7.3 solving equations with rational expressions7.3 solving equations with rational...

13
7.3 Solving Equations with Rational Expressions Solving equations with rational expressions involves first and foremost, finding the least common denominator of the whole equation. Once you find the LCD, then you multiply each term in the numerator by it. To solve equations with rational expressions, it is a 4 step process: STEP 1: Find the LCD of the whole equation STEP 2: Multiply each term in the equation by the LCD STEP 3: Simplify each fraction. If you multiply by the correct LCD, there will be no fractions left in the equation. STEP 4: Determine what type of equation you have, and solve the equation appropriately. Ex. Solve the following equations: o. ! ! 2 + ! ! = 5 STEP 1: The LCD of 4 and 3 is 12 12 ! ! 2 + ! ! = 5 STEP 2: Multiply each term by 12 !"! ! 24 + !"! ! = 60 3m – 24 + 4m = 60 STEP 3: Simplify each fraction 7m – 24 = 60 STEP 4: This is a linear equation, +24 +24 so solve accordingly. 7m = 36 7 7 m= !" !

Upload: dangphuc

Post on 26-Jan-2019

228 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 7.3 Solving Equations with Rational Expressions7.3 Solving Equations with Rational Expressions(Solvingequationsw ithrationalexpressionsinvolvesf irstandforemost,findingtheleast commondenominatorofthewholeequation.OnceyoufindtheLCD,thenyoumultiplyeach

7.3 Solving Equations with Rational Expressions  

Solving  equations  with  rational  expressions  involves  first  and  foremost,  finding  the  least  common  denominator  of  the  whole  equation.    Once  you  find  the  LCD,  then  you  multiply  each  term  in  the  numerator  by  it.  To  solve  equations  with  rational  expressions,  it  is  a  4  step  process:  

STEP  1:    Find  the  LCD  of  the  whole  equation  

STEP  2:    Multiply  each  term  in  the  equation  by  the  LCD  

STEP  3:    Simplify  each  fraction.    If  you  multiply  by  the  correct  LCD,  there  will  be  no  fractions  left  in  the  equation.  

STEP  4:    Determine  what  type  of  equation  you  have,  and  solve  the  equation  appropriately.      

Ex.    Solve  the  following  equations:  

o.    !!− 2+ !

!= −5 STEP  1:    The  LCD  of  4  and  3  is  12  

12 !!− 2+ !

!= −5 STEP  2:  Multiply  each  term  by  12  

!"!!− 24+ !"!

!= −60  

3m  –  24  +  4m  =  -­‐60   STEP  3:    Simplify  each  fraction  

7m  –  24  =  -­‐60   STEP  4:    This  is  a  linear  equation,  +24          +24 so  solve  accordingly.  

7m  =  -­‐36  7                    7  

m  =  − !"!  

Page 2: 7.3 Solving Equations with Rational Expressions7.3 Solving Equations with Rational Expressions(Solvingequationsw ithrationalexpressionsinvolvesf irstandforemost,findingtheleast commondenominatorofthewholeequation.OnceyoufindtheLCD,thenyoumultiplyeach

p.     !!!= !

!− !

!"STEP  1:    The  LCD  of  2x,  x  and  12  is  

12x  

12! !!!= !

!− !

!"STEP  2:    Multiply  each  term  by  12x  

!"!!!

= !"!!− !"!

!"

30  =  24  –  x   STEP  3:    Simplify  each  fraction  

30  =  24  –  x   STEP  4:    This  is  a  linear  equation,  -­‐24      -­‐24   solve  accordingly.  

6  =  -­‐x  -­‐1      -­‐1  

       -­‐6  =  x  

q. 10− !!!= − !

!     STEP  1:    The  LCD  of  x2  and  x  is  x2  

 !! 10− !!!= − !

!STEP  2:    Multiply  each  term  by  x2  

10!! − !!!

!!= − !!

!

