8_vainikka

Upload: mlsimhan

Post on 04-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 8_Vainikka

    1/25

    Cofiring in large scale CFB - Experience gained from

    experiments with the worlds largest biofuel fired CFB ofAlholmens Kraft, Finland

    Pasi Vainikka, VTT Processes, Finland

    2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection

  • 8/13/2019 8_Vainikka

    2/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    2

    VTT PROCESSES

    FP5 Project partnersMaximum biomass use and efficiency in large-scale co-firing (BIOMAX)

    VTT Processes, Finland Alholmens Kraft, Finland Kvaerner Power, Finland

    CIRCE Foundation, Spain Elsam Engineering, Denmark Abo AkademiUniversity, Finland

  • 8/13/2019 8_Vainikka

    3/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    3

    VTT PROCESSES

    Contents Alholmens Kraft CHP plant general features

    The experiment matrix

    Fuel properties Emissions of SO2 and SO2autoreductions achieved

    Emissions of NO

    Deposition measurements

    Composition of deposits

    Means to avoid chlorine deposition

    Protective elements

    Protective elements from fuel blending

    Source:

    Kvaerner Power Oy

  • 8/13/2019 8_Vainikka

    4/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    4

    VTT PROCESSES

    The boiler

    Annual proportion of fuels:

    Peat 50%

    Wood fuels 25% (LR, Bark)

    Coal 25%

    2.5 years of successful

    operation in open electricity

    market

    Operates with anything from

    100% coal to 100% biofuel Combusts the fuels in any given

    combination while staying within

    the emission limits

    Consumes a truck load of peat

    in 7 minutes

    30,000 truck deliveries annually

    Furnace measures 8.5m by

    24m and is 40m in height

    550MWth194kg/s, 165bar, 545C

  • 8/13/2019 8_Vainikka

    5/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    5

    VTT PROCESSES

    The Process

  • 8/13/2019 8_Vainikka

    6/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    6

    VTT PROCESSES

    The experiment matrix

    X--32501816

    X--32501815

    X--28254714

    ---26254913

    -48-4210-12

    -60-40--11

    --90-10-10

    --100---9

    --37--638---39-617

    ---3324436

    --2525-505

    ---4456-4

    --24-50263

    ----5952

    ----43571

    LimeWood

    chips

    Logging

    residueBarkCoalPeat

  • 8/13/2019 8_Vainikka

    7/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    7

    VTT PROCESSES

    Fuel properties

    9.68.1-10.29.222.510.9LHV

    19.621.121.927.020.5HHV

    HEATING VALUE (MJ/kg)

    0.0040.0140.0100.0100.020Cl

    0.0140.060.040.30.15S

    34.441.040.28.233.3O

    1.50.40.721.5N

    5.86.05.64.55.2H

    55.050.051.073.053.1C

    ULTIMATE ANALYSIS OF DRY SOLIDS (wt-%)

    3.32.52.5126.8Ash (wt-%, D.S.)

