019 6RA24 Englisch

    481/495

    06.96

    16/3

    16.1.6 EMC planning

    If two units are not electromagnetically compatible, you can either reduce the noise radiated by thenoise source, or increase the noise immunity of the noise receiver. Noise sources are generally powerelectronic units with a high current requirement. In order to reduce the radiated noise from these units,complex, costly filters are required. Noise receivers especially involve control units and sensors,including their evaluation circuitry. It is less complex and costly to increase the noise immunity of low-power equipment. Thus, in an industrial environment it is often more cost-effective to increase thenoise immunity rather than reduce the radiated noise. For example, in order to maintain limit valueClass A1 of EN 55011, the radio interference voltage at the supply connection point at 150kHz and

    500kHz, may not exceed 79dB(V) and between 500kHz and 30Mhz, 73dB(V) (9mV or 4.5mV).In industrial environments, the EMC of the equipment used must be based on a well-balanced mixtureof noise radiation (low level) and noise immunity.

    The most favorably priced interference measure is to spatially isolate noise sources and noisereceivers, assuming that it is already taken into account when designing the machine/plant. The firststep is to define whether each unit is a potential noise source (noise radiator) or noise receiver. Noisesources are, for example, converters, contactors. Noise receivers are, for example, PLCs, transmitters

    and sensors.The components must be spatially separated in the cabinet (noise sources and noise receivers), usingmetal partitions or by mounting the components in metal enclosures. A possible component layoutconfiguration in a cabinet is illustrated in Fig. 1.

    16.2 EMC-correct installation/mounting of converters(installation instructions)

    16.2.1 General information

    As drives can be operated in a wide range of differing environments, and as the electrical componentsused (controls, switched-mode power supplies etc.) can widely differ regarding noise immunity andnoise radiation, any mounting/installation guideline can only be represent a practical compromise.Thus, deviations can be made from the EMC regulations, under the assumption that they are checked-out on a case-for-case basis.

    In order to guarantee electromagnetic compatibiity (EMC) in your cabinets in rugged electricalenvironments, and alsofulfill the standards specified by the relevant legal bodies, the following EMCregulations must be observed when designing and manufacturing the drive cabinets.

    Rules 1 to 10 are generally valid. Rules 11 to 15 are necessary, in order to fulfill the noise radiatingstandards.

    16.2.2 Rules for EMC-correct installation

    Rule 1All of the metal cabinet components must be electrically connected with one another through thelargest possible surface area (not paint on paint!). If required, use serrated washers. The cabinet doorshould be connected to the cabinet through grounding straps (top, center, bottom) which should bekept as short as possible.

    Rule 2Contactors, relays, solonoid valves, electro-magnetic operating hours counters etc. in the cabinet, and

    if required, in adjacent cabinets, should be provided with quenching elements, for example, RCelements, varistors, diodes etc. These devices must be connected directly at the coil.

  • 8/12/2019 6RA24 Englisch

    482/495

    06.96

    16/4

    Rule 3

    Signal cables 1)should enter the cabinet, if possible, at only one level.

    Rule 4Non-shielded cables belonging to the same circuit (incoming and outgoing conductor) should betwisted, or the surface between the two conductors kept as low as possible in order to prevent

    unnecessary coupling effects.

    Rule 5Connect reserve conductors to the cabinet ground at both ends. This offers an additional shieldingeffect.

    Rule 6Unnecessary cable/conductor lengths should be avoided. Thus, coupling capacitances andinductances are kept low.

    Rule 7Crosstalk is kept low if cables are routed close to the cabinet ground. Thus, wiring shouldnt be routedfreely in the cabinet, but as close as possible to the cabinet frame and mounting panels. This is also

    true for reserve cables.

    Rule 8Signal- and power cables should be routed separately from one another (to avoid noise being coupled-in!). A minimum 20cm clearance should be maintained.If it is not possible to spatially separate encoder- and motor cables, then the encoder cable must belaid either using a metal partition or in a metal pipe or duct. The partition or metal pipe must begrounded at several locations along this length.

    Rule 9The shields of digital signal cables must be connected to ground at both ends (source and destination)through the largest possible surface area. If there is poor potential bonding between the shieldconnections, to reduce the shield current, an additional potential bonding cable of at least 10mm must

    be connected in parallel to the shield. The shields can be connected to the cabinet frame at severalpositions (ground). The shields can also be connected to ground at several locations, even outside thecabinet.Foil-type shields should be avoided if possible. They do not shield as well as braided shields; they arepoorer by a factor at least 5.