10x2    -­‐  3    =  -­‐x   STEP  3:    Simplify  each  fraction  

10x2  –  3  =  -­‐x     STEP  4:    This  is  a  quadratic  equation,  

10x2  +  x  –  3  =  0   so  solve  accordingly  

Page 3: 7.3 Solving Equations with Rational Expressions7.3 Solving Equations with Rational Expressions(Solvingequationsw ithrationalexpressionsinvolvesf irstandforemost,findingtheleast commondenominatorofthewholeequation.OnceyoufindtheLCD,thenyoumultiplyeach

(5x  +  3)(2x  -­‐1)  =  0  

5x  +  3  =  0    2x  –  1  =  0              -­‐3        -­‐3                        +1        +1  5x    =  -­‐3                        2x    =  1      5              5                          2              2  

x  =  − !!  !"#   !

!  

q.     !!!!

= !!!!

STEP  1:    The  LCD  of  a+1  and  a+2  

is  (a+1)(a+2)  

! + 1 (! + 2) !!!!

= !!!!

STEP  2:    Multiply  each  term  by  

(a+1)(a+2)  

! !!! (!!!)!!!

= ! !!! (!!!)!!!

5(a+2)    =  4(a+1)   STEP  3:    Simplify  each  fraction  

5(a+2)    =  4(a+1)    5a  +  10  =  4a  +  4   STEP  4:    This  is  a  linear  equation  -­‐4a                          -­‐4a   so  solve  accordingly  

                       a  +  10  =  4        -­‐10      -­‐10  a  =  -­‐6  

r.   !!!!

+ !!!!

= !!!!!!!!!"

STEP  1:    Note  first,  that  the  

denominator  of  the  fraction  on  the    right  hand  side  can  be  factored.    If    this  is  possible,  it  is  important  to    factor  first  because  that  will  help  us  find  the  LCD.  

Page 4: 7.3 Solving Equations with Rational Expressions7.3 Solving Equations with Rational Expressions(Solvingequationsw ithrationalexpressionsinvolvesf irstandforemost,findingtheleast commondenominatorofthewholeequation.OnceyoufindtheLCD,thenyoumultiplyeach

!!!!

+ !!!!

= !!!!! (!!!)

Now  we  can  find  the  LCD.    The  LCD  

of  (x+5),  (x+4),  and  (x+5)(x+4)  is  (x  +  5)(x  +  4)  

! + 5 (! + 4) !!!!

+ !!!!

= !!!!! (!!!)

STEP  2:    Multiply  each  term  by  

(x+5)(x+4)  

! !!! (!!!)!!!

+ ! !!! (!!!)!!!

= !! !!! (!!!)!!! (!!!)

2(x+4)    +  3(x+5)    =  2x   STEP  3:    Simplify  each  fraction  

2(x+4)    +  3(x+5)    =  2x    2x  +  8  +  3x  +  15  =  2x   STEP  4:    This  is  a  linear  equation,  so  solve  accordingly.  

2x  +  8  +  3x  +  15  =  2x  

5x  +  23  =  2x  -­‐5x      -­‐5x                    23  =  -­‐3x                      -­‐3          -­‐3  

− !"!= !  

s.     !!!!!!!!"

+ !!!!!!!!

= 1   STEP  1:    We  begin  by  factoring  the  

denominators  so  we  can  find  the  LCD.  

!!!!!(!!!)

+ !!!!!(!!!)

= 1   The  LCD  of  5(x+2)  and  4(x+2)  is  

20(x+2).  

Page 5: 7.3 Solving Equations with Rational Expressions7.3 Solving Equations with Rational Expressions(Solvingequationsw ithrationalexpressionsinvolvesf irstandforemost,findingtheleast commondenominatorofthewholeequation.OnceyoufindtheLCD,thenyoumultiplyeach

20(! + 2) !!!!!(!!!)

+ !!!!!(!!!)

= 1 STEP  2:    Multiply  each  term  by  

20(x+2)  

!" !!! (!!!!)!(!!!)

+ !" !!! (!!!!)!(!!!)

