9. solution of a set of linear differantial equations

7
9. Solution of a Set of Linear Differantial Equations Bu Ax x x : Column matrix of state variables (nx1) A: Square matrix (nxn), system matrix u: Input vector (mx1) B: Input matrix (nxm) ) s ( BU ) s ( AX x ) s ( sX 0 ) s ( BU ) s ( AX x ) s ( sIX 0 ) s ( BU x ) s ( X ] A sI [ 0 ) s ( BU ] A sI [ x ] A sI [ ) s ( X 1 0 1 I: nxn unit matrix x 0 = {x} t=0 Solution under initial condition s Solution under inputs

Upload: ebony-blake

Post on 30-Dec-2015

32 views

Category:

Documents


0 download

DESCRIPTION

Solution under inputs. Solution under initial conditions. 9. Solution of a Set of Linear Differantial Equations. x : Column matrix of state variables (nx1). A: Square matrix (nxn), system matrix. u: Input vector (mx1). B: Input matrix (nxm). x 0 = {x} t=0. I: nxn unit matrix. L 2. L 1. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 9. Solution of a Set of Linear Differantial Equations

9. Solution of a Set of Linear Differantial Equations

BuAxx x : Column matrix of state variables (nx1)

A: Square matrix (nxn), system matrix

u: Input vector (mx1)

B: Input matrix (nxm)

)s(BU)s(AXx)s(sX 0

)s(BU)s(AXx)s(sIX 0

)s(BUx)s(X]AsI[ 0

)s(BU]AsI[x]AsI[)s(X 10

1

I: nxn unit matrix

x0= {x}t=0

Solution under initial conditions

Solution under inputs

Page 2: 9. Solution of a Set of Linear Differantial Equations

Example 9.1

Gy2y1

k c k c

L1 L2

m,IyA yB

General Coordinates: y1, y2

Inputs: yA, yB

m=1050 kg, I=670 kg-m2 k=35300 N/m, c=2000 Ns/m L1=1.7 m, L2=1.4 m

BB

AA

2

1

2

1

2

1

y35300y2000

y35300y2000

y

y

353000

035300

y

y

20000

02000

y

y

48.38532.190

32.19087.283

11 vy 22 vy

BB

AA

2

1

2

1

2

1

y35300y2000

y35300y2000

y

y

353000

035300

v

v

20000

02000

v

v

48.38532.190

32.19087.283

BBAA

BBAA

2

1

2

1

2

1

y5.136y8.7y2.5y8.91

y8.91y2.5y9.185y5.10

y

y

5.1368.91

8.919.185

v

v

8.72.5

2.55.10

v

v

(System in Problem 4 of Homework 01C)

M

Page 3: 9. Solution of a Set of Linear Differantial Equations

11 vy 22 vy

BBAA

BBAA

2

1

2

1

2

1

y5.136y8.7y8.91y2.5

y8.91y2.5y9.185y5.10

y

y

5.1368.91

8.919.185

v

v

8.72.5

2.55.10

v

v

BBAA

BBAA

2

1

2

1

2

1

2

1

y5.136y8.7y8.91y2.5

y8.91y2.5y9.185y5.10

10

01

00

00

v

v

y

y

8.72.55.1368.91

2.55.108.919.185

1000

0100

v

v

y

y

Ax x B u

)s(BU]AsI[x]AsI[)s(X 10

1

1

1

8.7s2.55.1368.91

2.55.10s8.919.185

10s0

010s

]AsI[

)s(Y)5.136s8.7()s(Y)8.91s2.5(

)s(Y)8.91s2.5()s(Y)9.185s5.10()s(U

BA

BA

0AsI

Eigenvalue equation:

0

Page 4: 9. Solution of a Set of Linear Differantial Equations

1.16948s6.1928s3.377s3.18s)s(D 234

s9.185s5.10ss8.91s2.5

s8.91s2.5s5.136s8.7s

9.185s5.10s8.91s2.5

8.91s2.55.136s8.7s

)s(D1

BU]AsI[

232

223

2

2

1

BA

BA

Y)5.136s8.7(Y)8.91s2.5(

Y)8.91s2.5(Y)9.185s5.10(

8.72.55.1368.91

2.55.108.919.185

1000

0100

A

clc;clear;syms s;a=[0,0,1,0 0,0,0,1 -185.9,91.8,-10.5,5.2 91.8,-136.5,5.2,-7.8];eig(a)pausei1=eye(4);a1=inv(s*i1-a);pretty(a1)i3.143.7s 2,1 i9.79.1s 4,3

)s(D1

s9.185s5.10ss8.91s2.51.16948s9.955s5.136s8.2s8.91

s8.91s2.5s5.136s8.7s2.6s8.911.16948s7.972s9.185

9.185s5.10s8.91s2.57.972s8.240s3.18s8.2s8.91

8.91s2.55.136s8.7s2.6s8.919.955s4.191s3.18s

23222

22322

223

223

1]AsI[

For multiplying polinoms, use conv ( ) commands in MATLAB

Page 5: 9. Solution of a Set of Linear Differantial Equations

)s(D1

Y)s1.16948s6.1928s4.191s8.7(Y)s8.91s2.5(

Y)s8.91s2.5(Y)s1.16948s6.1928s8.240s5.10(

Y)1.16948s6.1928s4.191s8.7(Y)s8.91s2.5(

Y)s8.91s2.5(Y)1.16948s6.1928s8.240s5.10(

BU]AsI[

B234

A34

B34

A23

B23

A23

B23

A23

14

Gy2y1

k c k c

L1 L2

m,IyA yB

0.05m

05.0

0 1tt

Ay By

05.0

0 t

s186.0

36001000

x60

1.3t1 s

05.0)s(YB s186.0

A es

05.0)s(Y

h

km60Va

(L=L1+L2=3.1 m)

Page 6: 9. Solution of a Set of Linear Differantial Equations

)s(D1

Y)s1.16948s6.1928s4.191s8.7(Y)s8.91s2.5(

Y)s8.91s2.5(Y)s1.16948s6.1928s8.240s5.10(

Y)1.16948s6.1928s4.191s8.7(Y)s8.91s2.5(

Y)s8.91s2.5(Y)1.16948s6.1928s8.240s5.10(

)s(V

)s(V

)s(Y

)s(Y

B234

A34

B34

A23

B23

A23

B23

A23

2

1

2

1

4

s05.0

)s(YB s186.0A e

s05.0

)s(Y

)s(sD05.0

)s8.91s2.5(e)s(sD

05.0)1.16948s6.1928s8.240s5.10()s(Y 23s186.023

1

1.16948s6.1928s3.377s3.18s)s(D 234

]67.2)186.0t(3.14cos[e035.0)t(y )186.0t(3.71

)186.0t(u05.0]91.2)186.0t(9.7cos[e019.0 )186.0t(9.1

)47.0t3.14cos(e027.0 t3.7 )91.2t9.7cos(e025.0 t9.1

BU]AsI[

)s(V

)s(V

)s(Y

)s(Y

)s(X 1

2

1

2

1

i3.143.7s 2,1 i9.79.1s 4,3 Eigenvalues:

Page 7: 9. Solution of a Set of Linear Differantial Equations

Gy2y1

k c k c

L1 L2

m,IyA yB

0.05m

)t(y1

i3.143.7s 2,1 (ξ =0.45)

i9.79.1s 4,3 (ξ =0.23)

Δt=0.02, t∞=3.31

In input t1=0.186