    Rule 10The shields of analog signal cables can be connected to ground at both ends if potential bonding isgood (through the largest possible surface area). Good potential bonding can be assumed, if all metalparts are well connected and all of the electronic components involved are supplied from one source.

    The single-ended shield connection prevents low-frequency, capactive noise from being coupled-in(e.g. 50Hz hum). The shield should be connected in the cabinet, whereby the shield can also be

    connected up through a connecting wire.

    Rule 11Always locate the radio interference suppression filter close to the assumed noise source. The filtermust be mounted through the largest possible surface area at the cabinet housing, mounting panel etc.The input and output cables must be spatially separated.

    Rule 12

    Radio interference suppression filters must be used in order to maintain limit value class A1. Additional

    loads must be connected in front of the filter (line supply side).

    Ob ein zustzliches Netzfilter installiert werden mu, ist abhngig von der verwendeten Steuerung und

    wie der restliche Schaltschrank verdrahtet ist.

  • 8/12/2019 6RA24 Englisch

    483/495

    06.96

    16/5

    Rule 13

    A commutating reactor is required in the field circuit for controlled field supplies.

    Rule 14

    A commutating reactor is required in the converter armature circuit.

    Rule 15For SIMOREG drives, the motor cables can be unshielded. The line supply cable must be a minimum

    of 20cm away from the motor cables (field, armature).

    If required, use a metal partition.

    Footnotes:

    1) Signal cables are defined as:

    Digital signal cables.: or analog signal cables.:Pulse encoder cables (e.g. + 10V setpoint cable)Serial interfaces, e.g. PROFIBUS-DP

    2) Generally, all metallic conductive parts, which can be connected to a protective conductor, e.g.cabinet housing, motor frame, foundation grounder, etc., are considered as ground.

    Cabinet design and shielding

    The cabinet design illustrated in Figure 1is intended to make the user sensitive and aware of EMC-critical components and parts. The example does not claim to handle all possible cabinet componentsand their respective mounting possibilities.

    Details, which influence the noise immunity/noise radiation of the cabinet and which arent absolutely

    clear in the overview diagram, are described in Figures 1a - 1d.

    Different shield connecting techniques with reference source information are illustrated in detail inFigures 2a - 2d.

    Mounting radio interference suppression filters and commutating reactors:

    Radio interference suppression filter and commutating reactor mounting for SIMOREG K drives isdescribed in Section 16.2.3. The sequence when installing the reactor and filter must be maintained.The semiconductor protection fuses are selected according to the Instruction Manual of the converters.

  • 8/12/2019 6RA24 Englisch

    484/495

    06.96

    16/6

    SIMOREG KConverter

    Main conductor

    Cable rataining bar

    Shield rail

    Terminals

    Commutating reactor

    Cable duct

    Line filter

    SIMOREG K

    Shield rail

    Terminals Main switch

    Circuit-breaker

    Field

    Field commutating

    reactor

    Fuse links/m.c.b.

    Converter filter

    Fuse links

    Control transformerfan

    Protective conductor(location is non-critical) DC customer connection

    3-ph. AC customer connection

    Field customer connection

    Pulse encoder

    Figure 1b

    Figure 1c

    Figure 1a

    Figure 1d

    Shield rail

    Circuit-breaker

    Figure 1: Example of a cabinet design with a SIMOREG K converter (with

    microprocessor) 30A - 600A

  • 8/12/2019 6RA24 Englisch

    485/495

    06.96

    16/7

    Cable retaining bar

    Shield connection corresponding to

    the following versions 1, 2, 3 and 4.

    Connect to the cabinet housingat both endstrough the largestpossible surface area!

    Also shield on the plant side(e.g. at the pulse encoder).

    Cable duct

    Shield rail must not beused as strain relief

    Cable retaining bar

    Figure 1a: Shielding where the cable enters the cabinet

    Terminals

    Analog signal lineData line

    (e.g. PROFIBUS-DP)Data line

    (e.g. Pulse encoder)

    Connect to the cabinet housingat both endstrough the largestpossible surface area!

    Also shield on the plant side(e.g. at the pulse encoder).