= 1×20(! + 2)  

4(2x  –  3)  +  5(3x  –  2)  =  20(x  +  2)   STEP  3:  Simplify  each  fraction  

8x    -­‐  12    +  15x    -­‐  10    =  20x    +  40   STEP  4:    This  is  a  linear  equation,  23x    -­‐  22    =  20x    +  40         so  solve  accordingly.    -­‐20x                      -­‐20x  

     3x    -­‐  22    =  40  +22        +22

   3x    =  62        3              3  

   x  =  !"!  

Page 6: 7.3 Solving Equations with Rational Expressions7.3 Solving Equations with Rational Expressions(Solvingequationsw ithrationalexpressionsinvolvesf irstandforemost,findingtheleast commondenominatorofthewholeequation.OnceyoufindtheLCD,thenyoumultiplyeach

4.7:  Applications  of  Rational  Equations  

In  this  section,  we  discuss  numerous  applications  of  rational  equations.    Now  that  we  know  how  to  solve  rational  equations,  we  need  to  discuss  how  to  set  up  word  problems  using  rational  equations,  and  then  review  how  to  solve  them.    Consider  the  examples  below:  

t. One  number  is  four  times  another.    The  sum  of  the  reciprocals  of  the  numbers  is  !!.

Find  the  numbers.

If  we  let  the  first  number  equal  m,  then  the  second  number  (which  is  four  times  the  first  number  is  4m).      

One  number  =  m  

Second  number  =  4m  

The  information  given  states  the  sum  of  the  reciprocals.    The  reciprocal  of  m  is   !!  and  

the  reciprocal  of  4m  is   !!!

.    Sum  implies  addition.    The  sum  of  the  reciprocals  is  5/8  translates  

into  the  following  equation:  

!!+ !

!!=   !

!  

Now  that  we  have  the  equation,  we  must  solve  it.    The  LCD  of  m,  4m  and  8  is  8m,  so  we  multiply  each  term  in  the  equation  by  8m:  

8! !!+   !

!!=   !

!      !!

!+ !!

!!= !"!

!  

Simplifying  this  give  us:  

8  +  2  =  5m  

10  =  5m    5              5  

2  =  m  

If  one  of  the  numbers  is  2,  and  the  second  number  is  four  times  the  first  number,  so  the  second  number  is  8.  Therefore,  the  two  numbers  are  2  and  8.      

Page 7: 7.3 Solving Equations with Rational Expressions7.3 Solving Equations with Rational Expressions(Solvingequationsw ithrationalexpressionsinvolvesf irstandforemost,findingtheleast commondenominatorofthewholeequation.OnceyoufindtheLCD,thenyoumultiplyeach

u.    The  sum  of  a  number  and  three  times  its  reciprocal  is  !"!.    Find  the  numbers.  

If  we  let  the  first  number  equal  x,  then  its  reciprocal  is  1/x,  and  three  times  its  reciprocal  

is    3 !!= !

!.    Then,  the  sum  of  a  number  an  three  times  its  reciprocal  is  !"

!  translates  to:

! +   !!= !"

!

To  solve  this  equation,  we  first  have  to  find  the  LCD.    The  LCD  of  x  and  4  is  4x.    We  then  multiply  each  term  in  the  equation  by  4x.  

4! ! + !!= !"

! 4!! + !"!

!= !"!

!  

Simplifying  this  gives  us,  

4!! +  12 = 19!  

This  is  a  quadratic  equation,  so  we  rewrite  in  standard  form  for  solving  a  quadratic  equation,  and  we  get:  

4x2  –  19x  +  12  =  0  

Factoring,  we  get:  

4x2  -­‐  3x  –  16x  +  12  =  0  

 x(4x  -­‐3)  –  4(4x  –  3)  =  0  

(x  –  4)(4x  –  3)  =  0  

X  –  4  =  0  and  4x  –  3  =  0  

X  =  4  and  x  =  ¾  

The  answer  is  either  4  (  4  plus  three  times  its  reciprocal  which  is  ¾  equals  !"!  )

Or  ¾  (  ¾  plus  three  times  its  reciprocal  which  is  4  equals    !"!  ).

