8 padeye_spreadsheet check1

4
 8 TON PADEYE Page 1 of 4 1.0 Inputs 1.1 Padeye characteristics R_eye = 27.5 mm eye radius R_main = 95 mm main plate radius R cheek = 0 mm cheek pl ate s radius th main = 50 mm main pl ate th ic kn es s th cheek = 0 mm ch eek pl ate th ic kn es s a weld = 0 mm wel din g di mension between mai n & che ek p lat es H_stiff1 = 0 mm stiffn er 1 height H_stiff2 = 0 mm stiffn er 2 height th_stiff1 = 0 mm stif fn er 1 th ickn es s th stff2 = 0 mm stif fn er 2 th ickn es s H eye = 48 mm height of eye V = 0 mm di st ance b et ween cent er o f st if fner s V s1 = 0 mm di st ance eye-cent er to st if fner 1 Lenth = 200 mm tot al len gth of pad eye (sti ffners inc lud ed) Width1 = 0 mm width of st if fner 1 a t f ee t Width2 = 0 mm width of st if fner 2 a t f ee t 1.2 Applied loads F = 118 kN Nominal applied load a = 60 deg . ang le b etween app lied lo ad & Y-Z pla ne b = 31 deg. addi ti onal sli ng deviati on S = 2.00 safety coefficient applied to get design load 1.3a Shackle characteristics d pin = 50 mm pin diameter  in_length = 146 mm Inside l ength shackle_safe load = 17 MT Safe w orking l oad  Ash = 60.5 mm Sh ack le ins id e w id th . ee or cent r a zer p at es ur ng t ng : THIS CHECK IS NOT PART OF STRENGTH CHECK CALCULATIONS Tt = 50.00 mm Total padeye thickness (both main & cheek pla tes)  Ash - Tt = 10.50 mm No Ce ntrali ze r pla tes r eq d 1.4 Ma terial ch aracteristics Fy = 345.00 Mpa yield stre ng th E = 20000.00 Kn/sqc Young elastic modulus 2.0 Design load together with an inclination angle of 60 deg. to Y-Z plane, and 31 deg. additional sling deviation  Applying a safely factor of 2 giv es a design load of: FD = F*S = 236.00 kN This results in the f ollowing padeye loading Design load applied in the plane of padeye FDy = FD*cosa*cosb = 101.15 kN FDx = FD*sina = 204.38 kN Design load applied perpendicular to padeye plane FDz = FD*cosa*sinb+0.05* FD = 72.57 kN as pe r API -RP- 2A recommen dati on s The lifting eye is checked for a maximum static sling load of 118 kN x a Cheek Main Hole y 1 1 F Stiffner 1 Stiffner 2 H       H _      e      y      e       h

Upload: oluomo1

Post on 08-Jan-2016

16 views

Category:

Documents


1 download

DESCRIPTION

lug check

TRANSCRIPT

Page 1: 8 Padeye_spreadsheet Check1

7/17/2019 8 Padeye_spreadsheet Check1

http://slidepdf.com/reader/full/8-padeyespreadsheet-check1 1/4

 8 TON PADEYEPage 1 of 4

1.0 Inputs

1.1 Padeye characteristics

R_eye = 27.5 mm eye radius

R_main = 95 mm main plate radius

R_cheek = 0 mm cheek plates radius

th_main = 50 mm main plate thickness

th_cheek = 0 mm cheek plate thicknessa_weld = 0 mm welding dimension between main & cheek plates

H_stiff1 = 0 mm stiffner 1 height

H_stiff2 = 0 mm stiffner 2 height

th_stiff1 = 0 mm stiffner 1 thickness

th_stff2 = 0 mm stiffner 2 thickness

H_eye = 48 mm height of eye

V = 0 mm distance between center of stiffners

V_s1 = 0 mm distance eye-center to stiffner 1

Lenth = 200 mm total length of padeye (stiffners included)

Width1 = 0 mm width of stiffner 1 at feet

Width2 = 0 mm width of stiffner 2 at feet

1.2 Applied loads

F = 118 kN Nominal applied load

a = 60 deg. angle between applied load & Y-Z plane

b = 31 deg. additional sling deviation

S = 2.00 safety coefficient applied to get design load

1.3a Shackle ch aracteristics

d_pin = 50 mm pin diameter  

in_length = 146 mm Inside length

shackle_safe_load = 17 MT Safe working load

 Ash = 60.5 mm Shackle inside width

. ee or centra zer p ates ur ng t ng : THIS CHECK IS NOT PART OF STRENGTH CHECK CALCULATIONS

Tt = 50.00 mm Total padeye thickness (both main & cheek plates)