    41.740-5248-521241.8Total moisture

    WCLRBarkCoalPeatFUELS

  • 8/13/2019 8_Vainikka

    8/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    8

    VTT PROCESSES

    Sources of contributing elements

    0

    2

    4

    6

    8

    10

    12

    14

    100%L

    R

    50%

    LR+5

    0%Bark

    40%

    LR+4

    0%Bark

    +20%Pe

    at

    20%

    LR+4

    0%Bark

    +40%Pe

    at

    10%

    LR+4

    0%Bark

    +50%Pe

    at

    15%LR

    +25%

    Bark

    +45%

    Peat

    +15%Co

    al

    30%

    LR+3

    5%Pe

    at+3

    5%Coal

    100%Co

    al

    wt-%

    Ca*0.5 K Zn*10 P Na Al Si*0.5

  • 8/13/2019 8_Vainikka

    9/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    9

    VTT PROCESSES

    Sources of contributing elements

    0.00

    0.04

    0.08

    0.12

    0.16

    0.20

    100%

    LR

    50%

    LR+5

    0%Bark

    40%

    LR+4

    0%Bark

    +20%P

    eat

    20%

    LR+4

    0%Bark

    +40%P

    eat

    10%

    LR+4

    0%Bark

    +50%P

    eat

    15%LR

    +25%

    Bark

    +45%

    Peat

    +15%C

    oal

    30%

    LR+3

    5%Pe

    at+3

    5%Coal

    wt-%

    0

    1

    2

    3

    4

    S/Clatomicratio

    S Cl S/Cl atomic ratio

  • 8/13/2019 8_Vainikka

    10/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    10

    VTT PROCESSES

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    lr100

    lr90/c1

    0

    wc6

    0/b4

    0

    wc4

    8/b4

    2/c10

    p63/lr3

    7

    p54/b2

    3/lr2

    3

    p61/b3

    9

    p43/b3

    3/c2

    3

    c56/b4

    4

    p95/

    c5

    p49/b2

    6/c25

    p26/c5

    0/lr2

    4

    p57/

    c43c1

    00

    p

    47/b28

    /c25

    +L

    c

    50/b32

    /p18

    +L

    c50/b

    32/p18

    +L+FA

    SO

    2emission

    0

    0.1

    0.2

    0.3

    Sulphu

    rcontent(wt-%)

    Sulphur content

    SO2 emission

  • 8/13/2019 8_Vainikka

    11/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    11

    VTT PROCESSES

    0 10 20 30 40 50 60 70 80 90 100

    Share of biomass in fuel blend (% )

    SO2reduction

    S02 reduction

    SO2 reduction withlimestone feeding

  • 8/13/2019 8_Vainikka

    12/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    12

    VTT PROCESSES

    Sources of contributing elements:

    TGA test

    75

    80

    85

    90

    95

    100

    200 300 400 500 600 700 800 900

    Temperature (C)

    Weight-%(%)

    ~20% fall

    Logging residue chips, ashed in 500 C

    Courtesy of Markku Orjala

  • 8/13/2019 8_Vainikka

    13/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    13

    VTT PROCESSES

    Sources of contributing elements:

    TGA test

    75

    80

    85

    90

    95

    100

    200 300 400 500 600 700 800 900

    Temperature (C)

    Weight-%(%)

    Peat, ashed in 500 C

    Courtesy of Markku Orjala

  • 8/13/2019 8_Vainikka

    14/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    14

    VTT PROCESSES

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    lr100

    lr90/c10

    wc4

    8/b4

    2/c1

    0

    wc6

    0/b4

    0

    p54/b2

    3/lr2

    3

    p63/lr3

    7

    c56/b4

    4

    p61/b3

    9

    p43/b3

    3/c2

    3

    p26/c5

    0/lr2

    4

    p47/b2

    8/c25

    +L

    p47/b2

    8/c25

    c50/b3

    2/p1

    8+L

    c50/b32

    /p18

    +L+FA

    p95/

    c5

    p57/

    c43c1

    00

    N

    Oxemission

    0.0

    0.5

    1.0

    1.5

    2.0

    Nitrogencontent(w

    t-%)

    Nitrogen content

    NOx emission

  • 8/13/2019 8_Vainikka

    15/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    15

    VTT PROCESSES

    MP2:flue gas 510-550C

    probe 350C

    MP1:flue gas 700-750C

    probe 540C

    Deposit probe locations

  • 8/13/2019 8_Vainikka

    16/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    16

    VTT PROCESSES

    Radial variation in composition and temperature

    NOTE THE

    TEMPERATURE

    INCREASE ON THE

    EDGE OF DEPOSIT

    Courtesy of Pasi Makkonen

    CourtesyofMarttiAho

    0

    4

    8

    12

    16

    20

    24

    28

    Wind 50 angle Lee

    wt-%

    Na2O K2O Cl

    Wt-%

    N2O

    ClK2O

    Wind 50 Lee

  • 8/13/2019 8_Vainikka

    17/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    17

    VTT PROCESSES

    Boundary conditions: Temperature

    10CrMo910

    R2

    = 0.79

    X20CrMoV121

    R 2 = 0.88

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    7.0

    8.0

    9.0

    350 370 390 410 430 450 470 490 510 530 550

    STEAM TEMPERATURE, C

    ESTIMATEDLIFETIM

    E,a

    '