Page 8: 7.3 Solving Equations with Rational Expressions7.3 Solving Equations with Rational Expressions(Solvingequationsw ithrationalexpressionsinvolvesf irstandforemost,findingtheleast commondenominatorofthewholeequation.OnceyoufindtheLCD,thenyoumultiplyeach

Distance  =  Rate  times  Time  problems  

 "Distance" word problems, often also called "uniform rate" problems, involve something travelling

at some fixed and steady ("uniform") pace ("rate" or "speed"), or else moving at some average speed.

Whenever you read a problem that involves "how fast", "how far", or "for how long", you should think of

the distance equation, d = rt, where d stands for distance, r stands for the (constant or average) rate of

speed, and t stands for time.

Warning: Make sure that the units for time and distance agree with the units for the rate. For

instance, if they give you a rate of feet per second, then your time must be in seconds and your distance

must be in feet. Sometimes they try to trick you by using the wrong units, and you have to catch this and

convert to the correct units.

For the next two examples, we will use the Distance = rate × time equations. We begin with a set up of a table:

We  can  use  the  above  chart  to  help  us  fill  in  what  we  don’t  know,  and  to  determine  what  we  need  to  know.    We  will  be  given  two  out  of  the  three  pieces  of  information  in  distance,  rate  and  time,  and  each  problem  will  be  divided  into  2  general  parts.    Take,  for  example,  the  following  problems:  

Distance Rate Time Part 1 Part 2

Page 9: 7.3 Solving Equations with Rational Expressions7.3 Solving Equations with Rational Expressions(Solvingequationsw ithrationalexpressionsinvolvesf irstandforemost,findingtheleast commondenominatorofthewholeequation.OnceyoufindtheLCD,thenyoumultiplyeach

v. A  train  travels  30  mph  faster  than  a  car.    If  the  train  covers  120  miles  in  the  sameamount  of  time  the  car  travels  80  miles,  what  is  the  speed  of  each  of  them?

We  know  first  of  all,  that  the  two  “parts”  we  are  breaking  this  problem  up  into  is  car  and  train.    Let’s  start  with  information  we  can  determine  from  the  train.    First,  we  know  that  the  speed  (or  rate)  of  the  train  is  30  miles  per  hour  faster  than  the  car.    If  the  car  has  a  rate  of  x,  then  the  rate  of  the  train  is  30  +  x  or  x  +  30    

We  also  know  that  the  train  covers  120  miles  in  the  same  amount  of  time  that  the  car  travels  80  miles,  so  that  the  distance  covered  by  the  train  is  120,  and  the  distance  covered  by  the  car  is  80  

How  does  time  relate  in  this  problem?    Well,  the  important  part  is  that  the  train  covers  the  distance  in  the  SAME  AMOUNT  OF  TIME  that  the  car  travels.    This  means  that  the  time  the  train  travels  and  the  time  the  car  travels  are  EQUAL!  

So,  we  need  to  rewrite  each  of  these  equations  in  terms  of  time.    If  D  =  R  x  T,  then  

!!= !.    So,  we  can  express  the  time  as  a  ratio  of  distance  divided  by  rate.

Distance Rate Time

Train Car

Distance Rate Time

Train x + 30 Car x

Distance Rate Time

Train 120 x + 30 Car 80 x

Page 10: 7.3 Solving Equations with Rational Expressions7.3 Solving Equations with Rational Expressions(Solvingequationsw ithrationalexpressionsinvolvesf irstandforemost,findingtheleast commondenominatorofthewholeequation.OnceyoufindtheLCD,thenyoumultiplyeach

Knowing  that  the  times  are  the  same,  set  them  equal  to  each  other  and  solve:  

120! + 30 =

80!

Multiply  both  sides  of  the  equation  by  the  LCD,  the  LCD  of  x  +  30  and  x  is  x(x  +  30)  

!(! + 30) !"#!!!"

= !"!

     ! !!!" !"#!!!"

= ! !!!" !"!