    Figure 1b: Shielding in the cabinet

  • 8/12/2019 6RA24 Englisch

    486/495

    06.96

    16/8

    Cables to theext. terminal block

    InterfacesRS 485, RS 232

    Cables to the externaloperator control panel

    Connect the board to theSIMOREG housing

    Internal shield rail

    Electronics boardC98043-A1600

    XA XB X501 X500

    X300

    Figure 1c: Connecting the shields at the SIMOREG K 6RA24

  • 8/12/2019 6RA24 Englisch

    487/495

    06.96

    16/9

    LINE

    Filtered cable Non-filtered cable

    Connect the filter to the cabinet

    housing through the largest

    possible surface area!Seperate the filtered andnon-filtered cables

    Connect theprotective conductor

    Siemens

    Figure 1d: Line filter for the SIMOREG K 6RA24 electronics power supply

  • 8/12/2019 6RA24 Englisch

    488/495

    06.96

    16/10

    Shield connection:

    Version 1: Version 2:

    Figure 2a: Connecting terminal mountedon a copper busbar, max.cable/cable diameter 15mm

    Figure 2b: Terminal mounted on acopper busbar, max.cable/cable diameter 10mm.

    Caution!

    The conductor could be damaged if the terminalscrew is over-tightened

    Note:

    Terminals:5mm busbar thickness,Order No. 8US1921-2AC0010 mm busbar thickness,Order No. 8US1921-2BC00

    Note:

    Terminals:Order No. 8HS7104,8HS7104, 8HS7174, 8HS7164

  • 8/12/2019 6RA24 Englisch

    489/495

    06.96

    16/11

    Version 3: Version 4:

    Figure 2c: Metalized tubing or cable tieson a bare metal serrated rail

    Figure 2d: Clamp and metalic matingpiece on a cable support rail.

    Note:

    Serrated rail:Item No. J48028

    Note:

    Siemens 5VC55... cable clamps;Various size mounting rails:Item No. K48001 to 48005

    Can be ordered from:

    SIEMENS AG ANL A443 KA

    Gnther-Scharowsky-Str. 2Betriebe Sd91058 Erlangen

    Can be ordered from:

    SIEMENS AG ANL A443 KA

    Gnther-Scharowsky-Str. 2Betriebe Sd91058 Erlangen

  • 8/12/2019 6RA24 Englisch

    490/495

    06.96

    16/12

    16.2.3 Converter component arrangement

    Reactor and filter arrangement

    Supply voltage

    1U1 1V1 1W13U1 3W15U1 5W1

    Field ArmaturePower supply

    SIMOREG-Converter1C1 1D1

    M

    3C 3D

    1) 2)

    4)

    3)

    1) The commutating reactor in the field circuit is dimensioned for the nominal motor field current.

    2) The commutating reactor in the armature circuit is dimensioned for the nominal motor armaturecurrent. The line supply current is the DC current x 0.82.

    3) The field circuit filter and the electronics power supply are dimensioned for the nominal motor fieldcurrent plus 0.5A.

    4) The armature circuit filter is dimensioned for the nominal motor armature current. The line supplycurrent is the DC current x 0.82.

    Note:

    When filters are used, commutating reactors are always required at the converter input to decouple thesnubber circuitry.The commutating reactors are selected according to the information provided in Catalog DA93.1.

  • 8/12/2019 6RA24 Englisch

    491/495

    06.96

    16/13

    16.2.4 List of the recommended radio interference suppression filters

    Rated current

    radio

    interferencesuppression

    filter (A)

    Radio interference

    suppression filter

    Order No.

    Terminal

    cross-

    section(mm)

    Weight

    (kg)

    Dimensions

    HxWxD

    (mm)

    12 6SE7021-0ES87-0FB0 10*) 2,2 215x90x81

    18 6SE7021-8ES87-0FB0 10*) 2,2 215x90x81

    36 6SE7023-4ES87-0FB0 25 3,7 245x101x86

    80 6SE7027-2ES87-0FB0 50 9,5 308x141x141

    120 6SE7031-0ES87-0FA0 50 10 348x171x141

    180 6SE7031-8ES87-0FA0 95 13 404x171x141

    500 6SE7033-7ES87-0FA0 Connecting

    lug

    49 590x305x154

    1000 6SE7041-0ES87-0FA0 Connectinglug

    90 840x465x204

    1600 6SE7041-6ES87-0FA0 Connectinglug

    130 870x465x204

    *) The filters generate discharge currents. VDE 0160 specifies a protective conductor connection with10 mm.

    For converter units for 3-phase supplies, the line current (filter current) is equal to theDC current x 0.82.For converters for two-phase supplies, two phases are connected to the three-phase filter. In this case,the line supply current is the same as the DC current.