    10C rMo910 X20CrMoV121 SS2338 Esshete 1250 AC 66 Predicted

    CORROSION DET ECT ION LIMIT

    Courtesy of Pasi Makkonen

    Dr Salmenoja:~450C is a threshold temperaturefor chlorine induced corrosion

    supports findings of Dr Makkonen

    This corresponds to400-415C steam temperature

    On average, ~415C is reached after 1st superheater in TLS>500C CFB/BFB

  • 8/13/2019 8_Vainikka

    18/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    18

    VTT PROCESSES

    Composition in 50

    angle 350

    C probe

    0

    5

    10

    15

    20

    Na2O Al2O3 SiO2 SO3 Cl K2O CaO

    Wt-%ind

    eposits

    Biom ass Biom ass + 10% Coal Biom ass + 55% Coal

  • 8/13/2019 8_Vainikka

    19/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    19

    VTT PROCESSES

    Means to avoid chlorine corrosion: Sulphur

    0

    10

    20

    30

    40

    50

    60

    70

    80

    2.0 2.5 3.0 3.5 4.0 4.5

    S/Cl atomic ratio

    HCl-conversion,

    %

    100%load

    45%load

    100%loadwith limestonefeeding

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0.0 0.5 1.0 1.5 2.0 2.5

    S/Cl effectiveatomic ratio

    HCl-conversion,

    %

    100%load

    45%load

    100%loadwithlimestonefeeding

    Sulphation of alkali chlorides:

    2KCl + SO2+ O2+ H2O K2SO4+ 2HCl Gas phaseeffect!

  • 8/13/2019 8_Vainikka

    20/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    20

    VTT PROCESSES

    Means to avoid chlorine deposition: Aluminosilicates

    Kaolin, Al2O32SiO2,was fed to the bed (BFB) Dosing: 25, 50 and 80wt-% of the ash flow

    Fuel 20% AGW + 80% Bark

    0

    15

    30

    45

    60

    75

    No additive 0.25 x Ash flow 0.5 x Ash flow 0.8 x Ash flow

    HCl-conversion, %

    Cl in deposits x 10, wt-%

  • 8/13/2019 8_Vainikka

    21/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    21

    VTT PROCESSES

    Means to avoid chlorine corrosion: Coal minerals

    Alumininosilicatescan also react with alkalis liberating HCl:

    Al2Si2O72H2O Al2O32SiO2Al2O32SiO2+ 2KCl + H2O K2O Al2O3 2SiO2+ 2HCl

    The most abundant mineral iskaolinite(above) andillite(or range of aluminosilicates)

    The key issue is whether there is alkali metalbound alreadyin the aluminosilicate

  • 8/13/2019 8_Vainikka

    22/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    22

    VTT PROCESSES

    The objective

    Fe K Cl

    Fe K Cl

    Fe Na K

    O Al Si

    S CaCl

  • 8/13/2019 8_Vainikka

    23/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    23

    VTT PROCESSES

    Heat transfersurface

    Lack ofprotecting

    compounds

    Low ashcontent

    RIS

    KYCOMPOUND

    SALKALICHLORIDES

    Cl releasescorrosion

    BARK/FOREST RESIDUE

    CASE 1. BARK/FOREST RESIDUE

    24

  • 8/13/2019 8_Vainikka

    24/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    24

    VTT PROCESSES

    CASE 2. PROTECTING POWER OF COAL

    FOREST RESIDUE COAL

    Co-combustion

    PROTE

    CTING REACTIO

    NSALKALI

    SILICATES,

    SULPHATES

    ALKALICHLORIDES

    RISKY C

    OMPOUNS

    SULPHUR DIOXIDE,Al-SILICATES

    PROTECTIVES

    25

  • 8/13/2019 8_Vainikka

    25/25

    VTT TECHNICAL RESEARCH CENTRE OF FINLAND

    25

    VTT PROCESSES

    Conclusions

    In CFB conditions high SO2autoreduction can be achieved by cofiringbiomass with peat and/or coal due to high Ca content of wood fuels

    In CFB conditions peat/wood/coal cofiring produces less NOx than pure

    coal or wood fuel firing Chlorine bearing deposit formation can be avoided by appropriate fuel

    blending. Protective elements can be supplied in the boiler in peatand/or coal ash

    As a result of fuel blending, change in the composition of fuel ash can

    dramatically change ash melting behaviour S/Cl atomic ratio in fuel is not an appropriate parameter in describing

    corrosion propensity of fuel blends in biomass cofiring. Instead,estimation for this ratio in gas phase could be used as a guideline

    With higher shares of peat and especially coal, the effect of aluminium

    silicates should also be assessed The amount of nitrous oxide, N2O, increases steeply when coal is

    blended to the biomass blend. This could be an issue if there will beemission limits for this compound in the future