 Ash - Tt = 10.50 mm No Centralizer plates reqd

1.4 Material characteristics

Fy = 345.00 Mpa yield strength

E = 20000.00 Kn/sqc Young elastic modulus

2.0 Design load

together with an inclination angle of 60 deg. to Y-Z plane, and 31 deg. additional sling deviation

 Applying a safely factor of 2 gives a design load of:

FD = F*S = 236.00 kN

This results in the following padeye loading

Design load applied in the plane of padeye

FDy = FD*cosa*cosb = 101.15 kN

FDx = FD*sina = 204.38 kN

Design load applied perpendicular to padeye plane

FDz = FD*cosa*sinb+0.05*FD = 72.57 kN as per API-RP-2A recommendations

The lifting eye is checked for a maximum static sling load of 118 kN

x

a

Cheek

Main

Hole

y

1

1

F

Stiffner 1

Stiffner 2

H

      H_

     e     y     e

      h

Page 2: 8 Padeye_spreadsheet Check1

7/17/2019 8 Padeye_spreadsheet Check1

http://slidepdf.com/reader/full/8-padeyespreadsheet-check1 2/4

 8 TON PADEYEPage 2 of 4

3.0 Check st resses at eye location

3.1 Check shear stress: fy = FD/As

 As = 2*(th_main*(R_main -

R_eye)+(2*th_cheek)*(R_cheek - R_eye)) = 6750.00 mm^2

fv = FD*10^3/As = 34.96 Mpa

fallowable_v = 0.4*Fy = 138.00 Mpa

Stress ratio:

Rv = fv / fallowable_v = 0.25 < 1 ok

3.2 Check bearing shear stress or radial pressure: fp = FD/Ax

r_axe = d_pin/2 25.00 mm

 Ax = 2*r_axe*(th_main + 2*th_cheek) = 2500.00 mm^2

fx = FD*10^3/Ax = 94.40 MPa

fallowabe_x = 0.9*Fy = 310.50 MPa

Stress ratio:

Rx = fx / fallowable_x = 0.30 < 1 ok

3.3 Check Hertz pressure: fm

Checking in line with the Hertz Formula (Roark -Table 33-2c)

Kb=2*R_eye*d_pin/(2*R_eye-d_pin) = 550.00 mm

fm=0.591*sqrt(F*E/(2*th_cheek+th_main)) = 774.27 Mpa

fallowable_m = 2.5*Fy = 862.50 Mpa

Stress ratio:Rm = fm / fallowable_m = 0.90 < 1 ok

=

1 - 1

th_cheek

th main

zz

.

Welding characteristics

d_weld = a_weld/sqrt(2) = 0.00 mm

 Avs = 2*pi*r_cheek*d_weld = 0.00 mm^2

Load applied per cheek plate

Fj = FD*th_cheek/(2*th_cheek+th_main) = 0.00 kN

fvs = Fj*10^3/Avs = #DIV/0! Mpa

fallowable_vs = 0.4*Fy = 138.00 MPa

Stress ratio:

Rm = fm/fallowable_m = #DIV/0! #####

tw = Fj/sqrt(2) 0.00 kN

Nw = Fj/sqrt(2) 0.00 kN

Stresses:

fwa = Nw/Avs #DIV/0! MPa

fwv = Tw/(Avs*2/3) #DIV/0! MPa

fwVM = sqrt(fwa^2+3fwv^2) #DIV/0! MPa

Stress ratio:

Rwa = fwa/(0.6*Fy) = #DIV/0! #####

Rwv = fwv/(0.4*Fy) = #DIV/0! #####

RwVM = fwVM/(0.66*Fy) = #DIV/0! #####

Page 3: 8 Padeye_spreadsheet Check1

7/17/2019 8 Padeye_spreadsheet Check1

http://slidepdf.com/reader/full/8-padeyespreadsheet-check1 3/4

 8 TON PADEYEPage 3 of 4

4.0 Check Shear between Main Plate and Flanges:

F1 = Mz/H - Fx/2 = 77.91602 kN Shear force b/w stiffner 1 and Main plate

F2 = Mz/H + Fx/2 = 126.46598 kN Shear force b/w stiffner 2 and Main plate

fva=Max(F1,F2)/(h*th_main)<=0.4*FY = #DIV/0! N/mm2Shear stress in Main plate

fvb=Max(F1,F2)/(h*th_main)<=0.4*FY #DIV/0! N/mm2

Stress ratio:Rva = fva/(0.4*Fy) = #DIV/0! #####

Rvb = f vb/(0.4*Fy) = #DIV/0! #####

5.0 Check Shear in the Chord at Chord / Main Plate Connection

T = Fdy = 101.15 kN

t (Chord thickness) = 31.75 mm

Tv = T/(2*H*t)<=0.4*FY = 7.9642316

Stress ratio:RTV = Tv/(0.4*FY) = 0.06 < 1 ok

6.0 Checking o f I-shaped section based on AISC formulae

6.1. Applied load parameters toward the checked section:

I = 48.00 mm Length between the applied load

section and the section checked

along x-axis

d = 0.00 mm Length between the applied load

point and the section checked

COG along y-axis

6.2. Checked section geometrical parameters :

H = 200.00 mm length of the section along y-axis

= .   -

B = 50.00 mm length of the section along z-axisef  = 0.00 mm thickness of the section parallel to z-axis