120x  =  80(x+30)  

120x  =  80x  +  2400  -­‐80x      -­‐80x  

40x  =  2400  40                40  

X  =  60  

Recall  that  x  is  the  speed  of  the  car,  so  that  the  car  travels  60  miles  per  hour,  and  that  the  train  travels  x  +  30  or  60  +  30  or  90  miles  per  hour.  

w. A  boat,  which  moves  at  18  miles  per  hour  in  still  water,  travels  14  miles  downstreamin  the  same  amount  of  time  it  takes  to  travel  10  miles  upstream.    Find  the  speed  of  the  current.  

For  this  example,  we  are  breaking  the  two  parts  we  are  breaking  the  problem  up  into  are  upstream  and  downstream.    Let’s  review  other  information.  

Distance Rate Time

Train 120 x + 30 120! + 30

Car 80 x 80!

Distance Rate Time Upstream Downstream

Page 11: 7.3 Solving Equations with Rational Expressions7.3 Solving Equations with Rational Expressions(Solvingequationsw ithrationalexpressionsinvolvesf irstandforemost,findingtheleast commondenominatorofthewholeequation.OnceyoufindtheLCD,thenyoumultiplyeach

  First,  the  problem  asks  us  for  the  speed  of  the  current.    Let’s  call  the  speed  of  the  current  x.  

  The  current  will  either  add  to  the  speed  (make  it  go  quicker)  if  the  boat  is  going  downstream,  or  subtract  from  the  speed  (make  it  slower)  if  it  is  going  upstream.    If  the  boat  moves  at  18  miles  per  hour  in  still  water  (with  no  current),  this  means  that  the  speed  of  the  boat  going  upstream  will  be  18  –  x  (  or  18  mph  minus  the  current’s  speed)  and  the  speed  of  the  boat  going  downstream  will  be  18  +  x  (  or  18  mph  plus  the  current’s  speed).  Recall  that  speed  is  the  RATE.  

 

 

 

 

  We  also  know  that  the  boat  travels  14  miles  downstream  in  the  same  amount  of  time  it  takes  to  travel  10  miles  upstream.  So,  we  have  distances:  

 

 

 

 

  What  about  the  time?    Well,  we  know  that  the  boat  travels  14  miles  downstream  In  THE  SAME  AMOUNT  OF  TIME  it  takes  to  travel  10  miles  upstream.    So,  the  Time  downstream  =  Time  upstream.    This  means  we  have  to  write  the  equations  in  terms  of  time.    From  the  above  

example,  we  know  that  !!= !.    So,  we  can  express  the  time  as  a  ratio  of  distance  divided  by  

rate.  

 

 

 

 

 

Distance Rate Time Upstream 18-x Downstream 18+x

Distance Rate Time Upstream 10 18-x Downstream 14 18+x

Distance Rate Time Upstream 10 18-x 10

18− ! Downstream 14 18+x 14

18+ !

Page 12: 7.3 Solving Equations with Rational Expressions7.3 Solving Equations with Rational Expressions(Solvingequationsw ithrationalexpressionsinvolvesf irstandforemost,findingtheleast commondenominatorofthewholeequation.OnceyoufindtheLCD,thenyoumultiplyeach

Setting  the  times  equal  to  each  other,  we  get:      10

18− ! =  14

18+ !  

Multiplying  both  sides  by  the  LCD,  which  is  (18-­‐x)(18  +  x),  we  get:  

18− ! (18+ !) !"!"!!

=   !"!"!!

    !"!! (!"!!)!"!"!!

=   !" !"!! (!"!!)!"!!

 10(18  +  x)  =  14(18  –  x)  

10(18  +  x)  =  14(18  –  x)  

  180  +  10x  =  252  –  14x                         -­‐10x            -­‐10x  

  180  =  252  –  24x                       -­‐252      -­‐252    

  -­‐72  =  -­‐24x                          -­‐24        -­‐24  

  X  =  3  

This  means  that  the  speed  of  the  current  is  3  mph.  

 

 

 

 

 

 

Page 13: 7.3 Solving Equations with Rational Expressions7.3 Solving Equations with Rational Expressions(Solvingequationsw ithrationalexpressionsinvolvesf irstandforemost,findingtheleast commondenominatorofthewholeequation.OnceyoufindtheLCD,thenyoumultiplyeach