    Important technical data of the radio interference protection filter:

    Rated supply voltage 3-ph 380-460 V (+/- 15%)

    Rated frequency 50/60 Hz (+/- 6%)

    Operating temperature 0C to +40C

    Degree of protection IP20 (EN60529)

    IP00 500 A

    Refer to the Instruction Manual for further technical data on the filters:

    SIMOVERT Master Drives radio interference suppression filter, EMC filter,Order No.: 6SE7087-6CX87-0FB0.

  • 8/12/2019 6RA24 Englisch

    492/495

    06.96

    16/14

    16.3 Information on line-side harmonics generated by converters in a fully-controlled three-phase bridge circuit configuration B6C and (B6)A(B6)C

    Converter for the medium power range usually consists of fully-controlled three-phase bridge circuitconfigurations. An example of the harmonics generated by a typical system configuration for two firing

    angles (= 20 and = 60) is subsequently shown.The values have been taken from an earlier publication, and more specifically from Harmonics in theline-side current of six-pulse line-commutated converters from H. Arremann and G. Mltgen, Siemens

    Forsch.- u. Entwickl.-Ber. Bd. 7 (1978) Nr. 2, Springer-Verlag 1978.

    Formulas and equations were specified with which the short-circuit rating SKand the armature

    inductance Lacould be determined dependent on the specific operating data (line supply voltage (no-

    load voltageVv0), line frequency fNand DC current Id]; this would then be valid for the specified

    harmonic spectrum. A dedicated calculation is required if the actual system fault level and/or the actualarmature inductance deviate from the calculated values.

    The specified harmonic spectrum is obtained, if the values for the system fault level SKat the

    converter supply point and armature inductance Laof the motor, calculated using the following

    formulas, are the same as the actual plant values. The harmonics must be separately calculated if thevalues differ.

    a.) = 20 b.) = 60Basic fundamental g= 0,962 Basic fundamental g= 0,953

    I/I1 I/I1 I/I1 I/I1

    5 0,235 29 0,018 5 0,283 29 0,026

    7 0,100 31 0,016 7 0,050 31 0,019

    11 0,083 35 0,011 11 0,089 35 0,020

    13 0,056 37 0,010 13 0,038 37 0,01617 0,046 41 0,006 17 0,050 41 0,016

    19 0,035 43 0,006 19 0,029 43 0,013

    23 0,028 47 0,003 23 0,034 47 0,013

    25 0,024 49 0,003 25 0,023 49 0,011

    The basic fundamental current I1is calculated using the following formula as reference quantity

    I I1 d0,817= g

    with Id DC current at the operating point being investigated

    with g Harmonic content (refer above)

    The harmonic currents calculated from the above tables, are onlyvalid for

    I.) System fault level SKat the converter supply connection point

    SU

    XKv 0

    2

    N

    VA=

  • 8/12/2019 6RA24 Englisch

    493/495

    06.96

    16/15

    with

    ( )X X XU

    f LN K D

    v 0

    dN D

    ,= = 003536 2I

    and

    Uv0 No-load voltage at the converter supply connection point in V

    Id DC current in A at the operating point to be investigated

    fN Line frequency in Hz

    LD Inductance of the commutating reactor in H

    II.) Armature inductance La

    ( )L U

    fa

    v0

    N

    , H=

    00488Id

    A separate calculation is required if the actual system fault level SKand/or the armature

    inductance Ladeviate from the values calculated using the above formula.

    Example

    A drive has the following data:

    Uv0= 400 V

    Id= 150 A

    fN= 50 HzLD= 0,169 mH (4EU2421-7AA10 with ILn= 125 A)

    With

    XN , , ,= =003536

    400

    1502 50 0169 10 004123

    provides the following system fault level at the converter connecting point

    SK,

    , MVA= =400

    00412388

    2

    and the following motor armature inductance which is required.

    La , , mH=

    =00488400

    50 1502 60

    The harmonic currents I, which can be taken from the tables (with I1= gx 0.817 x Idfor firing angles

    = 20 and = 60) are onlyvalid for the calculated values SKand La. A separate calculation is

    required if the values differ.

    When dimensioning/designing filters and compensation circuits with reactors, the thus determinedharmonic values can only be used if the calculated values for SKand Laare the same as the actualdrive values. For all other case, a separate calculation must be made (this is especially true whenusing compensated motors, as these motors have a very low armature inductance).

  • 8/12/2019 6RA24 Englisch

    494/495

    06.96

    16/16

  • 8/12/2019 6RA24 Englisch

    495/495

    SIMOVISDisk 1