dg = 0.00 mm distance between z-axis and gusset plate axis

6.3. Miscellaneous points definiti on :

Vy (cm) Vz (cm)

point1 2.50 10.00

point2 2.50 0.00

point3 2.50 0.00

point4 2.50 0.00

CoA 0.00 0.00

6.4. Checked section geometrical parameters :

 Areas Ay = 10000.00 mm^2

 Az = 0.00 mm^2

 Ax = 10000.00 mm^2

Inertias Iy = 208.33 cm^4

Iz = 3333.33 cm^4

Inertia modulus Ny1 = Iy/Vy1 = 83.33 cm^3

Ny2= Iy/Vy2 = 83.33 cm^3

Ny3= Iy/Vy3 = 83.33 cm^3

Ny4= Iy/Vy4 = 83.33 cm^3

Nz1 = Iz/Vz1 = 333.33 cm^3

Nz2= Iz/Vz2 = 0.00 cm^3

Nz3= Iz/Vz3 = 0.00 cm^3

Nz4= Iz/Vz4 = 0.00 cm^3

Page 4: 8 Padeye_spreadsheet Check1

7/17/2019 8 Padeye_spreadsheet Check1

http://slidepdf.com/reader/full/8-padeyespreadsheet-check1 4/4

 8 TON PADEYEPage 4 of 4

Static moment MsyCoA = 250.00 cm^3

Msy3 = 250.00 cm^3

Msy4 = 250.00 cm^3

Msz3 = 0.00 cm^3

Msz4 = 0.00 cm^3

6.5. Loading :

N = FD = 236.00 kN

My = -FDz*I = 3483.58 kN.mm

Mz = -FDy*I - FDx*d = 4855.00 kN.mm

Ty = FDy = 101.15 kN

Tz = FDz = 72.57 kN

6.6. Resulting stresses :

Normal stress f a: = 23.60 N/mm^ Ra = 0.11 < 1 O.K.  

Bending stresses f by1= = 41.80 N/mm^2

f by2= = 41.80 N/mm^2

f by3= = 41.80 N/mm^2

f by4= = 41.80 N/mm^ Rby = 0.18 < 1 O.K.  

f bz1== 14.56 N/mm^2f bz2= = 0.00 N/mm^2

f bz3= = 0.00 N/mm^2

f bz4= = 0.00 N/mm^ Rbz = 0.06 < 1 O.K.  

Shear stresses f vyCoA= = 15.17

f vy3= Ty*msy3/Iz*t = 15.17 N/mm^2

f vy4= Ty*msy4/Iz*t = 15.17 N/mm^2

f vz3=Tz*msz3/Iy*t = 0.00 N/mm^2

f vz4= Tz*msz4/Iy*t = 0.00 N/mm^2

f v3= = 15.17 N/mm^2

f v4= = 15.17 N/mm^ Rv = 0.11 < 1 O.K.

7. AISC streess interaction ratio & Von-Mises stress ratio :

R = f ai/0.6 x Fy + (f byi + f bzi)/0.66 x Fy

(AISC stress interaction ratio)

dVM = [(f ai + f byi + f bzi)^2 + 3 x f vi^2]^1/2

(Von - Mises stress ratio)

Point 1 Axial stress + bending y + bending z

R

= 0.36 R = 0.36 < 1 O.K.

Point 2 Axial stress + bending y + bending z

R= 0.30 R = 0.30 < 1 O.K.

Point 3 Axial stress + bending y + bending z

R

dVM = 0.30 R = 0.30 < 1 O.K.

= 70.48 N/mm^ Rvm = 0.31 < 1 O.K.

Point 4 Axial stress + bending y + bending z

R

dVM = 0.30 R = 0.30 < 1 O.K.

= 70.48 N/mm^ Rvm = 0.31 < 1 O.K.

CoA Axial stress + bending y + bending zR

dVM = 0.11 R = 0.11 < 1 O.K.

= 35.32 N/mm^ Rvm = 0.16 < 1 O.K.

Rvm = dVM/0.66 x Fy